code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : str=7_68 ): '''simple docstring''' super().__init__(__lowerCAmelCase ) _snake_case : Dict = proj_size _snake_case : Optional[Any] = CLIPVisionModel(__lowerCAmelCase ) _snake_case : int = PaintByExampleMapper(__lowerCAmelCase ) _snake_case : Optional[int] = nn.LayerNorm(config.hidden_size ) _snake_case : Union[str, Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _snake_case : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCamelCase_ ( self : Any , UpperCamelCase : int , UpperCamelCase : Tuple=False ): '''simple docstring''' _snake_case : str = self.model(pixel_values=__lowerCAmelCase ) _snake_case : Optional[int] = clip_output.pooler_output _snake_case : int = self.mapper(latent_states[:, None] ) _snake_case : Optional[Any] = self.final_layer_norm(__lowerCAmelCase ) _snake_case : Any = self.proj_out(__lowerCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__() _snake_case : Any = (config.num_hidden_layers + 1) // 5 _snake_case : Tuple = config.hidden_size _snake_case : List[str] = 1 _snake_case : Dict = nn.ModuleList( [ BasicTransformerBlock(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , activation_fn='gelu' , attention_bias=__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ] ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any ): '''simple docstring''' for block in self.blocks: _snake_case : Optional[int] = block(__lowerCAmelCase ) return hidden_states
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : nn.Module a_ : List[nn.Module] =field(default_factory=__UpperCAmelCase ) a_ : list =field(default_factory=__UpperCAmelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase_ , nn.Convad ) or isinstance(UpperCAmelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCamelCase : Any ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return list(filter(lambda UpperCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : nn.Module a_ : nn.Module a_ : int =0 a_ : List =field(default_factory=__UpperCAmelCase ) a_ : List =field(default_factory=__UpperCAmelCase ) def __call__( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : str = Tracker(self.dest )(UpperCAmelCase_ ).parametrized _snake_case : List[str] = Tracker(self.src )(UpperCAmelCase_ ).parametrized _snake_case : str = list(filter(lambda UpperCamelCase : type(UpperCAmelCase_ ) not in self.src_skip , UpperCAmelCase_ ) ) _snake_case : Any = list(filter(lambda UpperCamelCase : type(UpperCAmelCase_ ) not in self.dest_skip , UpperCAmelCase_ ) ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase_ )} operations while""" f""" destination module has {len(UpperCAmelCase_ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase_ , UpperCAmelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: str , lowerCAmelCase: Tuple = True )-> int: print(F"""Converting {name}...""" ) with torch.no_grad(): _snake_case : Dict = timm.create_model(_snake_case , pretrained=_snake_case ).eval() _snake_case : Optional[int] = ResNetForImageClassification(_snake_case ).eval() _snake_case : str = ModuleTransfer(src=_snake_case , dest=_snake_case ) _snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_snake_case ) assert torch.allclose(from_model(_snake_case ) , our_model(_snake_case ).logits ), "The model logits don't match the original one." _snake_case : Tuple = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(_snake_case ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_snake_case , ) # we can use the convnext one _snake_case : List[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_snake_case , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: List[str] = None , lowerCAmelCase: List[str] = True )-> Dict: _snake_case : Tuple = 'imagenet-1k-id2label.json' _snake_case : List[str] = 10_00 _snake_case : int = (1, num_labels) _snake_case : List[str] = 'huggingface/label-files' _snake_case : Union[str, Any] = num_labels _snake_case : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) _snake_case : List[Any] = {int(_snake_case ): v for k, v in idalabel.items()} _snake_case : int = idalabel _snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} _snake_case : Optional[Any] = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case ) _snake_case : Optional[int] = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_snake_case , names_to_config[model_name] , _snake_case , _snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_snake_case , _snake_case , _snake_case , _snake_case ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' a_ : str ="""gptj""" a_ : Optional[Any] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any]=5_04_00 , UpperCamelCase : Tuple=20_48 , UpperCamelCase : Optional[int]=40_96 , UpperCamelCase : List[str]=28 , UpperCamelCase : List[Any]=16 , UpperCamelCase : str=64 , UpperCamelCase : str=None , UpperCamelCase : Tuple="gelu_new" , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Any=0.0 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Optional[Any]=1e-5 , UpperCamelCase : str=0.02 , UpperCamelCase : List[Any]=True , UpperCamelCase : Dict=5_02_56 , UpperCamelCase : Any=5_02_56 , UpperCamelCase : int=False , **UpperCamelCase : str , ): '''simple docstring''' _snake_case : int = vocab_size _snake_case : List[str] = n_positions _snake_case : int = n_embd _snake_case : Tuple = n_layer _snake_case : Any = n_head _snake_case : Union[str, Any] = n_inner _snake_case : List[Any] = rotary_dim _snake_case : Optional[int] = activation_function _snake_case : Dict = resid_pdrop _snake_case : Dict = embd_pdrop _snake_case : Dict = attn_pdrop _snake_case : Any = layer_norm_epsilon _snake_case : int = initializer_range _snake_case : str = use_cache _snake_case : Optional[int] = bos_token_id _snake_case : str = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class _lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : PretrainedConfig , UpperCamelCase : str = "default" , UpperCamelCase : List[PatchingSpec] = None , UpperCamelCase : bool = False , ): '''simple docstring''' super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , 'pad_token_id' , UpperCamelCase__ ): # TODO: how to do that better? _snake_case : Any = 0 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) _snake_case : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _snake_case : List[str] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self._config.n_layer @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self._config.n_head def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , ): '''simple docstring''' _snake_case : List[str] = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() _snake_case : Any = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _snake_case : int = seqlen + 2 _snake_case : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case : Union[str, Any] = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] _snake_case : str = common_inputs['''attention_mask'''] if self.use_past: _snake_case : List[Any] = ordered_inputs['''attention_mask'''].dtype _snake_case : int = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return 13
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Any , lowerCAmelCase: Tuple , lowerCAmelCase: str , lowerCAmelCase: Tuple , lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: int , lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Union[str, Any] , )-> Optional[Any]: _snake_case : Optional[Any] = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } _snake_case , _snake_case : int = input_paths_and_base_extractors[compression_format] if input_path is None: _snake_case : Any = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) assert base_extractor.is_extractable(__UpperCamelCase ) _snake_case : Dict = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(__UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _snake_case : int = file_path.read_text(encoding='utf-8' ) else: _snake_case : Tuple = output_path.read_text(encoding='utf-8' ) _snake_case : Tuple = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: int , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: str , lowerCAmelCase: Any , lowerCAmelCase: Dict , lowerCAmelCase: str , )-> Union[str, Any]: _snake_case : Dict = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } _snake_case : Dict = input_paths[compression_format] if input_path is None: _snake_case : List[str] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) _snake_case : List[str] = Extractor.infer_extractor_format(__UpperCamelCase ) assert extractor_format is not None _snake_case : int = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _snake_case : Union[str, Any] = file_path.read_text(encoding='utf-8' ) else: _snake_case : Optional[int] = output_path.read_text(encoding='utf-8' ) _snake_case : Dict = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: Dict )-> int: import tarfile _snake_case : Dict = tmp_path / 'data_dot_dot' directory.mkdir() _snake_case : int = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(__UpperCamelCase , 'w' ) as f: f.add(__UpperCamelCase , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> List[Any]: import tarfile _snake_case : List[Any] = tmp_path / 'data_sym_link' directory.mkdir() _snake_case : Optional[int] = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=__UpperCamelCase ) with tarfile.TarFile(__UpperCamelCase , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: str , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any , lowerCAmelCase: int , lowerCAmelCase: Optional[int] )-> int: _snake_case : Optional[Any] = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } _snake_case : Union[str, Any] = insecure_tar_files[insecure_tar_file] _snake_case : Dict = tmp_path / 'extracted' TarExtractor.extract(__UpperCamelCase , __UpperCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> Any: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _snake_case : Any = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 _snake_case : Optional[int] = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(__UpperCamelCase ) assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
class _lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple ): '''simple docstring''' _snake_case : dict[str, TrieNode] = {} # Mapping from char to TrieNode _snake_case : List[Any] = False def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[Any] = self for char in word: if char not in curr.nodes: _snake_case : List[Any] = TrieNode() _snake_case : int = curr.nodes[char] _snake_case : Union[str, Any] = True def UpperCamelCase_ ( self : str , UpperCamelCase : str ): '''simple docstring''' _snake_case : Union[str, Any] = self for char in word: if char not in curr.nodes: return False _snake_case : Dict = curr.nodes[char] return curr.is_leaf def UpperCamelCase_ ( self : Dict , UpperCamelCase : str ): '''simple docstring''' def _delete(UpperCamelCase : TrieNode , UpperCamelCase : str , UpperCamelCase : int ) -> bool: if index == len(UpperCamelCase ): # If word does not exist if not curr.is_leaf: return False _snake_case : Optional[Any] = False return len(curr.nodes ) == 0 _snake_case : str = word[index] _snake_case : str = curr.nodes.get(UpperCamelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _snake_case : int = _delete(UpperCamelCase , UpperCamelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase , 0 ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Any )-> Tuple: if node.is_leaf: print(lowerCAmelCase , end=' ' ) for key, value in node.nodes.items(): print_words(lowerCAmelCase , word + key ) def lowerCamelCase_ ( )-> int: _snake_case : int = """banana bananas bandana band apple all beast""".split() _snake_case : int = TrieNode() root.insert_many(lowerCAmelCase ) # print_words(root, "") assert all(root.find(lowerCAmelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[str] )-> List[str]: print(str(lowerCAmelCase ) , 'works!' if passes else 'doesn\'t work :(' ) def lowerCamelCase_ ( )-> Any: assert test_trie() def lowerCamelCase_ ( )-> str: print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Union[str, "sqlalchemy.sql.Selectable"] , UpperCamelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase : Optional[Features] = None , UpperCamelCase : str = None , UpperCamelCase : bool = False , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(features=__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase , **__lowercase ) _snake_case : Any = Sql( cache_dir=__lowercase , features=__lowercase , sql=__lowercase , con=__lowercase , **__lowercase , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = None _snake_case : List[str] = None _snake_case : Any = None _snake_case : Optional[int] = None self.builder.download_and_prepare( download_config=__lowercase , download_mode=__lowercase , verification_mode=__lowercase , base_path=__lowercase , ) # Build dataset for splits _snake_case : List[Any] = self.builder.as_dataset( split='train' , verification_mode=__lowercase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any , UpperCamelCase : Dataset , UpperCamelCase : str , UpperCamelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) _snake_case : Any = dataset _snake_case : Tuple = name _snake_case : List[str] = con _snake_case : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : str = num_proc _snake_case : str = to_sql_kwargs def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : int = self.to_sql_kwargs.pop('sql' , __lowercase ) _snake_case : str = self.to_sql_kwargs.pop('con' , __lowercase ) _snake_case : List[Any] = self.to_sql_kwargs.pop('index' , __lowercase ) _snake_case : List[str] = self._write(index=__lowercase , **self.to_sql_kwargs ) return written def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = args _snake_case : str = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _snake_case : Dict = query_table( table=self.dataset.data , key=slice(__lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) _snake_case : Optional[int] = batch.to_pandas() _snake_case : List[str] = df.to_sql(self.name , self.con , index=__lowercase , **__lowercase ) return num_rows or len(__lowercase ) def UpperCamelCase_ ( self : int , UpperCamelCase : int , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _snake_case , _snake_case : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowercase , __lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : Optional[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Any =['torch'] def __init__( self : List[str] , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : int , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Dict =['torch'] def __init__( self : Any , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Dict , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[Any] =['torch'] def __init__( self : Any , *UpperCamelCase : int , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : int =['torch'] def __init__( self : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : int , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : str , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[Any] =['torch'] def __init__( self : Any , *UpperCamelCase : Dict , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Tuple , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : int =['torch'] def __init__( self : int , *UpperCamelCase : Tuple , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : str , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[int] =['torch'] def __init__( self : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Tuple =['torch'] def __init__( self : int , *UpperCamelCase : str , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Dict =['torch'] def __init__( self : int , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) def lowerCamelCase_ ( *lowerCAmelCase: Dict , **lowerCAmelCase: Tuple )-> Tuple: requires_backends(_lowerCAmelCase , ['torch'] ) def lowerCamelCase_ ( *lowerCAmelCase: int , **lowerCAmelCase: Any )-> Tuple: requires_backends(_lowerCAmelCase , ['torch'] ) def lowerCamelCase_ ( *lowerCAmelCase: Optional[int] , **lowerCAmelCase: Dict )-> Union[str, Any]: requires_backends(_lowerCAmelCase , ['torch'] ) def lowerCamelCase_ ( *lowerCAmelCase: Any , **lowerCAmelCase: Any )-> Union[str, Any]: requires_backends(_lowerCAmelCase , ['torch'] ) def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: str )-> Any: requires_backends(_lowerCAmelCase , ['torch'] ) def lowerCamelCase_ ( *lowerCAmelCase: int , **lowerCAmelCase: Dict )-> List[str]: requires_backends(_lowerCAmelCase , ['torch'] ) def lowerCamelCase_ ( *lowerCAmelCase: Union[str, Any] , **lowerCAmelCase: Optional[Any] )-> Optional[int]: requires_backends(_lowerCAmelCase , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : int =['torch'] def __init__( self : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Tuple =['torch'] def __init__( self : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : int , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Any =['torch'] def __init__( self : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : int , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : Dict , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Union[str, Any] =['torch'] def __init__( self : Optional[int] , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[int] =['torch'] def __init__( self : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : int =['torch'] def __init__( self : Dict , *UpperCamelCase : int , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[int] =['torch'] def __init__( self : List[Any] , *UpperCamelCase : int , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : Tuple , *UpperCamelCase : Dict , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Tuple =['torch'] def __init__( self : List[Any] , *UpperCamelCase : Dict , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Dict =['torch'] def __init__( self : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : int ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : int , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Dict =['torch'] def __init__( self : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : str , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : Optional[int] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[Any] =['torch'] def __init__( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : int , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : int , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Tuple =['torch'] def __init__( self : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : List[str] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Tuple =['torch'] def __init__( self : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : int , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Any =['torch'] def __init__( self : str , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Tuple =['torch'] def __init__( self : str , *UpperCamelCase : int , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Dict , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Any =['torch'] def __init__( self : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : str , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : int =['torch'] def __init__( self : int , *UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[int] =['torch'] def __init__( self : Union[str, Any] , *UpperCamelCase : str , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : Optional[int] , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : int , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[Any] =['torch'] def __init__( self : Tuple , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : str , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : List[Any] =['torch'] def __init__( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : int , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : List[Any] =['torch'] def __init__( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : int =['torch'] def __init__( self : str , *UpperCamelCase : str , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Dict =['torch'] def __init__( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Dict =['torch'] def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : str ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Dict , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : List[Any] =['torch'] def __init__( self : Any , *UpperCamelCase : int , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : int , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Union[str, Any] =['torch'] def __init__( self : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Any , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Union[str, Any] =['torch'] def __init__( self : List[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Dict , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : List[Any] =['torch'] def __init__( self : str , *UpperCamelCase : Dict , **UpperCamelCase : int ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Dict =['torch'] def __init__( self : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Dict , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : str =['torch'] def __init__( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Union[str, Any] =['torch'] def __init__( self : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Tuple =['torch'] def __init__( self : str , *UpperCamelCase : Dict , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : Optional[Any] =['torch'] def __init__( self : Any , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : int , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch'] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' a_ : List[Any] =['torch'] def __init__( self : Any , *UpperCamelCase : int , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : List[str] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : int , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch'] )
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''▁''' lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase_ = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off lowerCAmelCase_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class _lowerCAmelCase ( UpperCamelCase__ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a_ : List[str] =["""input_ids""", """attention_mask"""] a_ : List[int] =[] a_ : List[int] =[] def __init__( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : int=None , UpperCamelCase : List[str]=None , UpperCamelCase : Dict="</s>" , UpperCamelCase : Union[str, Any]="</s>" , UpperCamelCase : Dict="<s>" , UpperCamelCase : Tuple="<unk>" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : Optional[Any]="<mask>" , UpperCamelCase : Dict = None , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' _snake_case : int = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token _snake_case : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case : str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCamelCase , tgt_lang=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) _snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase ) ) _snake_case : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _snake_case : Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _snake_case : str = 1 _snake_case : Union[str, Any] = len(self.sp_model ) _snake_case : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase ) } _snake_case : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} _snake_case : Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _snake_case : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _snake_case : Tuple = src_lang if src_lang is not None else 'en_XX' _snake_case : List[str] = self.lang_code_to_id[self._src_lang] _snake_case : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : str , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ): '''simple docstring''' _snake_case : List[Any] = self.__dict__.copy() _snake_case : Optional[Any] = None return state def __setstate__( self : Optional[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case : Optional[Any] = {} _snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : int = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _snake_case : Optional[int] = self.sp_model.PieceToId(UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Tuple ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Optional[int] = [] _snake_case : Optional[int] = '' _snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token _snake_case : Union[str, Any] = True _snake_case : int = [] else: current_sub_tokens.append(UpperCamelCase ) _snake_case : Union[str, Any] = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case : Tuple = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: _snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple = None , UpperCamelCase : Optional[int] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) _snake_case : Dict = [1] * len(self.prefix_tokens ) _snake_case : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase )) + ([0] * len(UpperCamelCase )) + suffix_ones def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : List[str] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , **UpperCamelCase : Tuple ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _snake_case : Dict = src_lang _snake_case : str = self(UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : Optional[Any] = self.convert_tokens_to_ids(UpperCamelCase ) _snake_case : Tuple = tgt_lang_id return inputs def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : str = "en_XX" , UpperCamelCase : Tuple = None , UpperCamelCase : Any = "ro_RO" , **UpperCamelCase : Optional[int] , ): '''simple docstring''' _snake_case : int = src_lang _snake_case : int = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = self.lang_code_to_id[src_lang] _snake_case : Optional[int] = [self.cur_lang_code_id] _snake_case : List[str] = [self.eos_token_id] def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.lang_code_to_id[tgt_lang] _snake_case : Optional[Any] = [self.cur_lang_code_id] _snake_case : Optional[Any] = [self.eos_token_id]
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""ViTFeatureExtractor"""] lowerCAmelCase_ = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCAmelCase_ = 'facebook/wmt19-en-de' lowerCAmelCase_ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCAmelCase_ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCAmelCase_ = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test lowerCAmelCase_ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowerCAmelCase_ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save lowerCAmelCase_ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
from __future__ import annotations import math def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool , lowerCAmelCase: list[int] , lowerCAmelCase: float )-> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(_UpperCamelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) def lowerCamelCase_ ( )-> str: _snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] _snake_case : Dict = math.log(len(_UpperCamelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowerCAmelCase ( __a ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' with open(A__ , encoding='utf-8' ) as input_file: _snake_case : Dict = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) _snake_case : Any = input_file.read() _snake_case : List[str] = regexp.search(A__ ) return match def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int ): '''simple docstring''' with open(A__ , encoding='utf-8' ) as input_file: _snake_case : Optional[Any] = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) _snake_case : int = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _snake_case : Optional[int] = regexp.finditer(A__ ) _snake_case : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[Any] = Path('./datasets' ) _snake_case : Any = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A__ ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Tuple = Path('./datasets' ) _snake_case : Any = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(A__ ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' def lowerCamelCase_ ( lowerCAmelCase: Dict )-> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] )-> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _snake_case , _snake_case : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _snake_case : Optional[Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowerCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
from __future__ import annotations from typing import TypedDict class _lowerCAmelCase ( __snake_case ): '''simple docstring''' a_ : Optional[Any] =42 a_ : int =42 def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Tuple: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(lowercase__ ) )] def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Tuple: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) _snake_case : List[str] = all_rotations(lowercase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : Optional[int] = { 'bwt_string': ''.join([word[-1] for word in rotations] ), 'idx_original_string': rotations.index(lowercase__ ), } return response def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple )-> Union[str, Any]: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: _snake_case : Dict = int(lowercase__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(lowercase__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) _snake_case : Optional[int] = [''] * len(lowercase__ ) for _ in range(len(lowercase__ ) ): for i in range(len(lowercase__ ) ): _snake_case : str = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCAmelCase_ = """Provide a string that I will generate its BWT transform: """ lowerCAmelCase_ = input(entry_msg).strip() lowerCAmelCase_ = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result["bwt_string"]}'""" ) lowerCAmelCase_ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ F"""we get original string '{original_string}'""" )
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
from __future__ import annotations import math def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Any: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( lowerCAmelCase: int )-> List[Any]: _snake_case : Dict = str(lowerCAmelCase_ ) _snake_case : Dict = [n] for i in range(1 , len(lowerCAmelCase_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Optional[int]: if len(str(lowerCAmelCase_ ) ) > 3: if not is_prime(int(str(lowerCAmelCase_ )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase_ )[:3] ) ): return False return True def lowerCamelCase_ ( lowerCAmelCase: Optional[int] = 11 )-> Optional[int]: _snake_case : list[int] = [] _snake_case : str = 13 while len(lowerCAmelCase_ ) != count: if validate(lowerCAmelCase_ ): _snake_case : Dict = list_truncated_nums(lowerCAmelCase_ ) if all(is_prime(lowerCAmelCase_ ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase_ ) num += 2 return list_truncated_primes def lowerCamelCase_ ( )-> str: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
from __future__ import annotations import math def lowerCamelCase_ ( lowerCAmelCase: int )-> str: if num <= 0: _snake_case : Tuple = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = [True] * (num + 1) _snake_case : List[Any] = [] _snake_case : Union[str, Any] = 2 _snake_case : List[str] = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE__ ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE__ ): if sieve[i] is True: _snake_case : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
def lowerCamelCase_ ( lowerCAmelCase: str )-> List[Any]: _snake_case : Optional[int] = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _snake_case : str = hex_num[0] == '''-''' if is_negative: _snake_case : int = hex_num[1:] try: _snake_case : int = int(a_ , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _snake_case : List[Any] = '''''' while int_num > 0: _snake_case : Optional[Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase_ = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowerCamelCase_ ( lowerCAmelCase: str )-> int: for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase_ = parser.parse_args() if args.check_lib: lowerCAmelCase_ = importlib.import_module("""transformers""") lowerCAmelCase_ = Path(transformers_module.__file__).parent else: lowerCAmelCase_ = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import math import random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Tuple = False )-> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase_ = 0.02 def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[int] )-> float: _snake_case : int = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(__UpperCamelCase ): # Forward propagation _snake_case : List[str] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _snake_case : Tuple = (expected / 1_00) - layer_a # Error delta _snake_case : str = layer_1_error * sigmoid_function(__UpperCamelCase , __UpperCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = int(input("""Expected value: """)) lowerCAmelCase_ = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' a_ : str ='timm_backbone' def __init__( self : str , UpperCamelCase : int=None , UpperCamelCase : Tuple=3 , UpperCamelCase : Tuple=True , UpperCamelCase : Any=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase ) _snake_case : Any = backbone _snake_case : List[str] = num_channels _snake_case : Tuple = features_only _snake_case : Dict = use_pretrained_backbone _snake_case : Optional[Any] = True _snake_case : List[Any] = out_indices if out_indices is not None else (-1,)
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
from math import sqrt def lowerCamelCase_ ( lowerCAmelCase: int )-> List[Any]: _snake_case : Dict = 0 for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] = 1_00_00 )-> int: _snake_case : Optional[Any] = sum( i for i in range(1 , snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
def lowerCamelCase_ ( lowerCAmelCase: int )-> bool: if not isinstance(__UpperCamelCase , __UpperCamelCase ): _snake_case : Dict = F"""Input value of [number={number}] must be an integer""" raise TypeError(__UpperCamelCase ) if number < 0: return False _snake_case : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: int , lowerCAmelCase: List[str] , lowerCAmelCase: str , lowerCAmelCase: Tuple )-> Any: # Load configuration defined in the metadata file with open(lowerCamelCase_ ) as metadata_file: _snake_case : str = json.load(lowerCamelCase_ ) _snake_case : Dict = LukeConfig(use_entity_aware_attention=lowerCamelCase_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _snake_case : Optional[int] = torch.load(lowerCamelCase_ , map_location='cpu' ) # Load the entity vocab file _snake_case : int = load_entity_vocab(lowerCamelCase_ ) _snake_case : Union[str, Any] = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _snake_case : str = AddedToken('<ent>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) _snake_case : str = AddedToken('<ent2>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = LukeTokenizer.from_pretrained(lowerCamelCase_ ) # Initialize the embeddings of the special tokens _snake_case : Tuple = state_dict['embeddings.word_embeddings.weight'] _snake_case : Any = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) _snake_case : Dict = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) _snake_case : str = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _snake_case : List[Any] = F"""encoder.layer.{layer_index}.attention.self.""" _snake_case : Any = state_dict[prefix + matrix_name] _snake_case : List[Any] = state_dict[prefix + matrix_name] _snake_case : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _snake_case : List[str] = state_dict['entity_embeddings.entity_embeddings.weight'] _snake_case : List[str] = entity_emb[entity_vocab['[MASK]']] _snake_case : Dict = LukeModel(config=lowerCamelCase_ ).eval() _snake_case , _snake_case : Any = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) if not (len(lowerCamelCase_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {', '.join(lowerCamelCase_ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' F""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" ) # Check outputs _snake_case : str = LukeTokenizer.from_pretrained(lowerCamelCase_ , task='entity_classification' ) _snake_case : Union[str, Any] = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) _snake_case : Optional[Any] = (39, 42) _snake_case : List[Any] = tokenizer(lowerCamelCase_ , entity_spans=[span] , add_prefix_space=lowerCamelCase_ , return_tensors='pt' ) _snake_case : str = model(**lowerCamelCase_ ) # Verify word hidden states if model_size == "large": _snake_case : int = torch.Size((1, 42, 10_24) ) _snake_case : Union[str, Any] = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base _snake_case : int = torch.Size((1, 42, 7_68) ) _snake_case : Optional[int] = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _snake_case : Any = torch.Size((1, 1, 10_24) ) _snake_case : int = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base _snake_case : Dict = torch.Size((1, 1, 7_68) ) _snake_case : Any = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCamelCase_ ) ) model.save_pretrained(lowerCamelCase_ ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> Union[str, Any]: _snake_case : List[Any] = {} with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(lowerCamelCase_ ): _snake_case , _snake_case : Tuple = line.rstrip().split('\t' ) _snake_case : Any = index return entity_vocab if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCAmelCase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> Dict: _snake_case : str = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> str: _snake_case : Optional[int] = emb.weight.shape _snake_case : Any = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) _snake_case : Dict = emb.weight.data return lin_layer def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Any=None )-> List[Any]: _snake_case : Any = {} for old_key in state_dict.keys(): _snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case : Union[str, Any] = key.replace('moe_layer.experts.0' , F"""ffn.experts.expert_{expert_idx}""" ) else: _snake_case : Dict = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case : Optional[int] = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case : int = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case : Union[str, Any] = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case : List[Any] = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case : Optional[Any] = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case : Optional[int] = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case : Optional[int] = state_dict[old_key] return new_dict def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] , lowerCAmelCase: str = WEIGHTS_NAME )-> List[Any]: _snake_case : Union[str, Any] = [] _snake_case : Union[str, Any] = 0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): _snake_case : Optional[Any] = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(__snake_case ): _snake_case : Optional[int] = torch.load(__snake_case )["model"] remove_ignore_keys_(__snake_case ) _snake_case : Dict = rename_fairseq_keys(__snake_case , __snake_case ) _snake_case : Optional[int] = os.path.join( __snake_case , weights_name.replace('.bin' , F"""-{len(__snake_case )+1:05d}-of-???.bin""" ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block _snake_case : List[Any] = os.path.join(__snake_case , weights_name.replace('.bin' , F"""-{len(__snake_case )+1:05d}-of-???.bin""" ) ) _snake_case : List[Any] = torch.load(switch_checkpoint_path + '-shared.pt' )["model"] remove_ignore_keys_(__snake_case ) _snake_case : Optional[Any] = rename_fairseq_keys(__snake_case , __snake_case ) _snake_case : int = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: _snake_case : int = os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index _snake_case : Any = {} for idx, shard in enumerate(__snake_case ): _snake_case : Optional[Any] = weights_name.replace('.bin' , F"""-{idx+1:05d}-of-{len(__snake_case ):05d}.bin""" ) _snake_case : List[Any] = os.path.join(__snake_case , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: _snake_case : Optional[int] = shard_file # Add the metadata _snake_case : Tuple = {"total_size": total_size} _snake_case : Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__snake_case , __snake_case ) , 'w' , encoding='utf-8' ) as f: _snake_case : List[Any] = json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + "\n" f.write(__snake_case ) return metadata, index if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase_ = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _lowerCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = value_function _snake_case : Any = unet _snake_case : Optional[int] = scheduler _snake_case : Dict = env _snake_case : Union[str, Any] = env.get_dataset() _snake_case : Union[str, Any] = {} for key in self.data.keys(): try: _snake_case : int = self.data[key].mean() except: # noqa: E722 pass _snake_case : Union[str, Any] = {} for key in self.data.keys(): try: _snake_case : Dict = self.data[key].std() except: # noqa: E722 pass _snake_case : Dict = env.observation_space.shape[0] _snake_case : List[str] = env.action_space.shape[0] def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase_ ( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' if type(__A ) is dict: return {k: self.to_torch(__A ) for k, v in x_in.items()} elif torch.is_tensor(__A ): return x_in.to(self.unet.device ) return torch.tensor(__A , device=self.unet.device ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' for key, val in cond.items(): _snake_case : List[Any] = val.clone() return x_in def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Union[str, Any] = x.shape[0] _snake_case : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _snake_case : str = torch.full((batch_size,) , __A , device=self.unet.device , dtype=torch.long ) for _ in range(__A ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _snake_case : Union[str, Any] = self.value_function(x.permute(0 , 2 , 1 ) , __A ).sample _snake_case : Tuple = torch.autograd.grad([y.sum()] , [x] )[0] _snake_case : Union[str, Any] = self.scheduler._get_variance(__A ) _snake_case : Tuple = torch.exp(0.5 * posterior_variance ) _snake_case : Dict = model_std * grad _snake_case : List[Any] = 0 _snake_case : int = x.detach() _snake_case : Union[str, Any] = x + scale * grad _snake_case : Dict = self.reset_xa(__A , __A , self.action_dim ) _snake_case : Optional[Any] = self.unet(x.permute(0 , 2 , 1 ) , __A ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _snake_case : Any = self.scheduler.step(__A , __A , __A , predict_epsilon=__A )['prev_sample'] # apply conditions to the trajectory (set the initial state) _snake_case : str = self.reset_xa(__A , __A , self.action_dim ) _snake_case : str = self.to_torch(__A ) return x, y def __call__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Dict=64 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : List[Any]=2 , UpperCamelCase : Optional[Any]=0.1 ): '''simple docstring''' _snake_case : int = self.normalize(__A , 'observations' ) _snake_case : List[str] = obs[None].repeat(__A , axis=0 ) _snake_case : List[str] = {0: self.to_torch(__A )} _snake_case : Optional[int] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _snake_case : Any = randn_tensor(__A , device=self.unet.device ) _snake_case : Tuple = self.reset_xa(__A , __A , self.action_dim ) _snake_case : List[str] = self.to_torch(__A ) # run the diffusion process _snake_case , _snake_case : int = self.run_diffusion(__A , __A , __A , __A ) # sort output trajectories by value _snake_case : str = y.argsort(0 , descending=__A ).squeeze() _snake_case : List[str] = x[sorted_idx] _snake_case : Optional[Any] = sorted_values[:, :, : self.action_dim] _snake_case : Tuple = actions.detach().cpu().numpy() _snake_case : List[str] = self.de_normalize(__A , key='actions' ) # select the action with the highest value if y is not None: _snake_case : Optional[int] = 0 else: # if we didn't run value guiding, select a random action _snake_case : Dict = np.random.randint(0 , __A ) _snake_case : Optional[int] = denorm_actions[selected_index, 0] return denorm_actions
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
import math def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> int: if ( not isinstance(UpperCamelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> Optional[int]: if ( not isinstance(UpperCamelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase_ = HfApi() lowerCAmelCase_ = {} # fmt: off lowerCAmelCase_ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowerCAmelCase_ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowerCAmelCase_ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowerCAmelCase_ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowerCAmelCase_ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowerCAmelCase_ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowerCAmelCase_ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowerCAmelCase_ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowerCAmelCase_ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowerCAmelCase_ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowerCAmelCase_ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowerCAmelCase_ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowerCAmelCase_ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowerCAmelCase_ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowerCAmelCase_ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowerCAmelCase_ = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase_ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split("""/""")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): lowerCAmelCase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: lowerCAmelCase_ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase_ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase_ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' a_ : str ="""gpt_neo""" a_ : List[str] =["""past_key_values"""] a_ : Dict ={"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : List[str] , UpperCamelCase : Dict=5_02_57 , UpperCamelCase : List[str]=20_48 , UpperCamelCase : Tuple=20_48 , UpperCamelCase : Optional[Any]=24 , UpperCamelCase : List[Any]=[[["global", "local"], 12]] , UpperCamelCase : str=16 , UpperCamelCase : Optional[int]=None , UpperCamelCase : Tuple=2_56 , UpperCamelCase : Union[str, Any]="gelu_new" , UpperCamelCase : int=0.0 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : int=0.0 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Dict=1e-5 , UpperCamelCase : Any=0.02 , UpperCamelCase : Dict=True , UpperCamelCase : Optional[Any]=5_02_56 , UpperCamelCase : Optional[Any]=5_02_56 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' _snake_case : Tuple = vocab_size _snake_case : Tuple = max_position_embeddings _snake_case : List[Any] = hidden_size _snake_case : int = num_layers _snake_case : Dict = num_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = window_size _snake_case : Optional[Any] = activation_function _snake_case : str = resid_dropout _snake_case : str = embed_dropout _snake_case : Union[str, Any] = attention_dropout _snake_case : Any = classifier_dropout _snake_case : Tuple = layer_norm_epsilon _snake_case : Any = initializer_range _snake_case : Optional[int] = use_cache _snake_case : List[str] = bos_token_id _snake_case : int = eos_token_id _snake_case : Any = attention_types _snake_case : Tuple = self.expand_attention_types_params(__a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) @staticmethod def UpperCamelCase_ ( UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : List[str] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple , lowerCAmelCase: Dict , lowerCAmelCase: List[str] )-> Optional[int]: import torch _snake_case : str = input.size() _snake_case : str = len(lowerCAmelCase ) _snake_case : List[Any] = shape[dimension] _snake_case : int = torch.arange(0 , lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = torch.div(sizedim - size , lowerCAmelCase , rounding_mode='floor' ) + 1 _snake_case : Dict = torch.arange(lowerCAmelCase ) + low_indices[:min_length][:, None] _snake_case : int = [slice(lowerCAmelCase )] * rank _snake_case : Dict = indices _snake_case : List[str] = input[s] _snake_case : Tuple = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] )-> Union[str, Any]: import torch _snake_case : Tuple = torch.arange(1 , lowerCAmelCase ) _snake_case : Tuple = torch.remainder(lowerCAmelCase , lowerCAmelCase ) _snake_case : Optional[Any] = remainders == 0 _snake_case : Optional[int] = candidates[divisor_indices] _snake_case : Tuple = torch.max(lowerCAmelCase ) return largest_divisor, torch.div(lowerCAmelCase , lowerCAmelCase , rounding_mode='floor' ) class _lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) _snake_case : List[str] = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self._config.num_heads def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : str = -1 , UpperCamelCase : Any = -1 , UpperCamelCase : Tuple = False , UpperCamelCase : str = None , ): '''simple docstring''' _snake_case : int = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() _snake_case : str = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case : Optional[Any] = seqlen + 2 _snake_case : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case : List[Any] = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] _snake_case : Any = common_inputs['attention_mask'] if self.use_past: _snake_case : Any = ordered_inputs['attention_mask'].dtype _snake_case : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 13
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] ="""efficientformer""" def __init__( self : Dict , UpperCamelCase : List[int] = [3, 2, 6, 4] , UpperCamelCase : List[int] = [48, 96, 2_24, 4_48] , UpperCamelCase : List[bool] = [True, True, True, True] , UpperCamelCase : int = 4_48 , UpperCamelCase : int = 32 , UpperCamelCase : int = 4 , UpperCamelCase : int = 7 , UpperCamelCase : int = 5 , UpperCamelCase : int = 8 , UpperCamelCase : int = 4 , UpperCamelCase : float = 0.0 , UpperCamelCase : int = 16 , UpperCamelCase : int = 3 , UpperCamelCase : int = 3 , UpperCamelCase : int = 3 , UpperCamelCase : int = 2 , UpperCamelCase : int = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : int = 1 , UpperCamelCase : bool = True , UpperCamelCase : bool = True , UpperCamelCase : float = 1e-5 , UpperCamelCase : str = "gelu" , UpperCamelCase : float = 0.02 , UpperCamelCase : float = 1e-1_2 , UpperCamelCase : int = 2_24 , UpperCamelCase : float = 1e-0_5 , **UpperCamelCase : int , ) -> None: '''simple docstring''' super().__init__(**__A ) _snake_case : int = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Dict = hidden_sizes _snake_case : List[str] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Optional[int] = initializer_range _snake_case : Optional[int] = layer_norm_eps _snake_case : Dict = patch_size _snake_case : Dict = num_channels _snake_case : Optional[Any] = depths _snake_case : str = mlp_expansion_ratio _snake_case : Any = downsamples _snake_case : List[str] = dim _snake_case : Union[str, Any] = key_dim _snake_case : str = attention_ratio _snake_case : Any = resolution _snake_case : Any = pool_size _snake_case : int = downsample_patch_size _snake_case : List[str] = downsample_stride _snake_case : str = downsample_pad _snake_case : Dict = drop_path_rate _snake_case : Union[str, Any] = num_metaad_blocks _snake_case : List[str] = distillation _snake_case : Optional[int] = use_layer_scale _snake_case : List[Any] = layer_scale_init_value _snake_case : Dict = image_size _snake_case : Optional[int] = batch_norm_eps
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: int )-> Dict: if digit_amount > 0: return round(number - int(_lowerCamelCase ) , _lowerCamelCase ) return number - int(_lowerCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Any =MobileBertTokenizer a_ : Any =MobileBertTokenizerFast a_ : int =True a_ : int =True a_ : Dict =filter_non_english a_ : Union[str, Any] ='''google/mobilebert-uncased''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _snake_case : Any = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : int ): '''simple docstring''' _snake_case : int = """UNwant\u00E9d,running""" _snake_case : List[str] = """unwanted, running""" return input_text, output_text def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class(self.vocab_file ) _snake_case : str = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : List[str] = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer() _snake_case : Optional[Any] = """UNwant\u00E9d,running""" _snake_case : Optional[Any] = tokenizer.tokenize(A__ ) _snake_case : str = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _snake_case : List[str] = tokenizer.encode(A__ , add_special_tokens=A__ ) _snake_case : Dict = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _snake_case : Optional[Any] = self.get_rust_tokenizer() _snake_case : Optional[Any] = tokenizer.encode(A__ ) _snake_case : List[str] = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _snake_case : List[str] = self.get_tokenizer(do_lower_case=A__ ) _snake_case : List[str] = self.get_rust_tokenizer(do_lower_case=A__ ) _snake_case : Dict = """UNwant\u00E9d,running""" _snake_case : str = tokenizer.tokenize(A__ ) _snake_case : int = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _snake_case : str = tokenizer.encode(A__ , add_special_tokens=A__ ) _snake_case : int = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _snake_case : List[Any] = self.get_rust_tokenizer() _snake_case : Optional[Any] = tokenizer.encode(A__ ) _snake_case : Optional[int] = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : str = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Dict = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=A__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _snake_case : Tuple = {} for i, token in enumerate(A__ ): _snake_case : int = i _snake_case : Dict = WordpieceTokenizer(vocab=A__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : int = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) _snake_case : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=A__ ) _snake_case : Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=A__ ) _snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(A__ ) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : int = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case : int = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _snake_case : str = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _snake_case : Optional[int] = tokenizer_r.do_lower_case if hasattr(A__ , 'do_lower_case' ) else False _snake_case : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = ["""的""", """人""", """有"""] _snake_case : Union[str, Any] = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Tuple = True _snake_case : List[Any] = self.tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case : Dict = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _snake_case : str = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _snake_case : int = tokenizer_r.convert_ids_to_tokens(A__ ) _snake_case : int = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _snake_case : str = False _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case : Optional[Any] = self.tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case : Union[str, Any] = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _snake_case : Union[str, Any] = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _snake_case : Optional[Any] = tokenizer_r.convert_ids_to_tokens(A__ ) _snake_case : Any = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case : Optional[int] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
lowerCAmelCase_ = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def lowerCamelCase_ ( lowerCAmelCase: str )-> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowerCamelCase_ ( lowerCAmelCase: str )-> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def lowerCamelCase_ ( )-> None: _snake_case : Tuple = 'Morse code here!' print(lowerCAmelCase__ ) _snake_case : Optional[int] = encrypt(lowerCAmelCase__ ) print(lowerCAmelCase__ ) _snake_case : Dict = decrypt(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": main()
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : int=13 , UpperCamelCase : Dict=30 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Dict=3 , UpperCamelCase : Any=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Tuple=32 , UpperCamelCase : Dict=2 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : List[str]=37 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Tuple=3 , UpperCamelCase : List[Any]=None , ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Optional[int] = image_size _snake_case : int = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : List[Any] = is_training _snake_case : int = use_labels _snake_case : Optional[int] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Dict = hidden_act _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : Tuple = type_sequence_label_size _snake_case : Optional[int] = initializer_range _snake_case : Tuple = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : str = (image_size // patch_size) ** 2 _snake_case : Tuple = num_patches + 1 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : int = None if self.use_labels: _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : str ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : str = TFViTModel(config=UpperCamelCase__ ) _snake_case : Optional[int] = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _snake_case : str = self.image_size // 2 _snake_case : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] _snake_case : int = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) _snake_case : Union[str, Any] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = self.type_sequence_label_size _snake_case : Optional[int] = TFViTForImageClassification(UpperCamelCase__ ) _snake_case : Optional[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _snake_case : Tuple = self.image_size // 2 _snake_case : List[str] = pixel_values[:, :, :image_size, :image_size] _snake_case : Union[str, Any] = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Optional[int] = 1 _snake_case : str = TFViTForImageClassification(UpperCamelCase__ ) _snake_case : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[Any] = config_and_inputs _snake_case : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : str =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () a_ : Tuple =( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) a_ : List[str] =False a_ : Optional[int] =False a_ : Any =False def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : int = TFViTModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : str = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = model_class(UpperCamelCase__ ) _snake_case : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_ ( )-> int: _snake_case : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Dict = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) _snake_case : str = self.default_image_processor _snake_case : str = prepare_img() _snake_case : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='tf' ) # forward pass _snake_case : Optional[int] = model(**UpperCamelCase__ ) # verify the logits _snake_case : int = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _snake_case : Dict = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 )
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase_ = """sshleifer/bart-tiny-random""" lowerCAmelCase_ = """patrickvonplaten/t5-tiny-random""" @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return AutoConfig.from_pretrained(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case , *_snake_case : int = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case , *_snake_case : Tuple = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case , *_snake_case : List[Any] = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=UpperCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case , *_snake_case : Tuple = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(UpperCamelCase ): create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=UpperCamelCase , d=UpperCamelCase )
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = Dict[str, Any] lowerCAmelCase_ = List[Prediction] @add_end_docstrings(_UpperCAmelCase ) class _lowerCAmelCase ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : str , *UpperCamelCase : int , **UpperCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(*lowercase__ , **lowercase__ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Any = {} if "threshold" in kwargs: _snake_case : Optional[int] = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self : int , *UpperCamelCase : int , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(*lowercase__ , **lowercase__ ) def UpperCamelCase_ ( self : Any , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : List[str] = load_image(lowercase__ ) _snake_case : Dict = torch.IntTensor([[image.height, image.width]] ) _snake_case : int = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _snake_case : List[str] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _snake_case : List[Any] = target_size return inputs def UpperCamelCase_ ( self : Any , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : Dict = model_inputs.pop('target_size' ) _snake_case : int = self.model(**lowercase__ ) _snake_case : Dict = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _snake_case : str = model_inputs["bbox"] return model_outputs def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=0.9 ): '''simple docstring''' _snake_case : Tuple = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _snake_case : Union[str, Any] = target_size[0].tolist() def unnormalize(UpperCamelCase : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) _snake_case : Union[str, Any] = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _snake_case : Dict = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _snake_case : List[Any] = [unnormalize(lowercase__ ) for bbox in model_outputs["bbox"].squeeze(0 )] _snake_case : Dict = ["score", "label", "box"] _snake_case : List[Any] = [dict(zip(lowercase__ , lowercase__ ) ) for vals in zip(scores.tolist() , lowercase__ , lowercase__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _snake_case : Tuple = self.image_processor.post_process_object_detection(lowercase__ , lowercase__ , lowercase__ ) _snake_case : List[str] = raw_annotations[0] _snake_case : Dict = raw_annotation["scores"] _snake_case : Tuple = raw_annotation["labels"] _snake_case : Dict = raw_annotation["boxes"] _snake_case : Dict = scores.tolist() _snake_case : Optional[Any] = [self.model.config.idalabel[label.item()] for label in labels] _snake_case : List[Any] = [self._get_bounding_box(lowercase__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _snake_case : str = ["score", "label", "box"] _snake_case : Optional[Any] = [ dict(zip(lowercase__ , lowercase__ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _snake_case : str = box.int().tolist() _snake_case : str = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: Dict )-> list: if len(SCREAMING_SNAKE_CASE_ ) == 0: return [] _snake_case : List[str] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[int] = int(max_value - min_value ) + 1 _snake_case : list[list] = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in my_list: buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE_ ) return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE_ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _lowerCAmelCase ( __A ): '''simple docstring''' a_ : Optional[int] ="""unispeech""" def __init__( self : List[str] , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Optional[Any]=7_68 , UpperCamelCase : Dict=12 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : Any=30_72 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : int=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : int=0.02 , UpperCamelCase : Union[str, Any]=1e-5 , UpperCamelCase : List[str]="group" , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : int=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase : Tuple=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase : Dict=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase : Optional[int]=False , UpperCamelCase : Any=1_28 , UpperCamelCase : Dict=16 , UpperCamelCase : int=False , UpperCamelCase : Any=True , UpperCamelCase : Any=0.05 , UpperCamelCase : Dict=10 , UpperCamelCase : int=2 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=10 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : int=3_20 , UpperCamelCase : str=2 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Tuple=1_00 , UpperCamelCase : Any=2_56 , UpperCamelCase : int=2_56 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Optional[int]="mean" , UpperCamelCase : int=False , UpperCamelCase : Any=False , UpperCamelCase : str=2_56 , UpperCamelCase : int=80 , UpperCamelCase : Dict=0 , UpperCamelCase : Dict=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : Optional[Any]=0.5 , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) _snake_case : Dict = hidden_size _snake_case : Dict = feat_extract_norm _snake_case : List[Any] = feat_extract_activation _snake_case : Optional[int] = list(UpperCamelCase ) _snake_case : Any = list(UpperCamelCase ) _snake_case : Optional[int] = list(UpperCamelCase ) _snake_case : str = conv_bias _snake_case : Any = num_conv_pos_embeddings _snake_case : List[str] = num_conv_pos_embedding_groups _snake_case : List[Any] = len(self.conv_dim ) _snake_case : List[str] = num_hidden_layers _snake_case : List[str] = intermediate_size _snake_case : str = hidden_act _snake_case : int = num_attention_heads _snake_case : str = hidden_dropout _snake_case : List[str] = attention_dropout _snake_case : Tuple = activation_dropout _snake_case : Optional[Any] = feat_proj_dropout _snake_case : Optional[Any] = final_dropout _snake_case : Union[str, Any] = layerdrop _snake_case : int = layer_norm_eps _snake_case : int = initializer_range _snake_case : Any = num_ctc_classes _snake_case : Optional[int] = vocab_size _snake_case : Optional[Any] = do_stable_layer_norm _snake_case : Union[str, Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : List[str] = apply_spec_augment _snake_case : List[str] = mask_time_prob _snake_case : List[Any] = mask_time_length _snake_case : Any = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Any = mask_feature_length _snake_case : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _snake_case : Any = num_codevectors_per_group _snake_case : Dict = num_codevector_groups _snake_case : Union[str, Any] = contrastive_logits_temperature _snake_case : Tuple = feat_quantizer_dropout _snake_case : Optional[int] = num_negatives _snake_case : Union[str, Any] = codevector_dim _snake_case : Tuple = proj_codevector_dim _snake_case : Union[str, Any] = diversity_loss_weight # ctc loss _snake_case : Any = ctc_loss_reduction _snake_case : int = ctc_zero_infinity # pretraining loss _snake_case : Optional[int] = replace_prob @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Dict: _snake_case : Tuple = 'huggingface/label-files' _snake_case : Tuple = 'imagenet-1k-id2label.json' _snake_case : Dict = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) _snake_case : List[str] = {int(__snake_case ): v for k, v in idalabel.items()} _snake_case : Optional[int] = {v: k for k, v in idalabel.items()} _snake_case : List[str] = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _snake_case : Optional[int] = BitConfig( conv_layer=__snake_case , num_labels=10_00 , idalabel=__snake_case , labelaid=__snake_case , ) return config def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> Any: if "stem.conv" in name: _snake_case : List[str] = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _snake_case : str = name.replace('blocks' , 'layers' ) if "head.fc" in name: _snake_case : Any = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): _snake_case : List[str] = 'bit.' + name if "bit" not in name and "classifier" not in name: _snake_case : Tuple = 'bit.encoder.' + name return name def lowerCamelCase_ ( )-> Optional[int]: _snake_case : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case : str = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: str , lowerCAmelCase: List[str]=False )-> Tuple: _snake_case : List[str] = get_config(__snake_case ) # load original model from timm _snake_case : List[Any] = create_model(__snake_case , pretrained=__snake_case ) timm_model.eval() # load state_dict of original model _snake_case : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): _snake_case : List[str] = state_dict.pop(__snake_case ) _snake_case : Optional[int] = val.squeeze() if 'head' in key else val # load HuggingFace model _snake_case : Union[str, Any] = BitForImageClassification(__snake_case ) model.eval() model.load_state_dict(__snake_case ) # create image processor _snake_case : Tuple = create_transform(**resolve_data_config({} , model=__snake_case ) ) _snake_case : Tuple = transform.transforms _snake_case : str = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } _snake_case : Optional[Any] = BitImageProcessor( do_resize=__snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _snake_case : str = prepare_img() _snake_case : List[Any] = transform(__snake_case ).unsqueeze(0 ) _snake_case : Any = processor(__snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__snake_case , __snake_case ) # verify logits with torch.no_grad(): _snake_case : str = model(__snake_case ) _snake_case : List[str] = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) _snake_case : Dict = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowerCAmelCase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
from string import ascii_uppercase lowerCAmelCase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple )-> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) _snake_case : Any = '' _snake_case : Union[str, Any] = 0 _snake_case : str = 0 while div != 1: _snake_case , _snake_case : Any = divmod(lowerCAmelCase__ , lowerCAmelCase__ ) if base >= 11 and 9 < mod < 36: _snake_case : Dict = ALPHABET_VALUES[str(lowerCAmelCase__ )] else: _snake_case : List[str] = str(lowerCAmelCase__ ) new_value += actual_value _snake_case : Tuple = num // base _snake_case : List[Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowerCAmelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] = 50_00_00_00 )-> str: _snake_case : int = set() _snake_case : List[str] = int((limit - 24) ** (1 / 2) ) _snake_case : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase_ ) ) ) for primea in primes: _snake_case : Union[str, Any] = primea * primea for primea in primes: _snake_case : Dict = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _snake_case : int = primea * primea * primea * primea _snake_case : int = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) if __name__ == "__main__": print(F"""{solution() = }""")
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase_ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : List[Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ : Optional[Any] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_ : Tuple ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_ : int ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) _snake_case : Optional[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) _snake_case : Any = text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase ) , [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}] ) _snake_case : Any = text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase ) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) _snake_case : int = text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) # Legacy behavior _snake_case : str = text_classifier('This is great !' , return_all_scores=UpperCamelCase ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) _snake_case : str = text_classifier('This is great !' , return_all_scores=UpperCamelCase ) self.assertEqual( nested_simplify(UpperCamelCase ) , [[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]] ) _snake_case : Optional[int] = text_classifier(['This is great !', 'Something else'] , return_all_scores=UpperCamelCase ) self.assertEqual( nested_simplify(UpperCamelCase ) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) _snake_case : Any = text_classifier(['This is great !', 'Something else'] , return_all_scores=UpperCamelCase ) self.assertEqual( nested_simplify(UpperCamelCase ) , [ {'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_0', 'score': 0.5_04}, ] , ) @require_torch def UpperCamelCase_ ( self : Any ): '''simple docstring''' import torch _snake_case : str = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) _snake_case : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) @require_tf def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : int = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) _snake_case : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) @slow @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = pipeline('text-classification' ) _snake_case : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'POSITIVE', 'score': 1.0}] ) _snake_case : Any = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) _snake_case : Optional[int] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'POSITIVE', 'score': 0.9_88}] ) @slow @require_tf def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : int = pipeline('text-classification' , framework='tf' ) _snake_case : Tuple = text_classifier('This is great !' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'POSITIVE', 'score': 1.0}] ) _snake_case : Union[str, Any] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) _snake_case : List[str] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': 'POSITIVE', 'score': 0.9_88}] ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : str = TextClassificationPipeline(model=UpperCamelCase , tokenizer=UpperCamelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _snake_case : int = 'HuggingFace is in' _snake_case : str = text_classifier(UpperCamelCase ) self.assertEqual(nested_simplify(UpperCamelCase ) , [{'label': ANY(UpperCamelCase ), 'score': ANY(UpperCamelCase )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) _snake_case : int = ['HuggingFace is in ', 'Paris is in France'] _snake_case : Union[str, Any] = text_classifier(UpperCamelCase ) self.assertEqual( nested_simplify(UpperCamelCase ) , [{'label': ANY(UpperCamelCase ), 'score': ANY(UpperCamelCase )}, {'label': ANY(UpperCamelCase ), 'score': ANY(UpperCamelCase )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _snake_case : List[str] = text_classifier(UpperCamelCase , top_k=UpperCamelCase ) _snake_case : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCamelCase ) , [[{'label': ANY(UpperCamelCase ), 'score': ANY(UpperCamelCase )}] * N, [{'label': ANY(UpperCamelCase ), 'score': ANY(UpperCamelCase )}] * N] , ) _snake_case : List[Any] = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} _snake_case : Optional[Any] = text_classifier(UpperCamelCase ) self.assertEqual( nested_simplify(UpperCamelCase ) , {'label': ANY(UpperCamelCase ), 'score': ANY(UpperCamelCase )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _snake_case : List[Any] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(UpperCamelCase ): text_classifier(UpperCamelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _snake_case : str = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(UpperCamelCase ) , [{'label': ANY(UpperCamelCase ), 'score': ANY(UpperCamelCase )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> str: _snake_case : int = len([g for position, g in enumerate(A_ ) if g == main_target[position]] ) return (item, float(A_ )) def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: List[Any] )-> Dict: _snake_case : Tuple = random.randint(0 , len(A_ ) - 1 ) _snake_case : Dict = parent_a[:random_slice] + parent_a[random_slice:] _snake_case : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: Any )-> List[Any]: _snake_case : Union[str, Any] = list(A_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case : Tuple = random.choice(A_ ) return "".join(A_ ) def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: Optional[int] , )-> int: _snake_case : int = [] # Generate more children proportionally to the fitness score. _snake_case : List[str] = int(parent_a[1] * 1_00 ) + 1 _snake_case : Dict = 10 if child_n >= 10 else child_n for _ in range(A_ ): _snake_case : Union[str, Any] = population_score[random.randint(0 , A_ )][0] _snake_case , _snake_case : Union[str, Any] = crossover(parent_a[0] , A_ ) # Append new string to the population list. pop.append(mutate(A_ , A_ ) ) pop.append(mutate(A_ , A_ ) ) return pop def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] = True )-> int: if N_POPULATION < N_SELECTED: _snake_case : List[Any] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(A_ ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case : Union[str, Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case : Union[str, Any] = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(A_ ) # Generate random starting population. _snake_case : Optional[int] = [] for _ in range(A_ ): population.append(''.join([random.choice(A_ ) for i in range(len(A_ ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case : Optional[int] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case : str = [evaluate(A_ , A_ ) for item in population] # Check if there is a matching evolution. _snake_case : List[Any] = sorted(A_ , key=lambda lowerCAmelCase : x[1] , reverse=A_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A_ ) # Normalize population score to be between 0 and 1. _snake_case : List[Any] = [ (item, score / len(A_ )) for item, score in population_score ] # This is selection for i in range(A_ ): population.extend(select(population_score[int(A_ )] , A_ , A_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A_ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase_ = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) lowerCAmelCase_ = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\""" ) lowerCAmelCase_ = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
import heapq as hq import math from collections.abc import Iterator class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : Tuple = str(id_ ) _snake_case : Optional[int] = None _snake_case : List[str] = None _snake_case : int = [] _snake_case : int = {} # {vertex:distance} def __lt__( self : Optional[int] , UpperCamelCase : Dict ): '''simple docstring''' return self.key < other.key def __repr__( self : str ): '''simple docstring''' return self.id def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' self.neighbors.append(_A ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , UpperCamelCase : Any ): '''simple docstring''' _snake_case : str = weight def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: List[Any] )-> str: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: int )-> list: _snake_case : Optional[Any] = [] for u in graph: _snake_case : str = math.inf _snake_case : int = None _snake_case : Tuple = 0 _snake_case : Union[str, Any] = graph[:] while q: _snake_case : Tuple = min(lowerCAmelCase ) q.remove(lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _snake_case : Dict = u _snake_case : List[Any] = u.edges[v.id] for i in range(1 , len(lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: Optional[Any] )-> Iterator[tuple]: for u in graph: _snake_case : Any = math.inf _snake_case : Any = None _snake_case : Optional[int] = 0 _snake_case : Any = list(lowerCAmelCase ) hq.heapify(lowerCAmelCase ) while h: _snake_case : Optional[Any] = hq.heappop(lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _snake_case : Optional[int] = u _snake_case : Dict = u.edges[v.id] hq.heapify(lowerCAmelCase ) for i in range(1 , len(lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCamelCase_ ( )-> None: pass if __name__ == "__main__": import doctest doctest.testmod()
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} lowerCAmelCase_ = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } lowerCAmelCase_ = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> str: with open(__snake_case , 'r' , encoding='utf-8' ) as f: _snake_case : int = json.loads(f.read() ) _snake_case : Optional[int] = collections.OrderedDict() _snake_case : Optional[int] = collections.OrderedDict() _snake_case : Dict = collections.OrderedDict() with open(__snake_case , 'r' , encoding='utf-8' ) as f: _snake_case : Optional[Any] = f.readlines() _snake_case : Optional[int] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(__snake_case ): _snake_case : List[Any] = b _snake_case : Tuple = idx for wd in b: _snake_case : int = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =VOCAB_FILES_NAMES a_ : Any =PRETRAINED_VOCAB_FILES_MAP a_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] =["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Union[str, Any]="<|endoftext|>" , UpperCamelCase : str="<|endoftext|>" , UpperCamelCase : Tuple="<|startoftext|>" , UpperCamelCase : List[str]="<|endoftext|>" , UpperCamelCase : Union[str, Any]=False , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( f"""Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(__a ): raise ValueError( f"""Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) _snake_case : Dict = do_clean_text _snake_case , _snake_case , _snake_case , _snake_case : List[str] = load_vocab_and_emoji(__a , __a ) _snake_case : Optional[int] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return len(self.raw_vocab ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def UpperCamelCase_ ( self : str , UpperCamelCase : Dict ): '''simple docstring''' return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Dict ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__a ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : int = ''.join(__a ).strip() return out_string def UpperCamelCase_ ( self : int , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: _snake_case : Optional[int] = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase_ ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Any = None ): '''simple docstring''' _snake_case : Union[str, Any] = 0 if os.path.isdir(__a ): _snake_case : str = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : int = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: _snake_case : Dict = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Union[str, Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(__a , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) _snake_case : Tuple = token_index writer.write(','.join(__a ) + '\n' ) index += 1 with open(__a , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = vocab # same as swe _snake_case : Optional[int] = ids_to_tokens # same as bpe _snake_case : Any = emoji _snake_case : Tuple = np.max([len(__a ) for w in self.vocab.keys()] ) _snake_case : Optional[int] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) _snake_case : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) _snake_case : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) _snake_case : Union[str, Any] = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : List[str] = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : int = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) _snake_case : Optional[Any] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _snake_case : Optional[Any] = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _snake_case : List[str] = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : Dict ): '''simple docstring''' return len(self.ids_to_tokens ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = self.content_repattera.sub('<URL>' , __a ) _snake_case : Union[str, Any] = self.content_repattera.sub('<EMAIL>' , __a ) _snake_case : Any = self.content_repattera.sub('<TEL>' , __a ) _snake_case : Optional[int] = self.content_repattera.sub('<DATE>' , __a ) _snake_case : Any = self.content_repattera.sub('<DATE>' , __a ) _snake_case : Tuple = self.content_repattera.sub('<PRICE>' , __a ) _snake_case : Optional[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _snake_case : Union[str, Any] = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' _snake_case : List[str] = text.replace(' ' , '<SP>' ) _snake_case : Optional[int] = text.replace(' ' , '<SP>' ) _snake_case : List[Any] = text.replace('\r\n' , '<BR>' ) _snake_case : List[Any] = text.replace('\n' , '<BR>' ) _snake_case : Optional[Any] = text.replace('\r' , '<BR>' ) _snake_case : Dict = text.replace('\t' , '<TAB>' ) _snake_case : Optional[Any] = text.replace('—' , 'ー' ) _snake_case : List[Any] = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: _snake_case : Tuple = text.replace(__a , __a ) if clean: _snake_case : Tuple = self.clean_text(__a ) def check_simbol(UpperCamelCase : List[Any] ): _snake_case : Union[str, Any] = x.encode() if len(__a ) == 1 and len(__a ) == 2: _snake_case : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(UpperCamelCase : Tuple ): _snake_case : Union[str, Any] = x.encode() if len(__a ) == 1 and len(__a ) == 3: _snake_case : Tuple = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False _snake_case : int = 0 _snake_case : Optional[int] = [] while pos < len(__a ): _snake_case : List[Any] = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _snake_case : Tuple = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): _snake_case : List[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: _snake_case : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted _snake_case , _snake_case , _snake_case : List[str] = sorted(__a , key=lambda UpperCamelCase : x[0] )[0] result.append(__a ) _snake_case : str = e else: _snake_case : Dict = pos + 1 _snake_case : Dict = text[pos:end] if check_simbol(__a ): result.append('<KIGOU>' ) elif checkuae(__a ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) _snake_case : Any = end return result def UpperCamelCase_ ( self : str , UpperCamelCase : int , UpperCamelCase : Union[str, Any]="\n" ): '''simple docstring''' _snake_case : int = [] _snake_case : int = [] _snake_case : str = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) ) _snake_case : str = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) ) _snake_case : Any = ''.join(__a ) return text
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase_ ( *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' pass def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Any: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase_ = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : List[Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Tuple = pipeline( 'document-question-answering' , model=lowerCamelCase_ , tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : List[str] = INVOICE_URL _snake_case : Tuple = list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) _snake_case : List[str] = """What is the placebo?""" _snake_case : Dict = [ { """image""": load_image(lowerCamelCase_ ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : List[str] = dqa_pipeline(lowerCamelCase_ , top_k=2 ) self.assertEqual( lowerCamelCase_ , [ [ {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ ), 'start': ANY(lowerCamelCase_ ), 'end': ANY(lowerCamelCase_ )}, {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ ), 'start': ANY(lowerCamelCase_ ), 'end': ANY(lowerCamelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) _snake_case : Optional[int] = INVOICE_URL _snake_case : List[Any] = """How many cats are there?""" _snake_case : Union[str, Any] = [ {"""score""": 0.00_01, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.00_01, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] _snake_case : Any = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) _snake_case : Optional[Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _snake_case : str = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _snake_case : Optional[Any] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes _snake_case : Optional[int] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _snake_case : str = [] _snake_case : List[str] = [] _snake_case : Optional[Any] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , words=lowerCamelCase_ , boxes=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) _snake_case : List[str] = INVOICE_URL _snake_case : Optional[Any] = """What is the invoice number?""" _snake_case : Tuple = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _snake_case : Tuple = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _snake_case : int = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) _snake_case : List[Any] = INVOICE_URL _snake_case : Union[str, Any] = """What is the invoice number?""" _snake_case : Optional[int] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _snake_case : Union[str, Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _snake_case : Union[str, Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCamelCase_ ) _snake_case : List[str] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCamelCase_ , revision='3dc6de3' , ) _snake_case : Optional[Any] = INVOICE_URL _snake_case : int = """What is the invoice number?""" _snake_case : int = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) _snake_case : Any = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) _snake_case : int = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) _snake_case : Dict = list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) # This model should also work if `image` is set to None _snake_case : Union[str, Any] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCamelCase_ ) _snake_case : Optional[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCamelCase_ , revision='3dc6de3' , max_seq_len=50 , ) _snake_case : int = INVOICE_URL _snake_case : Tuple = """What is the invoice number?""" _snake_case : Dict = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _snake_case : str = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) _snake_case : Dict = list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) # This model should also work if `image` is set to None _snake_case : int = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) _snake_case : List[str] = INVOICE_URL _snake_case : int = """What is the invoice number?""" _snake_case : Optional[Any] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : CLIPSegForImageSegmentation , UpperCamelCase : CLIPSegProcessor , UpperCamelCase : AutoencoderKL , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase : StableDiffusionSafetyChecker , UpperCamelCase : CLIPImageProcessor , ): '''simple docstring''' super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: _snake_case : str = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) _snake_case : int = dict(scheduler.config ) _snake_case : Dict = 1 _snake_case : Union[str, Any] = FrozenDict(UpperCamelCase_ ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: _snake_case : Tuple = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) _snake_case : Dict = dict(scheduler.config ) _snake_case : Optional[int] = True _snake_case : Union[str, Any] = FrozenDict(UpperCamelCase_ ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=UpperCamelCase_ , segmentation_processor=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase_ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.enable_attention_slicing(UpperCamelCase_ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _snake_case : Union[str, Any] = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , UpperCamelCase : str , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : Any , ): '''simple docstring''' _snake_case : str = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) _snake_case : Dict = self.segmentation_model(**UpperCamelCase_ ) _snake_case : Optional[int] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _snake_case : Union[str, Any] = self.numpy_to_pil(UpperCamelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _snake_case : Optional[Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , height=UpperCamelCase_ , width=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , eta=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , output_type=UpperCamelCase_ , return_dict=UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=UpperCamelCase_ , )
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] = 1_00_00_00 )-> Any: _snake_case : str = 1 _snake_case : Dict = 1 _snake_case : Union[str, Any] = {1: 1} for inputa in range(2 , lowerCamelCase__ ): _snake_case : Any = 0 _snake_case : Optional[int] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _snake_case : Optional[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: _snake_case : Union[str, Any] = counter if counter > pre_counter: _snake_case : Optional[int] = inputa _snake_case : Dict = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""decision_transformer""" a_ : Dict =["""past_key_values"""] a_ : Optional[int] ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Dict , UpperCamelCase : Union[str, Any]=17 , UpperCamelCase : int=4 , UpperCamelCase : List[str]=1_28 , UpperCamelCase : List[Any]=40_96 , UpperCamelCase : Dict=True , UpperCamelCase : Any=1 , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : List[str]=None , UpperCamelCase : Any="relu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : List[Any]=1e-5 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : int=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[Any]=5_02_56 , UpperCamelCase : List[Any]=5_02_56 , UpperCamelCase : Tuple=False , UpperCamelCase : Any=False , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' _snake_case : List[Any] = state_dim _snake_case : int = act_dim _snake_case : Optional[int] = hidden_size _snake_case : Dict = max_ep_len _snake_case : List[str] = action_tanh _snake_case : Any = vocab_size _snake_case : Tuple = n_positions _snake_case : List[str] = n_layer _snake_case : str = n_head _snake_case : str = n_inner _snake_case : int = activation_function _snake_case : Tuple = resid_pdrop _snake_case : List[Any] = embd_pdrop _snake_case : int = attn_pdrop _snake_case : Optional[Any] = layer_norm_epsilon _snake_case : str = initializer_range _snake_case : str = scale_attn_weights _snake_case : List[Any] = use_cache _snake_case : Optional[Any] = scale_attn_by_inverse_layer_idx _snake_case : int = reorder_and_upcast_attn _snake_case : Any = bos_token_id _snake_case : Union[str, Any] = eos_token_id super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : List[str]=13 , UpperCamelCase : List[str]=7 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : int=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Dict=5 , UpperCamelCase : Any=4 , UpperCamelCase : str=4 , UpperCamelCase : Dict="gelu" , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : Any=0.1 , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=5_12 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : int=2 , UpperCamelCase : Any=0.02 , UpperCamelCase : Dict=3 , UpperCamelCase : List[str]=4 , UpperCamelCase : Any=None , ): '''simple docstring''' _snake_case : int = parent _snake_case : List[Any] = batch_size _snake_case : Optional[int] = seq_length _snake_case : Tuple = is_training _snake_case : Optional[int] = use_input_mask _snake_case : Optional[Any] = use_token_type_ids _snake_case : Union[str, Any] = use_labels _snake_case : Union[str, Any] = vocab_size _snake_case : Tuple = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : List[Any] = intermediate_multiple_size _snake_case : Any = hidden_act _snake_case : Tuple = hidden_dropout _snake_case : int = attention_dropout _snake_case : int = weight_tying _snake_case : Union[str, Any] = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : int = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : int = num_labels _snake_case : Any = num_choices _snake_case : Tuple = scope def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Any = None if self.use_input_mask: _snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : int = None if self.use_labels: _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case : str = self.prepare_config_and_inputs() _snake_case : Any = True return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : int ): '''simple docstring''' _snake_case : str = GPTNeoXJapaneseModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) _snake_case : int = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = True _snake_case : Union[str, Any] = GPTNeoXJapaneseModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case : Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : str = GPTNeoXJapaneseForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case : List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = True _snake_case : Any = GPTNeoXJapaneseForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # first forward pass _snake_case : int = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _snake_case : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) _snake_case : str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ ) _snake_case : Optional[Any] = output_from_no_past['hidden_states'][0] _snake_case : Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['hidden_states'][0] # select random slice _snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Optional[int] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : str =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a_ : str =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a_ : Dict =( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a_ : Any =False a_ : List[Any] =False a_ : Union[str, Any] =False a_ : str =False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : str = GPTNeoXJapaneseModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() _snake_case : Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase_ ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = 'abeja/gpt-neox-japanese-2.7b' _snake_case : Union[str, Any] = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] _snake_case : Tuple = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] _snake_case : Union[str, Any] = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCAmelCase_ ) _snake_case : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCAmelCase_ ) _snake_case : Union[str, Any] = [] for prompt in prompts: _snake_case : List[str] = tokenizer(lowerCAmelCase_ , return_tensors='pt' ).input_ids _snake_case : List[str] = model.generate(lowerCAmelCase_ , max_length=50 ) _snake_case : List[str] = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['OwlViTFeatureExtractor'] lowerCAmelCase_ = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCamelCase_ ( lowerCAmelCase: Optional[int] = 3 )-> qiskit.result.counts.Counts: if isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(lowerCAmelCase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) _snake_case : str = QuantumRegister(lowerCAmelCase , 'qr' ) _snake_case : Union[str, Any] = ClassicalRegister(lowerCAmelCase , 'cr' ) _snake_case : Optional[int] = QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[str] = number_of_qubits for i in range(lowerCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowerCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCAmelCase , lowerCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowerCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowerCAmelCase , lowerCAmelCase ) # simulate with 10000 shots _snake_case : List[str] = Aer.get_backend('qasm_simulator' ) _snake_case : Optional[int] = execute(lowerCAmelCase , lowerCAmelCase , shots=1_00_00 ) return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCamelCase_ ( lowerCAmelCase: Any )-> Tuple: _snake_case : str = args.pruning_method _snake_case : Any = args.threshold _snake_case : Union[str, Any] = args.model_name_or_path.rstrip('/' ) _snake_case : Dict = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) _snake_case : Dict = torch.load(os.path.join(lowerCAmelCase , 'pytorch_model.bin' ) ) _snake_case : Union[str, Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _snake_case : str = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _snake_case : List[Any] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: _snake_case : Tuple = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _snake_case : Any = MagnitudeBinarizer.apply(inputs=lowerCAmelCase , threshold=lowerCAmelCase ) _snake_case : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _snake_case : List[Any] = name[:-6] _snake_case : Any = model[F"""{prefix_}mask_scores"""] _snake_case : Tuple = TopKBinarizer.apply(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _snake_case : str = name[:-6] _snake_case : int = model[F"""{prefix_}mask_scores"""] _snake_case : Optional[int] = ThresholdBinarizer.apply(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _snake_case : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _snake_case : Optional[int] = name[:-6] _snake_case : str = model[F"""{prefix_}mask_scores"""] _snake_case : Dict = -0.1, 1.1 _snake_case : Union[str, Any] = torch.sigmoid(lowerCAmelCase ) _snake_case : List[str] = s * (r - l) + l _snake_case : Tuple = s_bar.clamp(min=0.0 , max=1.0 ) _snake_case : str = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _snake_case : Optional[Any] = os.path.join( os.path.dirname(lowerCAmelCase ) , F"""bertarized_{os.path.basename(lowerCAmelCase )}""" ) if not os.path.isdir(lowerCAmelCase ): shutil.copytree(lowerCAmelCase , lowerCAmelCase ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) lowerCAmelCase_ = parser.parse_args() main(args)
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : List[Any] =inspect.getfile(accelerate.test_utils ) a_ : str =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) a_ : Union[str, Any] =["accelerate", "launch"] a_ : Tuple =Path.home() / ".cache/huggingface/accelerate" a_ : Tuple ="default_config.yaml" a_ : Dict =config_folder / config_file a_ : List[str] =config_folder / "_default_config.yaml" a_ : Tuple =Path("""tests/test_configs""" ) @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase_ ( cls : int ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_lowerCamelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_lowerCamelCase ), self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : Any ="test-tpu" a_ : Optional[Any] ="us-central1-a" a_ : Dict ="ls" a_ : List[str] =["accelerate", "tpu-config"] a_ : Optional[int] ="cd /usr/share" a_ : Union[str, Any] ="tests/test_samples/test_command_file.sh" a_ : Any ="Running gcloud compute tpus tpu-vm ssh" def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_lowerCamelCase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : int = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : str = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , )
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
lowerCAmelCase_ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: int , lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any] , lowerCAmelCase: str , lowerCAmelCase: int , )-> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _snake_case : Tuple = cst_fwd.get(UpperCamelCase__ , np.inf ) _snake_case : int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _snake_case : List[Any] = new_cost_f _snake_case : Dict = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _snake_case : int = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] )-> int: _snake_case : Union[str, Any] = -1 _snake_case : Dict = set() _snake_case : Optional[int] = set() _snake_case : List[str] = {source: 0} _snake_case : Any = {destination: 0} _snake_case : int = {source: None} _snake_case : Any = {destination: None} _snake_case : Union[str, Any] = PriorityQueue() _snake_case : Tuple = PriorityQueue() _snake_case : List[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _snake_case , _snake_case : List[Any] = queue_forward.get() visited_forward.add(UpperCamelCase__ ) _snake_case , _snake_case : Any = queue_backward.get() visited_backward.add(UpperCamelCase__ ) _snake_case : Tuple = pass_and_relaxation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) _snake_case : Union[str, Any] = pass_and_relaxation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _snake_case : int = shortest_distance return shortest_path_distance lowerCAmelCase_ = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } lowerCAmelCase_ = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase_ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ = None try: import msvcrt except ImportError: lowerCAmelCase_ = None try: import fcntl except ImportError: lowerCAmelCase_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ = OSError # Data # ------------------------------------------------ lowerCAmelCase_ = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] lowerCAmelCase_ = "3.0.12" lowerCAmelCase_ = None def lowerCamelCase_ ( )-> Tuple: global _logger _snake_case : str = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : int ): '''simple docstring''' _snake_case : int = lock_file return None def __str__( self : str ): '''simple docstring''' _snake_case : Any = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = lock return None def __enter__( self : Optional[Any] ): '''simple docstring''' return self.lock def __exit__( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple ): '''simple docstring''' self.lock.release() return None class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int]=-1 , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : Dict = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _snake_case : List[str] = self.hash_filename_if_too_long(A_ , A_ ) # The path to the lock file. _snake_case : Any = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _snake_case : List[Any] = None # The default timeout value. _snake_case : Optional[Any] = timeout # We use this lock primarily for the lock counter. _snake_case : int = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _snake_case : Tuple = 0 return None @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self._lock_file @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self._timeout @timeout.setter def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int ): '''simple docstring''' _snake_case : int = float(A_ ) return None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' raise NotImplementedError() @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self._lock_file_fd is not None def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=0.05 ): '''simple docstring''' if timeout is None: _snake_case : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _snake_case : Optional[int] = id(self ) _snake_case : int = self._lock_file _snake_case : str = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(A_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _snake_case : int = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[str]=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _snake_case : Tuple = id(self ) _snake_case : int = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _snake_case : Union[str, Any] = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : int ): '''simple docstring''' self.acquire() return self def __exit__( self : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' self.release() return None def __del__( self : str ): '''simple docstring''' self.release(force=A_ ) return None def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' _snake_case : Any = os.path.basename(A_ ) if len(A_ ) > max_length and max_length > 0: _snake_case : List[str] = os.path.dirname(A_ ) _snake_case : Optional[int] = str(hash(A_ ) ) _snake_case : int = filename[: max_length - len(A_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(A_ , A_ ) else: return path class lowerCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int]=-1 , UpperCamelCase : str=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) _snake_case : Any = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _snake_case : Union[str, Any] = os.open(self._lock_file , A_ ) except OSError: pass else: try: msvcrt.locking(A_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(A_ ) else: _snake_case : List[str] = fd return None def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self._lock_file_fd _snake_case : Optional[Any] = None msvcrt.locking(A_ , msvcrt.LK_UNLCK , 1 ) os.close(A_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCamelCase : Any , UpperCamelCase : Optional[Any]=-1 , UpperCamelCase : Tuple=None ): '''simple docstring''' _snake_case : List[str] = os.statvfs(os.path.dirname(A_ ) ).f_namemax super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = os.O_RDWR | os.O_CREAT | os.O_TRUNC _snake_case : str = os.open(self._lock_file , A_ ) try: fcntl.flock(A_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(A_ ) else: _snake_case : Union[str, Any] = fd return None def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[Any] = self._lock_file_fd _snake_case : Dict = None fcntl.flock(A_ , fcntl.LOCK_UN ) os.close(A_ ) return None class lowerCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _snake_case : str = os.open(self._lock_file , A_ ) except OSError: pass else: _snake_case : List[Any] = fd return None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' os.close(self._lock_file_fd ) _snake_case : List[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ = None if msvcrt: lowerCAmelCase_ = WindowsFileLock elif fcntl: lowerCAmelCase_ = UnixFileLock else: lowerCAmelCase_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class _lowerCAmelCase ( __lowercase ): '''simple docstring''' a_ : int ="""owlvit_text_model""" def __init__( self : List[Any] , UpperCamelCase : Any=4_94_08 , UpperCamelCase : Any=5_12 , UpperCamelCase : Optional[int]=20_48 , UpperCamelCase : int=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : str=16 , UpperCamelCase : Any="quick_gelu" , UpperCamelCase : Dict=1e-5 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Any=1.0 , UpperCamelCase : Dict=0 , UpperCamelCase : Optional[int]=4_94_06 , UpperCamelCase : Dict=4_94_07 , **UpperCamelCase : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Optional[int] = vocab_size _snake_case : List[str] = hidden_size _snake_case : str = intermediate_size _snake_case : List[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = max_position_embeddings _snake_case : Union[str, Any] = hidden_act _snake_case : str = layer_norm_eps _snake_case : int = attention_dropout _snake_case : Optional[Any] = initializer_range _snake_case : Tuple = initializer_factor @classmethod def UpperCamelCase_ ( cls : List[Any] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Dict ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase ) _snake_case : List[str] = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": _snake_case : Any = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class _lowerCAmelCase ( __lowercase ): '''simple docstring''' a_ : str ="""owlvit_vision_model""" def __init__( self : List[str] , UpperCamelCase : Any=7_68 , UpperCamelCase : Any=30_72 , UpperCamelCase : Any=12 , UpperCamelCase : int=12 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : str=7_68 , UpperCamelCase : Dict=32 , UpperCamelCase : Union[str, Any]="quick_gelu" , UpperCamelCase : str=1e-5 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Any=0.02 , UpperCamelCase : Union[str, Any]=1.0 , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : List[Any] = hidden_size _snake_case : List[Any] = intermediate_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : Tuple = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = patch_size _snake_case : Tuple = hidden_act _snake_case : Any = layer_norm_eps _snake_case : Tuple = attention_dropout _snake_case : int = initializer_range _snake_case : str = initializer_factor @classmethod def UpperCamelCase_ ( cls : List[str] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase ) _snake_case : Union[str, Any] = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": _snake_case : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class _lowerCAmelCase ( __lowercase ): '''simple docstring''' a_ : Tuple ="""owlvit""" a_ : List[str] =True def __init__( self : str , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Tuple=5_12 , UpperCamelCase : Union[str, Any]=2.65_92 , UpperCamelCase : str=True , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(**UpperCamelCase ) if text_config is None: _snake_case : Union[str, Any] = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: _snake_case : str = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) _snake_case : List[str] = OwlViTTextConfig(**UpperCamelCase ) _snake_case : str = OwlViTVisionConfig(**UpperCamelCase ) _snake_case : Tuple = projection_dim _snake_case : int = logit_scale_init_value _snake_case : List[str] = return_dict _snake_case : Optional[int] = 1.0 @classmethod def UpperCamelCase_ ( cls : Optional[Any] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase ) _snake_case : Optional[Any] = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Dict , **UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : List[str] = {} _snake_case : List[str] = text_config _snake_case : str = vision_config return cls.from_dict(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = copy.deepcopy(self.__dict__ ) _snake_case : List[Any] = self.text_config.to_dict() _snake_case : str = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output class _lowerCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return 1e-4 def UpperCamelCase_ ( self : Tuple , UpperCamelCase : "ProcessorMixin" , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : Optional["TensorType"] = None , ): '''simple docstring''' _snake_case : Dict = super().generate_dummy_inputs( processor.tokenizer , batch_size=UpperCamelCase , seq_length=UpperCamelCase , framework=UpperCamelCase ) _snake_case : List[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=UpperCamelCase , framework=UpperCamelCase ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 14
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
def lowerCamelCase_ ( lowerCAmelCase: list[int] )-> Any: _snake_case : int = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: _snake_case , _snake_case : Optional[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( A_ ): '''simple docstring''' a_ : Tuple =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Tuple =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[str] =RealmTokenizer def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=True , UpperCamelCase : List[Any]="[UNK]" , UpperCamelCase : Dict="[SEP]" , UpperCamelCase : int="[PAD]" , UpperCamelCase : Tuple="[CLS]" , UpperCamelCase : List[str]="[MASK]" , UpperCamelCase : int=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : str , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[Any] = do_lower_case _snake_case : List[str] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : Any = do_lower_case def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : int = PaddingStrategy.MAX_LENGTH _snake_case : Optional[int] = text _snake_case : Tuple = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : List[Any] = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Tuple = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Any = None _snake_case : List[str] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Union[str, Any] = encoded_candidates.get('attention_mask' ) _snake_case : int = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : List[str] = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , UpperCamelCase : Dict=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Tuple = None ): '''simple docstring''' _snake_case : List[str] = [self.sep_token_id] _snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any = None ): '''simple docstring''' _snake_case : Any = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Dict , lowerCAmelCase: Tuple )-> List[Any]: # noqa: E741 while r - l > 1: _snake_case : Dict = (l + r) // 2 if v[m] >= key: _snake_case : Dict = m else: _snake_case : Union[str, Any] = m # noqa: E741 return r def lowerCamelCase_ ( lowerCAmelCase: list[int] )-> Optional[int]: if len(lowerCAmelCase__ ) == 0: return 0 _snake_case : int = [0] * len(lowerCAmelCase__ ) _snake_case : List[Any] = 1 _snake_case : Union[str, Any] = v[0] for i in range(1 , len(lowerCAmelCase__ ) ): if v[i] < tail[0]: _snake_case : int = v[i] elif v[i] > tail[length - 1]: _snake_case : Optional[int] = v[i] length += 1 else: _snake_case : Union[str, Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
import math import flax.linen as nn import jax.numpy as jnp def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Any = 1 , lowerCAmelCase: Any = 1 , lowerCAmelCase: int = 1.0E4 , lowerCAmelCase: Optional[int] = False , lowerCAmelCase: Optional[Any] = 1.0 , )-> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" _snake_case : Tuple = float(embedding_dim // 2 ) _snake_case : List[str] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _snake_case : Optional[int] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) _snake_case : Optional[Any] = jnp.expand_dims(lowerCAmelCase , 1 ) * jnp.expand_dims(lowerCAmelCase , 0 ) # scale embeddings _snake_case : int = scale * emb if flip_sin_to_cos: _snake_case : List[Any] = jnp.concatenate([jnp.cos(lowerCAmelCase ), jnp.sin(lowerCAmelCase )] , axis=1 ) else: _snake_case : int = jnp.concatenate([jnp.sin(lowerCAmelCase ), jnp.cos(lowerCAmelCase )] , axis=1 ) _snake_case : str = jnp.reshape(lowerCAmelCase , [jnp.shape(lowerCAmelCase )[0], embedding_dim] ) return signal class _lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ : int =32 a_ : jnp.dtype =jnp.floataa @nn.compact def __call__( self : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(lowerCamelCase_ ) _snake_case : Any = nn.silu(lowerCamelCase_ ) _snake_case : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(lowerCamelCase_ ) return temb class _lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ : int =32 a_ : bool =False a_ : float =1 @nn.compact def __call__( self : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' return get_sinusoidal_embeddings( lowerCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
lowerCAmelCase_ = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def lowerCamelCase_ ( lowerCAmelCase: float )-> Dict: assert type(lowerCAmelCase ) in (int, float) and decimal == int(lowerCAmelCase ) _snake_case : List[str] = int(lowerCAmelCase ) _snake_case : Optional[Any] = '' _snake_case : Optional[Any] = False if decimal < 0: _snake_case : Dict = True decimal *= -1 while decimal > 0: _snake_case , _snake_case : str = divmod(lowerCAmelCase , 16 ) _snake_case : Union[str, Any] = values[remainder] + hexadecimal _snake_case : Any = '0x' + hexadecimal if negative: _snake_case : Union[str, Any] = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Tuple , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : int = 13 _snake_case : int = 7 _snake_case : str = True _snake_case : Optional[Any] = True _snake_case : str = True _snake_case : List[str] = True _snake_case : Tuple = True _snake_case : Optional[int] = False _snake_case : int = False _snake_case : List[Any] = False _snake_case : Tuple = 2 _snake_case : Optional[int] = 99 _snake_case : str = 0 _snake_case : int = 32 _snake_case : Union[str, Any] = 2 _snake_case : int = 4 _snake_case : Tuple = 0.1 _snake_case : Optional[Any] = 0.1 _snake_case : Union[str, Any] = 5_12 _snake_case : Tuple = 16 _snake_case : List[str] = 2 _snake_case : Dict = 0.02 _snake_case : Union[str, Any] = 3 _snake_case : Optional[int] = 4 _snake_case : Dict = 'last' _snake_case : Optional[Any] = True _snake_case : Optional[Any] = None _snake_case : List[Any] = 0 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) _snake_case : Optional[int] = None if self.use_input_lengths: _snake_case : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _snake_case : Dict = None if self.use_token_type_ids: _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _snake_case : List[Any] = None _snake_case : Union[str, Any] = None _snake_case : int = None if self.use_labels: _snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : List[str] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) _snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Optional[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , ): '''simple docstring''' _snake_case : Optional[Any] = TFFlaubertModel(config=lowerCAmelCase_ ) _snake_case : Optional[int] = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} _snake_case : Optional[Any] = model(lowerCAmelCase_ ) _snake_case : List[Any] = [input_ids, input_mask] _snake_case : List[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : str , ): '''simple docstring''' _snake_case : str = TFFlaubertWithLMHeadModel(lowerCAmelCase_ ) _snake_case : Optional[int] = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} _snake_case : Union[str, Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , ): '''simple docstring''' _snake_case : Optional[Any] = TFFlaubertForQuestionAnsweringSimple(lowerCAmelCase_ ) _snake_case : Optional[int] = {'input_ids': input_ids, 'lengths': input_lengths} _snake_case : Optional[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : str , ): '''simple docstring''' _snake_case : List[str] = TFFlaubertForSequenceClassification(lowerCAmelCase_ ) _snake_case : Optional[int] = {'input_ids': input_ids, 'lengths': input_lengths} _snake_case : Optional[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Any , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Tuple , ): '''simple docstring''' _snake_case : Dict = self.num_labels _snake_case : Tuple = TFFlaubertForTokenClassification(config=lowerCAmelCase_ ) _snake_case : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case : int = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , ): '''simple docstring''' _snake_case : Union[str, Any] = self.num_choices _snake_case : Optional[int] = TFFlaubertForMultipleChoice(config=lowerCAmelCase_ ) _snake_case : str = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) _snake_case : List[str] = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) _snake_case : List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) _snake_case : List[str] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _snake_case : Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = config_and_inputs _snake_case : Tuple = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : str =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a_ : Any =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a_ : Union[str, Any] =( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a_ : List[str] =False a_ : List[str] =False def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : Any ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = TFFlaubertModelTester(self ) _snake_case : Dict = ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase_ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase_ ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase_ ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase_ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCAmelCase_ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCAmelCase_ ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = TFFlaubertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) _snake_case : Dict = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" _snake_case : Dict = model(lowerCAmelCase_ )[0] _snake_case : List[Any] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice. _snake_case : Any = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
import os def lowerCamelCase_ ( )-> Union[str, Any]: _snake_case : List[Any] = os.path.join(os.path.dirname(a_ ) , 'num.txt' ) with open(a_ ) as file_hand: return str(sum(int(a_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list[int] , lowerCAmelCase: list[int] , lowerCAmelCase: list[int] , lowerCAmelCase: list[list[str]] , lowerCAmelCase: int , )-> None: _snake_case : Optional[int] = len(UpperCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCAmelCase__ , UpperCAmelCase__ , ) def lowerCamelCase_ ( lowerCAmelCase: int )-> None: _snake_case : Optional[int] = [] depth_first_search([] , [] , [] , UpperCAmelCase__ , UpperCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(UpperCAmelCase__ ) print('' ) print(len(UpperCAmelCase__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _lowerCAmelCase ( ctypes.Structure ): '''simple docstring''' a_ : int =[("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def lowerCamelCase_ ( )-> Any: if os.name == "nt": _snake_case : int = CursorInfo() _snake_case : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _snake_case : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowerCamelCase_ ( )-> Optional[Any]: if os.name == "nt": _snake_case : Dict = CursorInfo() _snake_case : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _snake_case : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowerCamelCase_ ( )-> Any: try: hide_cursor() yield finally: show_cursor()
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase_ = """src/transformers""" lowerCAmelCase_ = """docs/source/en/tasks""" def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: str )-> Tuple: with open(lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case : Any = f.readlines() # Find the start prompt. _snake_case : List[Any] = 0 while not lines[start_index].startswith(lowerCAmelCase ): start_index += 1 start_index += 1 _snake_case : int = start_index while not lines[end_index].startswith(lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ = direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase_ = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase_ = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Any: _snake_case : Tuple = TASK_GUIDE_TO_MODELS[task_guide] _snake_case : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCAmelCase , set() ) _snake_case : Dict = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Dict=False )-> Union[str, Any]: _snake_case , _snake_case , _snake_case , _snake_case : Tuple = _find_text_in_file( filename=os.path.join(lowerCAmelCase , lowerCAmelCase ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _snake_case : Optional[Any] = get_model_list_for_task(lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
from __future__ import annotations from cmath import sqrt def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int )-> List[str]: if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _snake_case : Dict = b * b - 4 * a * c _snake_case : int = (-b + sqrt(lowerCAmelCase )) / (2 * a) _snake_case : List[Any] = (-b - sqrt(lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCamelCase_ ( )-> Tuple: _snake_case : Tuple = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") lowerCAmelCase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCamelCase_ ( lowerCAmelCase: str )-> int: with open(snake_case_ , 'rb' ) as f: _snake_case : List[Any] = Image.open(snake_case_ ) return im.convert('RGB' ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : List[str] =field( default=UpperCamelCase_ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) a_ : Optional[Any] =field( default=UpperCamelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ : Optional[int] =field(default=UpperCamelCase_ , metadata={"""help""": """A folder containing the training data."""} ) a_ : Optional[Any] =field(default=UpperCamelCase_ , metadata={"""help""": """A folder containing the validation data."""} ) a_ : Union[str, Any] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) a_ : List[Any] =field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ : Optional[Any] =field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[int] =field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) a_ : int =field( default=UpperCamelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase_ )} , ) a_ : Dict =field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Dict =field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) a_ : Dict =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ : Optional[Any] =field(default=UpperCamelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} ) a_ : Union[str, Any] =field( default=UpperCamelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) a_ : Optional[int] =field( default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> Union[str, Any]: _snake_case : List[str] = torch.stack([example['pixel_values'] for example in examples] ) _snake_case : List[Any] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCamelCase_ ( )-> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _snake_case : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _snake_case : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: _snake_case : Any = {} if data_args.train_dir is not None: _snake_case : str = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: _snake_case : Tuple = os.path.join(data_args.validation_dir , '**' ) _snake_case : int = load_dataset( 'imagefolder' , data_files=snake_case_ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. _snake_case : Tuple = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: _snake_case : Optional[int] = dataset['''train'''].train_test_split(data_args.train_val_split ) _snake_case : List[Any] = split['''train'''] _snake_case : List[Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _snake_case : int = dataset['''train'''].features['''labels'''].names _snake_case : List[str] = {}, {} for i, label in enumerate(snake_case_ ): _snake_case : Optional[Any] = str(snake_case_ ) _snake_case : Optional[int] = label # Load the accuracy metric from the datasets package _snake_case : List[Any] = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase: Tuple ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _snake_case : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case_ ) , labelaid=snake_case_ , idalabel=snake_case_ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : int = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _snake_case : Optional[int] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _snake_case : Optional[Any] = image_processor.size['''shortest_edge'''] else: _snake_case : Optional[Any] = (image_processor.size['''height'''], image_processor.size['''width''']) _snake_case : int = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _snake_case : Tuple = Compose( [ RandomResizedCrop(snake_case_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _snake_case : Union[str, Any] = Compose( [ Resize(snake_case_ ), CenterCrop(snake_case_ ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase: Any ): _snake_case : Any = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowerCAmelCase: int ): _snake_case : int = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _snake_case : Optional[Any] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _snake_case : List[str] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(snake_case_ ) # Initalize our trainer _snake_case : Optional[Any] = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=snake_case_ , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: _snake_case : List[str] = None if training_args.resume_from_checkpoint is not None: _snake_case : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : List[Any] = last_checkpoint _snake_case : str = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case : Optional[int] = trainer.evaluate() trainer.log_metrics('eval' , snake_case_ ) trainer.save_metrics('eval' , snake_case_ ) # Write model card and (optionally) push to hub _snake_case : List[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) if __name__ == "__main__": main()
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase_ = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: str )-> Optional[int]: for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase_ ( lowerCAmelCase: Dict )-> str: config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=UpperCamelCase__ ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> List[str]: _snake_case : Optional[Any] = tmp_path_factory.getbasetemp() / 'cache' _snake_case : str = test_hf_cache_home / 'datasets' _snake_case : Optional[int] = test_hf_cache_home / 'metrics' _snake_case : List[str] = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(UpperCamelCase__ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(UpperCamelCase__ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(UpperCamelCase__ ) ) _snake_case : Tuple = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(UpperCamelCase__ ) ) _snake_case : Any = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(UpperCamelCase__ ) ) @pytest.fixture(autouse=UpperCamelCase__ , scope='session' ) def lowerCamelCase_ ( )-> List[str]: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCamelCase__ ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> Union[str, Any]: monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , UpperCamelCase__ ) @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: str )-> Dict: monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , UpperCamelCase__ )
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] =StableUnCLIPPipeline a_ : int =TEXT_TO_IMAGE_PARAMS a_ : str =TEXT_TO_IMAGE_BATCH_PARAMS a_ : Optional[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS a_ : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a_ : Optional[Any] =False def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = 32 _snake_case : Tuple = embedder_hidden_size # prior components torch.manual_seed(0 ) _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _snake_case : str = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) _snake_case : Tuple = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=UpperCamelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) _snake_case : int = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) _snake_case : List[str] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _snake_case : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _snake_case : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) _snake_case : List[str] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) _snake_case : Tuple = AutoencoderKL() _snake_case : Optional[Any] = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def UpperCamelCase_ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple=0 ): '''simple docstring''' if str(UpperCamelCase ).startswith('mps' ): _snake_case : Union[str, Any] = torch.manual_seed(UpperCamelCase ) else: _snake_case : Tuple = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : str = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) _snake_case : int = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case : Tuple = pipe('anime turle' , generator=UpperCamelCase , output_type='np' ) _snake_case : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case : List[str] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) _snake_case : Union[str, Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : Union[str, Any] = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) _snake_case : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any ="""char""" a_ : Union[str, Any] ="""bpe""" a_ : Optional[Any] ="""wp""" lowerCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =["""image_processor""", """char_tokenizer"""] a_ : Tuple ="""ViTImageProcessor""" a_ : Optional[int] ="""MgpstrTokenizer""" def __init__( self : Optional[Any] , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : List[Any] = kwargs.pop('feature_extractor' ) _snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) _snake_case : Tuple = tokenizer _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained('gpt2' ) _snake_case : List[str] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : int , UpperCamelCase : Any=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Any=None , **UpperCamelCase : Optional[Any] ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _snake_case : Union[str, Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None: _snake_case : Optional[Any] = self.char_tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: _snake_case : Dict = encodings['input_ids'] return inputs def UpperCamelCase_ ( self : Any , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Any = sequences _snake_case : int = char_preds.size(0 ) _snake_case : Optional[Any] = self._decode_helper(UpperCamelCase , 'char' ) _snake_case : List[Any] = self._decode_helper(UpperCamelCase , 'bpe' ) _snake_case : str = self._decode_helper(UpperCamelCase , 'wp' ) _snake_case : List[Any] = [] _snake_case : Union[str, Any] = [] for i in range(UpperCamelCase ): _snake_case : Optional[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] _snake_case : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _snake_case : List[str] = scores.index(max(UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _snake_case : Optional[Any] = {} _snake_case : Optional[int] = final_strs _snake_case : List[str] = final_scores _snake_case : Tuple = char_strs _snake_case : Tuple = bpe_strs _snake_case : List[Any] = wp_strs return out def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' if format == DecodeType.CHARACTER: _snake_case : Optional[Any] = self.char_decode _snake_case : Dict = 1 _snake_case : Optional[Any] = '[s]' elif format == DecodeType.BPE: _snake_case : Any = self.bpe_decode _snake_case : int = 2 _snake_case : Union[str, Any] = '#' elif format == DecodeType.WORDPIECE: _snake_case : Optional[Any] = self.wp_decode _snake_case : int = 1_02 _snake_case : str = '[SEP]' else: raise ValueError(f"""Format {format} is not supported.""" ) _snake_case : int = [], [] _snake_case : Optional[int] = pred_logits.size(0 ) _snake_case : List[str] = pred_logits.size(1 ) _snake_case : Dict = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase , sorted=UpperCamelCase ) _snake_case : str = preds_index.view(-1 , UpperCamelCase )[:, 1:] _snake_case : Union[str, Any] = decoder(UpperCamelCase ) _snake_case : Optional[Any] = torch.nn.functional.softmax(UpperCamelCase , dim=2 ).max(dim=2 ) _snake_case : Any = preds_max_prob[:, 1:] for index in range(UpperCamelCase ): _snake_case : List[str] = preds_str[index].find(UpperCamelCase ) _snake_case : Tuple = preds_str[index][:pred_eos] _snake_case : str = preds_index[index].cpu().tolist() _snake_case : int = pred_index.index(UpperCamelCase ) if eos_token in pred_index else -1 _snake_case : Tuple = preds_max_prob[index][: pred_eos_index + 1] _snake_case : int = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase ) conf_scores.append(UpperCamelCase ) return dec_strs, conf_scores def UpperCamelCase_ ( self : Dict , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Optional[Any] = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase )] return decode_strs def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : List[str] = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase )] return decode_strs
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] =CodeGenTokenizer a_ : Optional[int] =CodeGenTokenizerFast a_ : Optional[int] =True a_ : Union[str, Any] ={"""add_prefix_space""": True} a_ : int =False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _snake_case : Any = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case : Optional[int] = {'unk_token': '<unk>'} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : int , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[Any] = 'lower newer' _snake_case : int = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Any = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : Any = 'lower newer' _snake_case : str = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case : List[Any] = tokenizer.tokenize(UpperCamelCase , add_prefix_space=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Any = tokens + [tokenizer.unk_token] _snake_case : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Any = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) _snake_case : Optional[int] = 'lower newer' # Testing tokenization _snake_case : Union[str, Any] = tokenizer.tokenize(UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids without special tokens _snake_case : Optional[Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : str = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids with special tokens _snake_case : Tuple = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) _snake_case : str = tokenizer.encode(UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing the unknown token _snake_case : Union[str, Any] = tokens + [rust_tokenizer.unk_token] _snake_case : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Dict=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # Simple input _snake_case : Union[str, Any] = 'This is a simple input' _snake_case : Dict = ['This is a simple input 1', 'This is a simple input 2'] _snake_case : Optional[Any] = ('This is a simple input', 'This is a pair') _snake_case : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _snake_case : Optional[int] = 'This is a simple input' _snake_case : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] _snake_case : int = ('This is a simple input', 'This is a pair') _snake_case : List[str] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _snake_case : Union[str, Any] = tokenizer.pad_token_id _snake_case : Any = tokenizer(UpperCamelCase , padding='max_length' , max_length=30 , return_tensors='np' ) _snake_case : Dict = tokenizer(UpperCamelCase , padding=UpperCamelCase , truncate=UpperCamelCase , return_tensors='np' ) _snake_case : Optional[Any] = tokenizer(*UpperCamelCase , padding='max_length' , max_length=60 , return_tensors='np' ) _snake_case : Optional[Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , truncate=UpperCamelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = '$$$' _snake_case : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCamelCase , add_bos_token=UpperCamelCase ) _snake_case : Tuple = 'This is a simple input' _snake_case : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _snake_case : List[Any] = tokenizer.bos_token_id _snake_case : int = tokenizer(UpperCamelCase ) _snake_case : Tuple = tokenizer(UpperCamelCase ) self.assertEqual(out_s.input_ids[0] , UpperCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _snake_case : Union[str, Any] = tokenizer.decode(out_s.input_ids ) _snake_case : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , UpperCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Dict = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) _snake_case : Any = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _snake_case : Optional[Any] = '\nif len_a > len_b: result = a\nelse: result = b' _snake_case : Optional[int] = tokenizer.encode(UpperCamelCase ) _snake_case : Optional[Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] _snake_case : Optional[Any] = tokenizer.decode(UpperCamelCase , truncate_before_pattern=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
def lowerCamelCase_ ( lowerCAmelCase: str )-> bool: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) _snake_case : Optional[Any] = sorted(string.lower() ) return len(lowerCAmelCase ) == len(set(lowerCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase_ = input("""Enter a string """).strip() lowerCAmelCase_ = is_isogram(input_str) print(F"""{input_str} is {"an" if isogram else "not an"} isogram.""")
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[int] =field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( default=UpperCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : str =field( default=UpperCAmelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ : Optional[bool] =field( default=UpperCAmelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase_ ( )-> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _snake_case : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowerCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) datasets.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _snake_case : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _snake_case : List[Any] = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _snake_case : Optional[Any] = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : str = train_dataset.features['label'].names if training_args.do_eval: _snake_case : List[str] = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : Tuple = eval_dataset.features['label'].names if training_args.do_predict: _snake_case : List[str] = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : Optional[int] = predict_dataset.features['label'].names # Labels _snake_case : Any = len(lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , idalabel={str(lowerCAmelCase ): label for i, label in enumerate(lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(lowerCAmelCase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : str = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _snake_case : Dict = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _snake_case : Optional[int] = False def preprocess_function(lowerCAmelCase: Optional[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowerCAmelCase , max_length=data_args.max_seq_length , truncation=lowerCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: _snake_case : Optional[int] = min(len(lowerCAmelCase ) , data_args.max_train_samples ) _snake_case : List[Any] = train_dataset.select(range(lowerCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _snake_case : str = train_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCAmelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: _snake_case : Optional[int] = min(len(lowerCAmelCase ) , data_args.max_eval_samples ) _snake_case : Union[str, Any] = eval_dataset.select(range(lowerCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _snake_case : Optional[int] = eval_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _snake_case : Union[str, Any] = min(len(lowerCAmelCase ) , data_args.max_predict_samples ) _snake_case : Union[str, Any] = predict_dataset.select(range(lowerCAmelCase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _snake_case : int = predict_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _snake_case : str = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase: EvalPrediction ): _snake_case : Dict = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase ) else p.predictions _snake_case : Any = np.argmax(lowerCAmelCase , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _snake_case : Tuple = default_data_collator elif training_args.fpaa: _snake_case : List[str] = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) else: _snake_case : str = None # Initialize our Trainer _snake_case : List[Any] = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: _snake_case : Any = None if training_args.resume_from_checkpoint is not None: _snake_case : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : Tuple = last_checkpoint _snake_case : str = trainer.train(resume_from_checkpoint=lowerCAmelCase ) _snake_case : Any = train_result.metrics _snake_case : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase ) ) _snake_case : List[str] = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase ) trainer.save_metrics('train' , lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : Dict = trainer.evaluate(eval_dataset=lowerCAmelCase ) _snake_case : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase ) _snake_case : Tuple = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics('eval' , lowerCAmelCase ) trainer.save_metrics('eval' , lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _snake_case : Optional[int] = trainer.predict(lowerCAmelCase , metric_key_prefix='predict' ) _snake_case : Tuple = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCAmelCase ) ) _snake_case : List[str] = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics('predict' , lowerCAmelCase ) trainer.save_metrics('predict' , lowerCAmelCase ) _snake_case : List[Any] = np.argmax(lowerCAmelCase , axis=1 ) _snake_case : int = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase ): _snake_case : Union[str, Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: List[Any] , lowerCAmelCase: str )-> int: # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _snake_case : Optional[int] = BertForPreTraining(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] =ConsistencyModelPipeline a_ : List[str] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ : Optional[Any] =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a_ : Tuple =frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[int] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Dict=False ): '''simple docstring''' if class_cond: _snake_case : Dict = self.dummy_cond_unet else: _snake_case : Any = self.dummy_uncond_unet # Default to CM multistep sampler _snake_case : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : Optional[int] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[int]=0 ): '''simple docstring''' if str(UpperCamelCase ).startswith('mps' ): _snake_case : Optional[int] = torch.manual_seed(UpperCamelCase ) else: _snake_case : Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.get_dummy_components() _snake_case : Dict = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : List[str] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Dict = self.get_dummy_inputs(UpperCamelCase ) _snake_case : str = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : Optional[Any] = image[0, -3:, -3:, -1] _snake_case : List[str] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.get_dummy_components(class_cond=UpperCamelCase ) _snake_case : Any = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : Any = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[Any] = self.get_dummy_inputs(UpperCamelCase ) _snake_case : int = 0 _snake_case : List[str] = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : Optional[int] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[int] = self.get_dummy_components() _snake_case : int = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : int = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : str = self.get_dummy_inputs(UpperCamelCase ) _snake_case : Tuple = 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : str = image[0, -3:, -3:, -1] _snake_case : Tuple = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[int] = self.get_dummy_components(class_cond=UpperCamelCase ) _snake_case : Tuple = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : Union[str, Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Dict = self.get_dummy_inputs(UpperCamelCase ) _snake_case : List[Any] = 1 _snake_case : Optional[Any] = None _snake_case : Optional[Any] = 0 _snake_case : int = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Tuple = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple=0 , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[int]="cpu" , UpperCamelCase : List[Any]=torch.floataa , UpperCamelCase : List[Any]=(1, 3, 64, 64) ): '''simple docstring''' _snake_case : str = torch.manual_seed(UpperCamelCase ) _snake_case : Tuple = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _snake_case : Union[str, Any] = self.get_fixed_latents(seed=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase , shape=UpperCamelCase ) _snake_case : Dict = latents return inputs def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[str]="cpu" , UpperCamelCase : Optional[Any]=torch.floataa , UpperCamelCase : Tuple=(1, 3, 64, 64) ): '''simple docstring''' if type(UpperCamelCase ) == str: _snake_case : List[Any] = torch.device(UpperCamelCase ) _snake_case : Any = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : List[str] = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) return latents def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : int = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[str] = self.get_inputs() _snake_case : Union[str, Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Tuple = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : int = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Any = self.get_inputs() _snake_case : List[str] = 1 _snake_case : Dict = None _snake_case : List[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : List[Any] = image[0, -3:, -3:, -1] _snake_case : str = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : int = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Union[str, Any] = self.get_inputs(get_fixed_latents=UpperCamelCase , device=UpperCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase , enable_math=UpperCamelCase , enable_mem_efficient=UpperCamelCase ): _snake_case : int = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : str = image[0, -3:, -3:, -1] _snake_case : List[str] = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : List[str] = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Tuple = self.get_inputs(get_fixed_latents=UpperCamelCase , device=UpperCamelCase ) _snake_case : Union[str, Any] = 1 _snake_case : Optional[Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase , enable_math=UpperCamelCase , enable_mem_efficient=UpperCamelCase ): _snake_case : Optional[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = image[0, -3:, -3:, -1] _snake_case : Optional[Any] = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import math def lowerCamelCase_ ( lowerCAmelCase: int )-> list[int]: _snake_case : str = [] _snake_case : Optional[int] = 2 _snake_case : int = int(math.sqrt(lowerCAmelCase ) ) # Size of every segment _snake_case : List[Any] = [True] * (end + 1) _snake_case : Dict = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase ) for i in range(start * start , end + 1 , lowerCAmelCase ): _snake_case : int = False start += 1 prime += in_prime _snake_case : Any = end + 1 _snake_case : int = min(2 * end , lowerCAmelCase ) while low <= n: _snake_case : List[str] = [True] * (high - low + 1) for each in in_prime: _snake_case : List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase , high + 1 , lowerCAmelCase ): _snake_case : Tuple = False for j in range(len(lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) _snake_case : List[Any] = high + 1 _snake_case : Tuple = min(high + end , lowerCAmelCase ) return prime print(sieve(10**6))
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
from functools import lru_cache @lru_cache def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list[int] , lowerCAmelCase: int )-> list[list[int]]: _snake_case : list[list[int]] = [] _snake_case : list[int] = [] _snake_case : int = 0 _snake_case : Tuple = sum(lowerCAmelCase ) create_state_space_tree(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return result def lowerCamelCase_ ( lowerCAmelCase: list[int] , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: list[int] , lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , )-> None: if sum(lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase )) < max_sum: return if sum(lowerCAmelCase ) == max_sum: result.append(lowerCAmelCase ) return for index in range(lowerCAmelCase , len(lowerCAmelCase ) ): create_state_space_tree( lowerCAmelCase , lowerCAmelCase , index + 1 , [*path, nums[index]] , lowerCAmelCase , remaining_nums_sum - nums[index] , ) lowerCAmelCase_ = [3, 34, 4, 12, 5, 2] lowerCAmelCase_ = 9 lowerCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ): '''simple docstring''' _snake_case : Any = {} def UpperCamelCase_ ( self : str ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCamelCase , ' -> ' , ' -> '.join([str(UpperCamelCase ) for j in self.vertex[i]] ) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase ) else: # else make a new vertex _snake_case : str = [to_vertex] def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : list ): '''simple docstring''' _snake_case : Union[str, Any] = True print(UpperCamelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Optional[Any]=18 , UpperCamelCase : Any=30 , UpperCamelCase : Tuple=4_00 , UpperCamelCase : int=None , UpperCamelCase : int=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Union[str, Any]=None , ): '''simple docstring''' _snake_case : Dict = size if size is not None else {'height': 20, 'width': 20} _snake_case : List[Any] = parent _snake_case : int = batch_size _snake_case : int = num_channels _snake_case : Optional[int] = image_size _snake_case : Optional[int] = min_resolution _snake_case : Any = max_resolution _snake_case : Dict = size _snake_case : Any = do_normalize _snake_case : List[Any] = do_convert_rgb _snake_case : Any = [5_12, 10_24, 20_48, 40_96] _snake_case : Optional[int] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _snake_case : Any = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Dict =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = PixaStructImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = self.image_processor_tester.prepare_dummy_image() _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) _snake_case : Optional[int] = 20_48 _snake_case : str = image_processor(UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : Tuple = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _snake_case : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCamelCase ): _snake_case : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches _snake_case : int = 'Hello' _snake_case : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase , header_text=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : List[Any] = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase , header_text=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) _snake_case : Tuple = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : Tuple = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : Tuple = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : str = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _snake_case : Union[str, Any] = 3 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : Dict = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] ="""xlm-roberta""" def __init__( self : str , UpperCamelCase : str=3_05_22 , UpperCamelCase : str=7_68 , UpperCamelCase : List[str]=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[str]=30_72 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=5_12 , UpperCamelCase : Any=2 , UpperCamelCase : int=0.02 , UpperCamelCase : Union[str, Any]=1e-1_2 , UpperCamelCase : Optional[int]=1 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : List[str]=2 , UpperCamelCase : List[str]="absolute" , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : List[Any] = vocab_size _snake_case : Dict = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : str = intermediate_size _snake_case : Dict = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : Optional[Any] = initializer_range _snake_case : Any = layer_norm_eps _snake_case : Union[str, Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : int = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCAmelCase_ = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(UpperCAmelCase_ ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""rag""" a_ : str =True def __init__( self : Union[str, Any] , UpperCamelCase : int=None , UpperCamelCase : str=True , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Tuple=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=" / " , UpperCamelCase : List[str]=" // " , UpperCamelCase : Any=5 , UpperCamelCase : Optional[int]=3_00 , UpperCamelCase : Dict=7_68 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Tuple="wiki_dpr" , UpperCamelCase : List[Any]="train" , UpperCamelCase : Optional[int]="compressed" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Tuple=False , UpperCamelCase : Tuple=0.0 , UpperCamelCase : str=True , UpperCamelCase : str=False , UpperCamelCase : int=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : str , ): '''simple docstring''' super().__init__( bos_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , prefix=UpperCamelCase , vocab_size=UpperCamelCase , **UpperCamelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _snake_case : Tuple = kwargs.pop('question_encoder' ) _snake_case : int = question_encoder_config.pop('model_type' ) _snake_case : Dict = kwargs.pop('generator' ) _snake_case : Optional[Any] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _snake_case : Union[str, Any] = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) _snake_case : Dict = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) _snake_case : Tuple = reduce_loss _snake_case : Optional[Any] = label_smoothing _snake_case : List[str] = exclude_bos_score _snake_case : int = do_marginalize _snake_case : Any = title_sep _snake_case : Optional[Any] = doc_sep _snake_case : Union[str, Any] = n_docs _snake_case : Dict = max_combined_length _snake_case : List[str] = dataset _snake_case : Union[str, Any] = dataset_split _snake_case : Dict = index_name _snake_case : Any = retrieval_vector_size _snake_case : List[str] = retrieval_batch_size _snake_case : Dict = passages_path _snake_case : List[Any] = index_path _snake_case : Tuple = use_dummy_dataset _snake_case : int = output_retrieved _snake_case : str = do_deduplication _snake_case : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _snake_case : Dict = getattr(self.generator , 'forced_eos_token_id' , UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Any , UpperCamelCase : PretrainedConfig , UpperCamelCase : PretrainedConfig , **UpperCamelCase : Optional[int] ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = copy.deepcopy(self.__dict__ ) _snake_case : Optional[int] = self.question_encoder.to_dict() _snake_case : int = self.generator.to_dict() _snake_case : str = self.__class__.model_type return output
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
def lowerCamelCase_ ( lowerCAmelCase: int = 50_00_00_00 )-> int: _snake_case : Dict = set() _snake_case : Dict = int((limit - 24) ** (1 / 2) ) _snake_case : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase ) ) ) for primea in primes: _snake_case : Optional[Any] = primea * primea for primea in primes: _snake_case : str = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _snake_case : List[Any] = primea * primea * primea * primea _snake_case : Dict = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase ) return len(lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase_ = """Create a default config file for Accelerate with only a few flags set.""" def lowerCamelCase_ ( lowerCAmelCase: Dict="no" , lowerCAmelCase: str = default_json_config_file , lowerCAmelCase: bool = False )-> Union[str, Any]: _snake_case : str = Path(lowerCAmelCase ) path.parent.mkdir(parents=lowerCAmelCase , exist_ok=lowerCAmelCase ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False _snake_case : Any = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) _snake_case : Optional[int] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _snake_case : int = torch.cuda.device_count() _snake_case : Dict = num_gpus _snake_case : str = False if num_gpus > 1: _snake_case : Optional[int] = 'MULTI_GPU' else: _snake_case : Dict = 'NO' elif is_xpu_available() and use_xpu: _snake_case : Optional[int] = torch.xpu.device_count() _snake_case : Dict = num_xpus _snake_case : Optional[int] = False if num_xpus > 1: _snake_case : Dict = 'MULTI_XPU' else: _snake_case : Optional[Any] = 'NO' elif is_npu_available(): _snake_case : List[Any] = torch.npu.device_count() _snake_case : int = num_npus _snake_case : int = False if num_npus > 1: _snake_case : Optional[int] = 'MULTI_NPU' else: _snake_case : Tuple = 'NO' else: _snake_case : Optional[Any] = 0 _snake_case : Tuple = True _snake_case : List[Any] = 1 _snake_case : Tuple = 'NO' _snake_case : List[str] = ClusterConfig(**lowerCAmelCase ) config.to_json_file(lowerCAmelCase ) return path def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Dict )-> List[str]: _snake_case : Tuple = parser.add_parser('default' , parents=lowerCAmelCase , help=lowerCAmelCase , formatter_class=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=lowerCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Dict: _snake_case : Any = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] lowerCAmelCase_ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] lowerCAmelCase_ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): lowerCAmelCase_ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Dict: _snake_case : Union[str, Any] = 1 _snake_case : Tuple = 2 while i * i <= n: _snake_case : str = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase_ ( )-> Any: _snake_case : Tuple = 1 _snake_case : Any = 1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase_ ( lowerCAmelCase: dict , lowerCAmelCase: str , lowerCAmelCase: set , lowerCAmelCase: set , lowerCAmelCase: dict , lowerCAmelCase: dict , lowerCAmelCase: PriorityQueue , lowerCAmelCase: dict , lowerCAmelCase: float | int , )-> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _snake_case : Union[str, Any] = cst_fwd.get(lowerCAmelCase , np.inf ) _snake_case : Tuple = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _snake_case : Dict = new_cost_f _snake_case : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _snake_case : Optional[int] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: dict , lowerCAmelCase: dict )-> int: _snake_case : Optional[Any] = -1 _snake_case : Any = set() _snake_case : Union[str, Any] = set() _snake_case : List[Any] = {source: 0} _snake_case : Tuple = {destination: 0} _snake_case : str = {source: None} _snake_case : Optional[Any] = {destination: None} _snake_case : PriorityQueue[Any] = PriorityQueue() _snake_case : PriorityQueue[Any] = PriorityQueue() _snake_case : List[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _snake_case : Optional[int] = queue_forward.get() visited_forward.add(lowerCAmelCase ) _snake_case : Dict = queue_backward.get() visited_backward.add(lowerCAmelCase ) _snake_case : Any = pass_and_relaxation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) _snake_case : Optional[Any] = pass_and_relaxation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _snake_case : Tuple = shortest_distance return shortest_path_distance lowerCAmelCase_ = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } lowerCAmelCase_ = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = 10 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = [1, 2, 3, 4] _snake_case : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase , self.block_size , 0 ) , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _snake_case : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase , self.block_size , 0 ) , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _snake_case : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase , self.block_size , 0 ) , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Tuple = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _snake_case : List[str] = process_story(UpperCamelCase ) self.assertEqual(UpperCamelCase , [] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = '' _snake_case : Union[str, Any] = process_story(UpperCamelCase ) self.assertEqual(UpperCamelCase , [] ) self.assertEqual(UpperCamelCase , [] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _snake_case : Union[str, Any] = process_story(UpperCamelCase ) _snake_case : Union[str, Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCamelCase , UpperCamelCase ) _snake_case : int = ['It was the best of times.'] self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = torch.tensor([1, 2, 3, 4] ) _snake_case : Union[str, Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase , 0 ).numpy() , expected.numpy() ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _snake_case : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase , 23 ).numpy() , expected.numpy() ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _snake_case : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase , 1 ).numpy() , expected.numpy() ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Dict = 1_01 _snake_case : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) _snake_case : str = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _snake_case : Dict = compute_token_type_ids(UpperCamelCase , UpperCamelCase ) np.testing.assert_array_equal(UpperCamelCase , UpperCamelCase )
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
def lowerCamelCase_ ( lowerCAmelCase: str )-> int: _snake_case : Any = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _snake_case : str = hex_num[0] == '-' if is_negative: _snake_case : List[str] = hex_num[1:] try: _snake_case : Union[str, Any] = int(lowerCAmelCase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _snake_case : Dict = '' while int_num > 0: _snake_case : Optional[int] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: Dict )-> str: if height >= 1: move_tower(height - 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) move_disk(lowerCAmelCase , lowerCAmelCase ) move_tower(height - 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: int )-> str: print('moving disk from' , lowerCAmelCase , 'to' , lowerCAmelCase ) def lowerCamelCase_ ( )-> Union[str, Any]: _snake_case : Optional[int] = int(input('Height of hanoi: ' ).strip() ) move_tower(lowerCAmelCase , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0