code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : int , *, UpperCamelCase : int = 4 , UpperCamelCase : int = 7_68 , UpperCamelCase : int , UpperCamelCase : str , ): '''simple docstring''' super().__init__() _snake_case : Tuple = nn.Parameter(torch.zeros(UpperCamelCase ) ) # parameters for additional clip time embeddings _snake_case : Optional[Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : int = nn.Linear(UpperCamelCase , UpperCamelCase ) # parameters for encoder hidden states _snake_case : Optional[Any] = clip_extra_context_tokens _snake_case : Optional[int] = nn.Linear( UpperCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) _snake_case : List[Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : str = nn.LayerNorm(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] , *, UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _snake_case : str = image_embeddings.shape[0] _snake_case : Union[str, Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _snake_case : str = classifier_free_guidance_embeddings.expand( UpperCamelCase , -1 ) _snake_case : Union[str, Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _snake_case : Tuple = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _snake_case : int = self.embedding_proj(UpperCamelCase ) _snake_case : Union[str, Any] = self.clip_image_embeddings_project_to_time_embeddings(UpperCamelCase ) _snake_case : Any = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _snake_case : Optional[Any] = self.clip_extra_context_tokens_proj(UpperCamelCase ) _snake_case : List[Any] = clip_extra_context_tokens.reshape(UpperCamelCase , -1 , self.clip_extra_context_tokens ) _snake_case : Union[str, Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) _snake_case : List[Any] = self.encoder_hidden_states_proj(UpperCamelCase ) _snake_case : List[str] = self.text_encoder_hidden_states_norm(UpperCamelCase ) _snake_case : List[str] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""BridgeTowerImageProcessor""" a_ : Tuple =("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Dict ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : str , UpperCamelCase : str , UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Any , ): '''simple docstring''' _snake_case : Dict = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel_values + pixel_mask _snake_case : Union[str, Any] = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , do_normalize=UpperCamelCase , do_center_crop=UpperCamelCase , **UpperCamelCase ) encoding.update(UpperCamelCase ) return encoding def UpperCamelCase_ ( self : int , *UpperCamelCase : Tuple , **UpperCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Dict , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.tokenizer.model_input_names _snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
def lowerCamelCase_ ( lowerCAmelCase: int = 50 )-> int: _snake_case : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase_ ( lowerCAmelCase: str )-> str: if "://" in dataset_path: _snake_case : List[Any] = dataset_path.split('://' )[1] return dataset_path def lowerCamelCase_ ( lowerCAmelCase: fsspec.AbstractFileSystem )-> bool: if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase_ ( lowerCAmelCase: fsspec.AbstractFileSystem , lowerCAmelCase: str , lowerCAmelCase: str )-> Union[str, Any]: _snake_case : Optional[int] = not is_remote_filesystem(lowerCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCAmelCase ) , fs._strip_protocol(lowerCAmelCase ) ) else: fs.mv(lowerCAmelCase , lowerCAmelCase , recursive=lowerCAmelCase ) def lowerCamelCase_ ( )-> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _snake_case : Tuple = None _snake_case : Any = None _snake_case : Optional[int] = threading.Lock()
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 4_8000, """sample_size""": 6_5536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 4_8000, """sample_size""": 6_5536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 4_8000, """sample_size""": 13_1072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 1_6000, """sample_size""": 6_5536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 1_6000, """sample_size""": 6_5536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 1_6000, """sample_size""": 6_5536, }, } def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[str] )-> int: return torch.atana(lowerCAmelCase , lowerCAmelCase ) / math.pi * 2 def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Optional[Any]: _snake_case : List[Any] = torch.sin(t * math.pi / 2 ) ** 2 _snake_case : Dict = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCAmelCase , lowerCAmelCase ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' super().__init__() _snake_case : Dict = DiffusionAttnUnetaD(UpperCamelCase , n_attn_layers=4 ) _snake_case : Tuple = deepcopy(self.diffusion ) _snake_case : List[str] = torch.quasirandom.SobolEngine(1 , scramble=UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> int: _snake_case : Any = MODELS_MAP[model_name]['url'] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" lowerCAmelCase_ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } lowerCAmelCase_ = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } lowerCAmelCase_ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } lowerCAmelCase_ = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } lowerCAmelCase_ = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } lowerCAmelCase_ = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> int: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Union[str, Any]: for key, value in ATTN_MAP.items(): if name.startswith(lowerCAmelCase ) and not isinstance(lowerCAmelCase , lowerCAmelCase ): return name.replace(lowerCAmelCase , lowerCAmelCase ) elif name.startswith(lowerCAmelCase ): return [name.replace(lowerCAmelCase , lowerCAmelCase ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: str=13 )-> Any: _snake_case : Optional[Any] = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) _snake_case : Optional[int] = 0 if string.startswith('net.3.' ): depth += 1 _snake_case : Union[str, Any] = string[6:] elif string.startswith('net.' ): _snake_case : Dict = string[4:] while string.startswith('main.7.' ): depth += 1 _snake_case : Optional[Any] = string[7:] if string.startswith('main.' ): _snake_case : Tuple = string[5:] # mid block if string[:2].isdigit(): _snake_case : Optional[Any] = string[:2] _snake_case : Union[str, Any] = string[2:] else: _snake_case : str = string[0] _snake_case : Any = string[1:] if depth == max_depth: _snake_case : int = MID_NUM_TO_LAYER[layer_num] _snake_case : int = 'mid_block' elif depth > 0 and int(lowerCAmelCase ) < 7: _snake_case : Dict = DOWN_NUM_TO_LAYER[layer_num] _snake_case : Any = F"""down_blocks.{depth}""" elif depth > 0 and int(lowerCAmelCase ) > 7: _snake_case : Optional[Any] = UP_NUM_TO_LAYER[layer_num] _snake_case : Union[str, Any] = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: _snake_case : Optional[int] = DEPTH_0_TO_LAYER[layer_num] _snake_case : Union[str, Any] = F"""up_blocks.{max_depth - 1}""" if int(lowerCAmelCase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) _snake_case : Union[str, Any] = string_left[1:] if "resnets" in new_layer: _snake_case : str = convert_resconv_naming(lowerCAmelCase ) elif "attentions" in new_layer: _snake_case : Tuple = convert_attn_naming(lowerCAmelCase ) _snake_case : List[str] = new_string_left if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = prefix + '.' + new_layer + '.' + string_left else: _snake_case : Any = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> List[str]: _snake_case : Tuple = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue _snake_case : int = rename(lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = transform_conv_attns(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: _snake_case : Tuple = v return new_state_dict def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[Any] )-> Dict: if len(lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _snake_case : Optional[int] = v[:, :, 0] else: # bias _snake_case : Dict = v else: # qkv matrices _snake_case : Tuple = v.shape[0] _snake_case : int = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _snake_case : str = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _snake_case : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCamelCase_ ( lowerCAmelCase: Any )-> List[str]: _snake_case : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _snake_case : int = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" _snake_case : Union[str, Any] = download(lowerCAmelCase ) _snake_case : Union[str, Any] = MODELS_MAP[model_name]['sample_rate'] _snake_case : str = MODELS_MAP[model_name]['sample_size'] _snake_case : List[str] = Object() _snake_case : Tuple = sample_size _snake_case : List[str] = sample_rate _snake_case : Any = 0 _snake_case : Any = UNetaDModel(sample_size=lowerCAmelCase , sample_rate=lowerCAmelCase ) _snake_case : Tuple = diffusers_model.state_dict() _snake_case : Optional[int] = DiffusionUncond(lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCAmelCase )['state_dict'] ) _snake_case : Any = orig_model.diffusion_ema.eval() _snake_case : Tuple = orig_model.state_dict() _snake_case : Tuple = rename_orig_weights(lowerCAmelCase ) _snake_case : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _snake_case : List[str] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCAmelCase ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(lowerCAmelCase ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": _snake_case : Optional[int] = value.squeeze() _snake_case : str = value diffusers_model.load_state_dict(lowerCAmelCase ) _snake_case : Dict = 1_00 _snake_case : Optional[Any] = 33 _snake_case : Optional[Any] = IPNDMScheduler(num_train_timesteps=lowerCAmelCase ) _snake_case : Dict = torch.manual_seed(lowerCAmelCase ) _snake_case : Tuple = torch.randn([1, 2, config.sample_size] , generator=lowerCAmelCase ).to(lowerCAmelCase ) _snake_case : List[Any] = torch.linspace(1 , 0 , steps + 1 , device=lowerCAmelCase )[:-1] _snake_case : str = get_crash_schedule(lowerCAmelCase ) _snake_case : List[Any] = DanceDiffusionPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) _snake_case : int = torch.manual_seed(33 ) _snake_case : Tuple = pipe(num_inference_steps=lowerCAmelCase , generator=lowerCAmelCase ).audios _snake_case : str = sampling.iplms_sample(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {} ) _snake_case : Dict = generated.clamp(-1 , 1 ) _snake_case : Optional[int] = (generated - audio).abs().sum() _snake_case : List[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , lowerCAmelCase ) print('Diff max' , lowerCAmelCase ) assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCAmelCase_ = parser.parse_args() main(args)
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
from torch import nn class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : str = class_size _snake_case : Any = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _snake_case : Any = nn.Linear(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = self.mlp(UpperCamelCase ) return logits
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase_ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase_ = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCAmelCase_ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCamelCase_ ( lowerCAmelCase: int )-> List[Any]: _snake_case : Dict = None # source code of `config_class` _snake_case : List[Any] = inspect.getsource(lowerCAmelCase ) _snake_case : List[Any] = _re_checkpoint.findall(lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _snake_case : Optional[int] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _snake_case : Dict = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: _snake_case : Any = ckpt_name break return checkpoint def lowerCamelCase_ ( )-> int: _snake_case : List[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _snake_case : List[Any] = get_checkpoint_from_config_class(lowerCAmelCase ) _snake_case : int = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _snake_case : List[str] = '\n'.join(sorted(lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
from __future__ import annotations lowerCAmelCase_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCamelCase_ ( lowerCAmelCase: list[float] )-> list[float]: _snake_case : Tuple = [] _snake_case : Any = len(lowerCAmelCase ) for i in range(lowerCAmelCase ): _snake_case : float = -1 for j in range(i + 1 , lowerCAmelCase ): if arr[i] < arr[j]: _snake_case : str = arr[j] break result.append(lowerCAmelCase ) return result def lowerCamelCase_ ( lowerCAmelCase: list[float] )-> list[float]: _snake_case : int = [] for i, outer in enumerate(lowerCAmelCase ): _snake_case : float = -1 for inner in arr[i + 1 :]: if outer < inner: _snake_case : List[str] = inner break result.append(lowerCAmelCase ) return result def lowerCamelCase_ ( lowerCAmelCase: list[float] )-> list[float]: _snake_case : List[Any] = len(lowerCAmelCase ) _snake_case : list[float] = [] _snake_case : list[float] = [-1] * arr_size for index in reversed(range(lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _snake_case : Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase_ = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
import unittest from knapsack import greedy_knapsack as kp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = [10, 20, 30, 40, 50, 60] _snake_case : str = [2, 4, 6, 8, 10, 12] _snake_case : List[str] = 1_00 self.assertEqual(kp.calc_profit(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 2_10 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase , 'max_weight must greater than zero.' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase , 'Weight can not be negative.' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase , 'Profit can not be negative.' ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase , 'max_weight must greater than zero.' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.assertRaisesRegex( UpperCamelCase , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
import numpy as np from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: np.ndarray , lowerCAmelCase: int , lowerCAmelCase: int )-> np.ndarray: _snake_case : Optional[Any] = np.array(lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _snake_case : Tuple = 0 _snake_case : str = 0 _snake_case : int = 0 _snake_case : Optional[Any] = 0 # compute the shape of the output matrix _snake_case : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _snake_case : List[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _snake_case : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _snake_case : Optional[Any] = 0 _snake_case : Dict = 0 return updated_arr def lowerCamelCase_ ( lowerCAmelCase: np.ndarray , lowerCAmelCase: int , lowerCAmelCase: int )-> np.ndarray: _snake_case : Dict = np.array(lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _snake_case : Union[str, Any] = 0 _snake_case : Any = 0 _snake_case : List[Any] = 0 _snake_case : Dict = 0 # compute the shape of the output matrix _snake_case : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _snake_case : List[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _snake_case : Optional[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCAmelCase_ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Any=2 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Dict=99 , UpperCamelCase : List[Any]=36 , UpperCamelCase : Any=2 , UpperCamelCase : str=4 , UpperCamelCase : List[str]=37 , UpperCamelCase : List[str]="gelu" , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : List[Any]=5_12 , UpperCamelCase : int=16 , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Optional[int]=6 , UpperCamelCase : Dict=6 , UpperCamelCase : Optional[int]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=10_00 , ): '''simple docstring''' _snake_case : Union[str, Any] = parent _snake_case : Any = batch_size _snake_case : Union[str, Any] = num_channels _snake_case : str = image_size _snake_case : str = patch_size _snake_case : List[str] = is_training _snake_case : Optional[int] = use_input_mask _snake_case : Any = use_token_type_ids _snake_case : Optional[int] = use_labels _snake_case : Union[str, Any] = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Tuple = initializer_range _snake_case : int = coordinate_size _snake_case : List[str] = shape_size _snake_case : List[str] = num_labels _snake_case : List[Any] = num_choices _snake_case : List[str] = scope _snake_case : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _snake_case : str = text_seq_length _snake_case : Optional[int] = (image_size // patch_size) ** 2 + 1 _snake_case : Union[str, Any] = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _snake_case : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _snake_case : Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _snake_case : Tuple = bbox[i, j, 3] _snake_case : List[Any] = bbox[i, j, 1] _snake_case : Tuple = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _snake_case : Dict = bbox[i, j, 2] _snake_case : str = bbox[i, j, 0] _snake_case : Tuple = tmp_coordinate _snake_case : Optional[Any] = tf.constant(UpperCamelCase ) _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : str = None if self.use_input_mask: _snake_case : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) _snake_case : List[str] = None if self.use_token_type_ids: _snake_case : int = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _snake_case : Optional[int] = None _snake_case : List[str] = None if self.use_labels: _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _snake_case : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Any = TFLayoutLMvaModel(config=UpperCamelCase ) # text + image _snake_case : Tuple = model(UpperCamelCase , pixel_values=UpperCamelCase , training=UpperCamelCase ) _snake_case : str = model( UpperCamelCase , bbox=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , training=UpperCamelCase , ) _snake_case : Any = model(UpperCamelCase , bbox=UpperCamelCase , pixel_values=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _snake_case : Optional[int] = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _snake_case : List[str] = model({'pixel_values': pixel_values} , training=UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : Any = TFLayoutLMvaForSequenceClassification(config=UpperCamelCase ) _snake_case : Tuple = model( UpperCamelCase , bbox=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.num_labels _snake_case : Optional[int] = TFLayoutLMvaForTokenClassification(config=UpperCamelCase ) _snake_case : str = model( UpperCamelCase , bbox=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : int , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = 2 _snake_case : Optional[Any] = TFLayoutLMvaForQuestionAnswering(config=UpperCamelCase ) _snake_case : Any = model( UpperCamelCase , bbox=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , training=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : Optional[Any] = config_and_inputs _snake_case : List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Any =( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) a_ : Tuple =( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) a_ : int =False a_ : Union[str, Any] =False a_ : Optional[int] =False def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : str ): '''simple docstring''' return True def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Optional[Any]=False ): '''simple docstring''' _snake_case : List[str] = copy.deepcopy(UpperCamelCase ) if model_class in get_values(UpperCamelCase ): _snake_case : Any = { k: tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCamelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase ): _snake_case : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase ): _snake_case : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _snake_case : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase ): _snake_case : List[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase ): _snake_case : Any = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = TFLayoutLMvaModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(UpperCamelCase ) if getattr(UpperCamelCase , 'hf_compute_loss' , UpperCamelCase ): # The number of elements in the loss should be the same as the number of elements in the label _snake_case : str = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase , return_labels=UpperCamelCase ) _snake_case : Optional[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCamelCase )[0] ] _snake_case : Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _snake_case : List[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase , return_labels=UpperCamelCase ) _snake_case : Optional[int] = prepared_for_class.pop('input_ids' ) _snake_case : Tuple = model(UpperCamelCase , **UpperCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase , return_labels=UpperCamelCase ) _snake_case : int = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: _snake_case : Optional[Any] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _snake_case : str = -1_00 _snake_case : str = tf.convert_to_tensor(UpperCamelCase ) _snake_case : List[Any] = model(UpperCamelCase , **UpperCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _snake_case : Tuple = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase , return_labels=UpperCamelCase ) _snake_case : Any = model(UpperCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _snake_case : List[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase , return_labels=UpperCamelCase ) # Get keys that were added with the _prepare_for_class function _snake_case : Optional[Any] = prepared_for_class.keys() - inputs_dict.keys() _snake_case : List[Any] = inspect.signature(model.call ).parameters _snake_case : Union[str, Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _snake_case : int = {0: 'input_ids'} for label_key in label_keys: _snake_case : Dict = signature_names.index(UpperCamelCase ) _snake_case : int = label_key _snake_case : int = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _snake_case : Optional[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _snake_case : int = prepared_for_class[value] _snake_case : int = tuple(UpperCamelCase ) # Send to model _snake_case : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case : Union[str, Any] = type self.model_tester.create_and_check_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Union[str, Any] = TFLayoutLMvaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase_ ( )-> int: _snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : str = prepare_img() _snake_case : int = image_processor(images=UpperCamelCase , return_tensors='tf' ).pixel_values _snake_case : Optional[Any] = tf.constant([[1, 2]] ) _snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _snake_case : str = model(input_ids=UpperCamelCase , bbox=UpperCamelCase , pixel_values=UpperCamelCase , training=UpperCamelCase ) # verify the logits _snake_case : List[Any] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase ) _snake_case : List[Any] = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase , atol=1e-4 ) )
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =StableUnCLIPImgaImgPipeline a_ : Dict =TEXT_GUIDED_IMAGE_VARIATION_PARAMS a_ : int =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ : List[str] =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ : int =frozenset([] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Dict = 32 _snake_case : Tuple = embedder_hidden_size # image encoding components _snake_case : Tuple = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _snake_case : Any = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) _snake_case : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _snake_case : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _snake_case : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) _snake_case : List[str] = AutoencoderKL() _snake_case : int = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Tuple=0 , UpperCamelCase : Dict=True ): '''simple docstring''' if str(UpperCamelCase ).startswith('mps' ): _snake_case : int = torch.manual_seed(UpperCamelCase ) else: _snake_case : str = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if pil_image: _snake_case : List[str] = input_image * 0.5 + 0.5 _snake_case : Any = input_image.clamp(0 , 1 ) _snake_case : str = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _snake_case : Dict = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : str = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.get_dummy_components() _snake_case : str = StableUnCLIPImgaImgPipeline(**UpperCamelCase ) _snake_case : List[str] = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase ) inputs.update({'image_embeds': None} ) _snake_case : int = sd_pipe(**UpperCamelCase ).images _snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : Union[str, Any] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) _snake_case : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) _snake_case : int = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case : Optional[int] = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) _snake_case : List[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) _snake_case : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) _snake_case : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case : List[str] = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) _snake_case : int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case : str = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) _snake_case : Optional[int] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : Optional[int] = pipe( UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) _snake_case : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase_ ( lowerCAmelCase: dict , lowerCAmelCase: str , lowerCAmelCase: set , lowerCAmelCase: set , lowerCAmelCase: dict , lowerCAmelCase: dict , lowerCAmelCase: PriorityQueue , lowerCAmelCase: dict , lowerCAmelCase: float | int , )-> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _snake_case : Union[str, Any] = cst_fwd.get(lowerCAmelCase , np.inf ) _snake_case : Tuple = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _snake_case : Dict = new_cost_f _snake_case : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _snake_case : Optional[int] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: dict , lowerCAmelCase: dict )-> int: _snake_case : Optional[Any] = -1 _snake_case : Any = set() _snake_case : Union[str, Any] = set() _snake_case : List[Any] = {source: 0} _snake_case : Tuple = {destination: 0} _snake_case : str = {source: None} _snake_case : Optional[Any] = {destination: None} _snake_case : PriorityQueue[Any] = PriorityQueue() _snake_case : PriorityQueue[Any] = PriorityQueue() _snake_case : List[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _snake_case , _snake_case : Optional[int] = queue_forward.get() visited_forward.add(lowerCAmelCase ) _snake_case , _snake_case : Dict = queue_backward.get() visited_backward.add(lowerCAmelCase ) _snake_case : Any = pass_and_relaxation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) _snake_case : Optional[Any] = pass_and_relaxation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _snake_case : Tuple = shortest_distance return shortest_path_distance lowerCAmelCase_ = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } lowerCAmelCase_ = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : int = 16 , UpperCamelCase : int = 88 , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : int = 32 , UpperCamelCase : Optional[int] = None , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "geglu" , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : Dict = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase , attention_head_dim=UpperCamelCase , in_channels=UpperCamelCase , num_layers=UpperCamelCase , dropout=UpperCamelCase , norm_num_groups=UpperCamelCase , cross_attention_dim=UpperCamelCase , attention_bias=UpperCamelCase , sample_size=UpperCamelCase , num_vector_embeds=UpperCamelCase , activation_fn=UpperCamelCase , num_embeds_ada_norm=UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _snake_case : int = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _snake_case : Optional[int] = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _snake_case : Optional[Any] = [1, 0] def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : int=None , UpperCamelCase : str=None , UpperCamelCase : int=None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : str = hidden_states _snake_case : Tuple = [] _snake_case : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _snake_case : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _snake_case : str = self.transformer_index_for_condition[i] _snake_case : int = self.transformers[transformer_index]( UpperCamelCase , encoder_hidden_states=UpperCamelCase , timestep=UpperCamelCase , cross_attention_kwargs=UpperCamelCase , return_dict=UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _snake_case : str = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _snake_case : Optional[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase )
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
lowerCAmelCase_ = """Input must be a string of 8 numbers plus letter""" lowerCAmelCase_ = """TRWAGMYFPDXBNJZSQVHLCKE""" def lowerCamelCase_ ( lowerCAmelCase: str )-> bool: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = F"""Expected string as input, found {type(lowerCAmelCase ).__name__}""" raise TypeError(lowerCAmelCase ) _snake_case : List[Any] = spanish_id.replace('-' , '' ).upper() if len(lowerCAmelCase ) != 9: raise ValueError(lowerCAmelCase ) try: _snake_case : Optional[int] = int(spanish_id_clean[0:8] ) _snake_case : Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> str: _snake_case : str = checkpoints.load_tax_checkpoint(lowerCAmelCase ) _snake_case : Optional[int] = flatten_dict(lowerCAmelCase ) return flax_params def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> int: _snake_case : Union[str, Any] = {} _snake_case : Any = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } _snake_case : Any = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _snake_case : str = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _snake_case : Tuple = new_key.replace(lowerCAmelCase , lowerCAmelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _snake_case : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _snake_case : str = re.sub(R'layers_(\d+)' , R'layer.\1' , lowerCAmelCase ) _snake_case : Any = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _snake_case : List[str] = re.sub(R'layers_(\d+)' , R'layer.\1' , lowerCAmelCase ) _snake_case : str = flax_dict[key] _snake_case : Tuple = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _snake_case : str = torch.from_numpy(converted_dict[key].T ) else: _snake_case : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any]=False , lowerCAmelCase: str=False )-> Any: _snake_case : Tuple = get_flax_param(lowerCAmelCase ) if not use_large: _snake_case : Optional[int] = PixaStructVisionConfig() _snake_case : Dict = PixaStructTextConfig() else: _snake_case : Union[str, Any] = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) _snake_case : Dict = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) _snake_case : Any = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowerCAmelCase ) _snake_case : int = PixaStructForConditionalGeneration(lowerCAmelCase ) _snake_case : str = rename_and_convert_flax_params(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) _snake_case : Optional[Any] = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) _snake_case : str = PixaStructImageProcessor() _snake_case : Optional[Any] = PixaStructProcessor(image_processor=lowerCAmelCase , tokenizer=lowerCAmelCase ) if use_large: _snake_case : Tuple = 40_96 _snake_case : Optional[int] = True # mkdir if needed os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) print('Model saved in {}'.format(lowerCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") lowerCAmelCase_ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: list[str] | None = None , lowerCAmelCase: dict[str, float] | None = None , lowerCAmelCase: bool = False , )-> tuple[int, float, str]: _snake_case : Any = cipher_alphabet or [chr(lowerCAmelCase ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _snake_case : Optional[Any] = { 'a': 0.0_8_4_9_7, 'b': 0.0_1_4_9_2, 'c': 0.0_2_2_0_2, 'd': 0.0_4_2_5_3, 'e': 0.1_1_1_6_2, 'f': 0.0_2_2_2_8, 'g': 0.0_2_0_1_5, 'h': 0.0_6_0_9_4, 'i': 0.0_7_5_4_6, 'j': 0.0_0_1_5_3, 'k': 0.0_1_2_9_2, 'l': 0.0_4_0_2_5, 'm': 0.0_2_4_0_6, 'n': 0.0_6_7_4_9, 'o': 0.0_7_5_0_7, 'p': 0.0_1_9_2_9, 'q': 0.0_0_0_9_5, 'r': 0.0_7_5_8_7, 's': 0.0_6_3_2_7, 't': 0.0_9_3_5_6, 'u': 0.0_2_7_5_8, 'v': 0.0_0_9_7_8, 'w': 0.0_2_5_6_0, 'x': 0.0_0_1_5_0, 'y': 0.0_1_9_9_4, 'z': 0.0_0_0_7_7, } else: # Custom frequencies dictionary _snake_case : List[Any] = frequencies_dict if not case_sensitive: _snake_case : List[Any] = ciphertext.lower() # Chi squared statistic values _snake_case : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase ) ): _snake_case : List[Any] = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _snake_case : Tuple = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _snake_case : Union[str, Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _snake_case : List[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _snake_case : Optional[int] = decrypted_with_shift.lower().count(lowerCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _snake_case : int = frequencies[letter] * occurrences # Complete the chi squared statistic formula _snake_case : Union[str, Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _snake_case : str = decrypted_with_shift.count(lowerCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _snake_case : int = frequencies[letter] * occurrences # Complete the chi squared statistic formula _snake_case : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _snake_case : List[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase: int ) -> tuple[float, str]: return chi_squared_statistic_values[key] _snake_case : int = min( lowerCAmelCase , key=lowerCAmelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _snake_case ) , ( _snake_case ) , ) : Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Any , ): '''simple docstring''' _snake_case : int = parent _snake_case : str = 13 _snake_case : List[str] = 7 _snake_case : Dict = True _snake_case : Any = True _snake_case : Any = True _snake_case : Optional[int] = 99 _snake_case : Union[str, Any] = 32 _snake_case : Dict = 2 _snake_case : List[str] = 4 _snake_case : Optional[Any] = 37 _snake_case : Union[str, Any] = 'gelu' _snake_case : Tuple = 0.1 _snake_case : List[Any] = 0.1 _snake_case : str = 5_12 _snake_case : str = 16 _snake_case : int = 2 _snake_case : int = 0.02 _snake_case : Dict = 3 _snake_case : Optional[int] = 4 _snake_case : Tuple = None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = None if self.use_input_mask: _snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Dict = None _snake_case : Any = None _snake_case : Any = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : int = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Tuple = self.prepare_config_and_inputs() _snake_case : List[Any] = True _snake_case : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : int = TFEsmModel(config=UpperCamelCase ) _snake_case : int = {'input_ids': input_ids, 'attention_mask': input_mask} _snake_case : List[Any] = model(UpperCamelCase ) _snake_case : Any = [input_ids, input_mask] _snake_case : str = model(UpperCamelCase ) _snake_case : Any = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , ): '''simple docstring''' _snake_case : Union[str, Any] = True _snake_case : List[Any] = TFEsmModel(config=UpperCamelCase ) _snake_case : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _snake_case : List[Any] = model(UpperCamelCase ) _snake_case : Tuple = [input_ids, input_mask] _snake_case : Union[str, Any] = model(UpperCamelCase , encoder_hidden_states=UpperCamelCase ) # Also check the case where encoder outputs are not passed _snake_case : int = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Any = TFEsmForMaskedLM(config=UpperCamelCase ) _snake_case : Dict = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : Dict = TFEsmForTokenClassification(config=UpperCamelCase ) _snake_case : str = {'input_ids': input_ids, 'attention_mask': input_mask} _snake_case : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = config_and_inputs _snake_case : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) a_ : Any =( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) a_ : Any =False a_ : Union[str, Any] =False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = TFEsmModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Tuple = TFEsmModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = model_class(UpperCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _snake_case : int = model.get_bias() assert isinstance(UpperCamelCase , UpperCamelCase ) for k, v in name.items(): assert isinstance(UpperCamelCase , tf.Variable ) else: _snake_case : Optional[Any] = model.get_output_embeddings() assert x is None _snake_case : List[str] = model.get_bias() assert name is None @require_tf class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _snake_case : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case : Tuple = model(UpperCamelCase )[0] _snake_case : Tuple = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase ) # compare the actual values for a slice. _snake_case : str = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _snake_case : Dict = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _snake_case : Any = model(UpperCamelCase )[0] # compare the actual values for a slice. _snake_case : Any = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =KandinskyVaaImgaImgPipeline a_ : int =["""image_embeds""", """negative_image_embeds""", """image"""] a_ : List[str] =[ """image_embeds""", """negative_image_embeds""", """image""", ] a_ : Dict =[ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ : Optional[Any] =False @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return 1_00 @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _snake_case : List[str] = UNetaDConditionModel(**UpperCamelCase ) return model @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Any = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_unet _snake_case : Tuple = self.dummy_movq _snake_case : int = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _snake_case : int = DDIMScheduler(**UpperCamelCase ) _snake_case : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict=0 ): '''simple docstring''' _snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _snake_case : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) # create init_image _snake_case : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : Any = Image.fromarray(np.uinta(UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) if str(UpperCamelCase ).startswith('mps' ): _snake_case : Union[str, Any] = torch.manual_seed(UpperCamelCase ) else: _snake_case : Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Dict = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' _snake_case : str = self.get_dummy_components() _snake_case : Union[str, Any] = self.pipeline_class(**UpperCamelCase ) _snake_case : Tuple = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[str] = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) _snake_case : Any = output.images _snake_case : int = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Union[str, Any] = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) _snake_case : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _snake_case : Union[str, Any] = 'A red cartoon frog, 4k' _snake_case : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) _snake_case : Dict = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) _snake_case : Any = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case , _snake_case : List[str] = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _snake_case : List[Any] = pipeline( image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='np' , ) _snake_case : int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Dict =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Tuple =["""input_ids""", """attention_mask"""] a_ : Dict =RobertaTokenizer def __init__( self : List[str] , UpperCamelCase : List[Any]=None , UpperCamelCase : Any=None , UpperCamelCase : Tuple=None , UpperCamelCase : List[Any]="replace" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : Any="</s>" , UpperCamelCase : Union[str, Any]="</s>" , UpperCamelCase : List[Any]="<s>" , UpperCamelCase : int="<unk>" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : Tuple="<mask>" , UpperCamelCase : Dict=False , UpperCamelCase : str=True , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase , **UpperCamelCase , ) _snake_case : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCamelCase ) != add_prefix_space: _snake_case : List[Any] = getattr(UpperCamelCase , pre_tok_state.pop('type' ) ) _snake_case : List[str] = add_prefix_space _snake_case : Union[str, Any] = pre_tok_class(**UpperCamelCase ) _snake_case : str = add_prefix_space _snake_case : str = 'post_processor' _snake_case : str = getattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) if tokenizer_component_instance: _snake_case : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case : Optional[int] = tuple(state['sep'] ) if "cls" in state: _snake_case : Any = tuple(state['cls'] ) _snake_case : Optional[Any] = False if state.get('add_prefix_space' , UpperCamelCase ) != add_prefix_space: _snake_case : Union[str, Any] = add_prefix_space _snake_case : Any = True if state.get('trim_offsets' , UpperCamelCase ) != trim_offsets: _snake_case : Union[str, Any] = trim_offsets _snake_case : Optional[Any] = True if changes_to_apply: _snake_case : int = getattr(UpperCamelCase , state.pop('type' ) ) _snake_case : Any = component_class(**UpperCamelCase ) setattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else value _snake_case : Tuple = value def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = kwargs.get('is_split_into_words' , UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = kwargs.get('is_split_into_words' , UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Any = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[Any]=None ): '''simple docstring''' _snake_case : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Any = [self.sep_token_id] _snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
def lowerCamelCase_ ( lowerCAmelCase: float )-> float: return 10 - x * x def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowerCAmelCase ) * equation(lowerCAmelCase ) >= 0: raise ValueError('Wrong space!' ) _snake_case : Optional[int] = a while (b - a) >= 0.0_1: # Find middle point _snake_case : Any = (a + b) / 2 # Check if middle point is root if equation(lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCAmelCase ) * equation(lowerCAmelCase ) < 0: _snake_case : Optional[Any] = c else: _snake_case : Optional[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCAmelCase_ = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ lowerCAmelCase_ = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ lowerCAmelCase_ = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ lowerCAmelCase_ = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ lowerCAmelCase_ = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : str=[1, 10, 1_00] , UpperCamelCase : Optional[int]=4 , UpperCamelCase : str=3.0 ): '''simple docstring''' if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=UpperCamelCase ) as executor: _snake_case : Tuple = [] _snake_case : Optional[Any] = Counter() _snake_case : Any = 0 _snake_case : int = defaultdict(UpperCamelCase ) for task_id, (candidates, test_case) in enumerate(zip(UpperCamelCase , UpperCamelCase ) ): for candidate in candidates: _snake_case : Optional[Any] = candidate + '\n' + test_case _snake_case : Tuple = (test_program, timeout, task_id, completion_id[task_id]) _snake_case : Any = executor.submit(UpperCamelCase , *UpperCamelCase ) futures.append(UpperCamelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCamelCase ): _snake_case : str = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _snake_case , _snake_case : List[Any] = [], [] for result in results.values(): result.sort() _snake_case : Union[str, Any] = [r[1]['passed'] for r in result] total.append(len(UpperCamelCase ) ) correct.append(sum(UpperCamelCase ) ) _snake_case : Dict = np.array(UpperCamelCase ) _snake_case : List[str] = np.array(UpperCamelCase ) _snake_case : Optional[Any] = k _snake_case : Optional[Any] = {f"""pass@{k}""": estimate_pass_at_k(UpperCamelCase , UpperCamelCase , UpperCamelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> int: def estimator(lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = itertools.repeat(lowerCAmelCase , len(lowerCAmelCase ) ) else: assert len(lowerCAmelCase ) == len(lowerCAmelCase ) _snake_case : Union[str, Any] = iter(lowerCAmelCase ) return np.array([estimator(int(lowerCAmelCase ) , int(lowerCAmelCase ) , lowerCAmelCase ) for n, c in zip(lowerCAmelCase , lowerCAmelCase )] )
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase_ = """__DUMMY_TRANSFORMERS_USER__""" lowerCAmelCase_ = """Dummy User""" lowerCAmelCase_ = """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""" lowerCAmelCase_ = """https://hub-ci.huggingface.co""" lowerCAmelCase_ = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCAmelCase_ = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCAmelCase_ = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> Union[str, Any]: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , lowerCAmelCase ) @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Any: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , lowerCAmelCase ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , lowerCAmelCase ) @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> List[Any]: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , lowerCAmelCase ) @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: str )-> List[Any]: HfFolder.save_token(lowerCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def lowerCamelCase_ ( )-> Tuple: return HfApi(endpoint=lowerCAmelCase ) @pytest.fixture(scope='session' ) def lowerCamelCase_ ( lowerCAmelCase: HfApi )-> List[str]: _snake_case : List[Any] = HfFolder.get_token() HfFolder.save_token(lowerCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCAmelCase ) @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: int )-> int: def _cleanup_repo(lowerCAmelCase: Tuple ): hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: @contextmanager def _temporary_repo(lowerCAmelCase: Dict ): try: yield repo_id finally: cleanup_repo(lowerCAmelCase ) return _temporary_repo @pytest.fixture(scope='session' ) def lowerCamelCase_ ( lowerCAmelCase: HfApi , lowerCAmelCase: Any , lowerCAmelCase: List[str] )-> Optional[int]: _snake_case : Dict = F"""repo_txt_data-{int(time.time() * 10E3 )}""" _snake_case : Optional[int] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type='dataset' , private=lowerCAmelCase ) hf_api.upload_file( token=lowerCAmelCase , path_or_fileobj=str(lowerCAmelCase ) , path_in_repo='data/text_data.txt' , repo_id=lowerCAmelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: List[str] , lowerCAmelCase: List[str] )-> str: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def lowerCamelCase_ ( lowerCAmelCase: HfApi , lowerCAmelCase: List[Any] , lowerCAmelCase: Any )-> List[str]: _snake_case : Dict = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" _snake_case : Any = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type='dataset' , private=lowerCAmelCase ) hf_api.upload_file( token=lowerCAmelCase , path_or_fileobj=str(lowerCAmelCase ) , path_in_repo='data.zip' , repo_id=lowerCAmelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> List[Any]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def lowerCamelCase_ ( lowerCAmelCase: HfApi , lowerCAmelCase: str , lowerCAmelCase: Optional[int] )-> int: _snake_case : Any = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" _snake_case : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type='dataset' , private=lowerCAmelCase ) hf_api.upload_file( token=lowerCAmelCase , path_or_fileobj=str(lowerCAmelCase ) , path_in_repo='data.zip' , repo_id=lowerCAmelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase , token=lowerCAmelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: Optional[int] )-> Dict: return hf_private_dataset_repo_zipped_img_data_
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ): '''simple docstring''' _snake_case : Any = {} def UpperCamelCase_ ( self : str ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCamelCase , ' -> ' , ' -> '.join([str(UpperCamelCase ) for j in self.vertex[i]] ) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase ) else: # else make a new vertex _snake_case : str = [to_vertex] def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : list ): '''simple docstring''' _snake_case : Union[str, Any] = True print(UpperCamelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : Collection[float] | None = None ): '''simple docstring''' if components is None: _snake_case : Optional[int] = [] _snake_case : str = list(UpperCamelCase ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.__components ) def __str__( self : Optional[int] ): '''simple docstring''' return "(" + ",".join(map(UpperCamelCase , self.__components ) ) + ")" def __add__( self : List[Any] , UpperCamelCase : Vector ): '''simple docstring''' _snake_case : Dict = len(self ) if size == len(UpperCamelCase ): _snake_case : str = [self.__components[i] + other.component(UpperCamelCase ) for i in range(UpperCamelCase )] return Vector(UpperCamelCase ) else: raise Exception('must have the same size' ) def __sub__( self : List[str] , UpperCamelCase : Vector ): '''simple docstring''' _snake_case : Optional[int] = len(self ) if size == len(UpperCamelCase ): _snake_case : List[str] = [self.__components[i] - other.component(UpperCamelCase ) for i in range(UpperCamelCase )] return Vector(UpperCamelCase ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Optional[int] , UpperCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : Dict , UpperCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : Union[str, Any] , UpperCamelCase : float | Vector ): '''simple docstring''' if isinstance(UpperCamelCase , (float, int) ): _snake_case : List[Any] = [c * other for c in self.__components] return Vector(UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ) and len(self ) == len(UpperCamelCase ): _snake_case : List[Any] = len(self ) _snake_case : Tuple = [self.__components[i] * other.component(UpperCamelCase ) for i in range(UpperCamelCase )] return sum(UpperCamelCase ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return Vector(self.__components ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : float ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _snake_case : str = value def UpperCamelCase_ ( self : str ): '''simple docstring''' if len(self.__components ) == 0: raise Exception('Vector is empty' ) _snake_case : Tuple = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase ) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Vector , UpperCamelCase : bool = False ): '''simple docstring''' _snake_case : List[Any] = self * other _snake_case : List[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowerCamelCase_ ( lowerCAmelCase: int )-> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) return Vector([0] * dimension ) def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , lowerCAmelCase )) _snake_case : Any = [0] * dimension _snake_case : str = 1 return Vector(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: Vector , lowerCAmelCase: Vector )-> Vector: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , (int, float) )) ) return x * scalar + y def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int )-> Vector: random.seed(lowerCAmelCase ) _snake_case : Any = [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : str , UpperCamelCase : list[list[float]] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _snake_case : Any = matrix _snake_case : Union[str, Any] = w _snake_case : Tuple = h def __str__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Union[str, Any] , UpperCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _snake_case : List[Any] = [] for i in range(self.__height ): _snake_case : int = [ self.__matrix[i][j] + other.component(UpperCamelCase , UpperCamelCase ) for j in range(self.__width ) ] matrix.append(UpperCamelCase ) return Matrix(UpperCamelCase , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : List[str] , UpperCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _snake_case : Any = [] for i in range(self.__height ): _snake_case : List[str] = [ self.__matrix[i][j] - other.component(UpperCamelCase , UpperCamelCase ) for j in range(self.__width ) ] matrix.append(UpperCamelCase ) return Matrix(UpperCamelCase , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : str , UpperCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : str , UpperCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : Union[str, Any] , UpperCamelCase : float | Vector ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): # matrix-vector if len(UpperCamelCase ) == self.__width: _snake_case : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): _snake_case : Tuple = [ self.__matrix[i][j] * other.component(UpperCamelCase ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase , sum(UpperCamelCase ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase , (int, float) ): # matrix-scalar _snake_case : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase , self.__width , self.__height ) return None def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.__height def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self.__width def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : float ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _snake_case : Union[str, Any] = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) _snake_case : Union[str, Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase ) ): _snake_case : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase_ ( self : Dict , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase , UpperCamelCase ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _snake_case : str = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase ) for y in range(self.__width ) ] return sum(UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: int )-> Matrix: _snake_case : list[list[float]] = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int )-> Matrix: random.seed(lowerCAmelCase ) _snake_case : list[list[float]] = [ [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") lowerCAmelCase_ = [file for file in filepaths if """ """ in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") lowerCAmelCase_ = [file for file in filepaths if """-""" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") lowerCAmelCase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") lowerCAmelCase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] =CodeGenTokenizer a_ : Optional[int] =CodeGenTokenizerFast a_ : Optional[int] =True a_ : Union[str, Any] ={"""add_prefix_space""": True} a_ : int =False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _snake_case : Any = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case : Optional[int] = {'unk_token': '<unk>'} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : int , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[Any] = 'lower newer' _snake_case : int = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Any = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : Any = 'lower newer' _snake_case : str = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case : List[Any] = tokenizer.tokenize(UpperCamelCase , add_prefix_space=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Any = tokens + [tokenizer.unk_token] _snake_case : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Any = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) _snake_case : Optional[int] = 'lower newer' # Testing tokenization _snake_case : Union[str, Any] = tokenizer.tokenize(UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids without special tokens _snake_case : Optional[Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : str = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids with special tokens _snake_case : Tuple = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) _snake_case : str = tokenizer.encode(UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing the unknown token _snake_case : Union[str, Any] = tokens + [rust_tokenizer.unk_token] _snake_case : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Dict=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # Simple input _snake_case : Union[str, Any] = 'This is a simple input' _snake_case : Dict = ['This is a simple input 1', 'This is a simple input 2'] _snake_case : Optional[Any] = ('This is a simple input', 'This is a pair') _snake_case : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _snake_case : Optional[int] = 'This is a simple input' _snake_case : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] _snake_case : int = ('This is a simple input', 'This is a pair') _snake_case : List[str] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _snake_case : Union[str, Any] = tokenizer.pad_token_id _snake_case : Any = tokenizer(UpperCamelCase , padding='max_length' , max_length=30 , return_tensors='np' ) _snake_case : Dict = tokenizer(UpperCamelCase , padding=UpperCamelCase , truncate=UpperCamelCase , return_tensors='np' ) _snake_case : Optional[Any] = tokenizer(*UpperCamelCase , padding='max_length' , max_length=60 , return_tensors='np' ) _snake_case : Optional[Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , truncate=UpperCamelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = '$$$' _snake_case : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCamelCase , add_bos_token=UpperCamelCase ) _snake_case : Tuple = 'This is a simple input' _snake_case : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _snake_case : List[Any] = tokenizer.bos_token_id _snake_case : int = tokenizer(UpperCamelCase ) _snake_case : Tuple = tokenizer(UpperCamelCase ) self.assertEqual(out_s.input_ids[0] , UpperCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _snake_case : Union[str, Any] = tokenizer.decode(out_s.input_ids ) _snake_case : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , UpperCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Dict = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) _snake_case : Any = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _snake_case : Optional[Any] = '\nif len_a > len_b: result = a\nelse: result = b' _snake_case : Optional[int] = tokenizer.encode(UpperCamelCase ) _snake_case : Optional[Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] _snake_case : Optional[Any] = tokenizer.decode(UpperCamelCase , truncate_before_pattern=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list[int] , lowerCAmelCase: int )-> list[list[int]]: _snake_case : list[list[int]] = [] _snake_case : list[int] = [] _snake_case : int = 0 _snake_case : Tuple = sum(lowerCAmelCase ) create_state_space_tree(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return result def lowerCamelCase_ ( lowerCAmelCase: list[int] , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: list[int] , lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , )-> None: if sum(lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase )) < max_sum: return if sum(lowerCAmelCase ) == max_sum: result.append(lowerCAmelCase ) return for index in range(lowerCAmelCase , len(lowerCAmelCase ) ): create_state_space_tree( lowerCAmelCase , lowerCAmelCase , index + 1 , [*path, nums[index]] , lowerCAmelCase , remaining_nums_sum - nums[index] , ) lowerCAmelCase_ = [3, 34, 4, 12, 5, 2] lowerCAmelCase_ = 9 lowerCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase_ = input("""Enter image url: """).strip() print(F"""Downloading image from {url} ...""") lowerCAmelCase_ = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase_ = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowerCAmelCase_ = requests.get(image_url).content lowerCAmelCase_ = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, """wb""") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
import collections import os import re from pathlib import Path lowerCAmelCase_ = """src/transformers""" # Matches is_xxx_available() lowerCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: lowerCAmelCase_ = re.compile(r"""^\s*else:""") def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> str: if _re_test_backend.search(lowerCAmelCase ) is None: return None _snake_case : Tuple = [b[0] for b in _re_backend.findall(lowerCAmelCase )] backends.sort() return "_and_".join(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> Optional[Any]: with open(lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case : int = f.readlines() _snake_case : List[str] = 0 while line_index < len(lowerCAmelCase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure _snake_case : Union[str, Any] = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: _snake_case : Union[str, Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase ): _snake_case : int = _re_one_line_import_struct.search(lowerCAmelCase ).groups()[0] _snake_case : Any = re.findall(R'\[([^\]]+)\]' , lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue _snake_case : List[Any] = _re_import_struct_key_value.search(lowerCAmelCase ) if single_line_import_search is not None: _snake_case : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowerCAmelCase ) > 0] objects.extend(lowerCAmelCase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 _snake_case : Optional[int] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. _snake_case : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): _snake_case : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase ) is not None: _snake_case : Optional[int] = _re_import_struct_add_many.search(lowerCAmelCase ).groups()[0].split(', ' ) _snake_case : Optional[int] = [obj[1:-1] for obj in imports if len(lowerCAmelCase ) > 0] objects.extend(lowerCAmelCase ) elif _re_between_brackets.search(lowerCAmelCase ) is not None: _snake_case : str = _re_between_brackets.search(lowerCAmelCase ).groups()[0].split(', ' ) _snake_case : int = [obj[1:-1] for obj in imports if len(lowerCAmelCase ) > 0] objects.extend(lowerCAmelCase ) elif _re_quote_object.search(lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 _snake_case : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _snake_case : str = [] while ( line_index < len(lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): _snake_case : str = lines[line_index] _snake_case : List[Any] = _re_import.search(lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 _snake_case : Dict = {'none': objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. _snake_case : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): _snake_case : List[str] = lines[line_index] _snake_case : str = _re_import.search(lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 _snake_case : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Optional[int]: def find_duplicates(lowerCAmelCase: Any ): return [k for k, v in collections.Counter(lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _snake_case : Optional[int] = [] for key in import_dict_objects.keys(): _snake_case : str = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) _snake_case : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _snake_case : Tuple = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def lowerCamelCase_ ( )-> Optional[Any]: _snake_case : Optional[int] = [] for root, _, files in os.walk(lowerCAmelCase ): if "__init__.py" in files: _snake_case : Any = os.path.join(lowerCAmelCase , '__init__.py' ) _snake_case : Dict = parse_init(lowerCAmelCase ) if objects is not None: _snake_case : Optional[Any] = analyze_results(*lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _snake_case : List[str] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(lowerCAmelCase ) ) if len(lowerCAmelCase ) > 0: raise ValueError('\n\n'.join(lowerCAmelCase ) ) def lowerCamelCase_ ( )-> Dict: _snake_case : Union[str, Any] = [] for path, directories, files in os.walk(lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase ) / folder).glob('*.py' ) ) ) == 0: continue _snake_case : Union[str, Any] = str((Path(lowerCAmelCase ) / folder).relative_to(lowerCAmelCase ) ) _snake_case : Dict = short_path.replace(os.path.sep , '.' ) submodules.append(lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue _snake_case : Any = str((Path(lowerCAmelCase ) / fname).relative_to(lowerCAmelCase ) ) _snake_case : Optional[Any] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowerCAmelCase ) return submodules lowerCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def lowerCamelCase_ ( )-> Optional[int]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _snake_case : Dict = direct_transformers_import(lowerCAmelCase ) _snake_case : Any = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCAmelCase , '__init__.py' ) , 'r' ) as f: _snake_case : Union[str, Any] = f.read() import_structure_keys.update(set(re.findall(R'import_structure\[\"([^\"]*)\"\]' , lowerCAmelCase ) ) ) _snake_case : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCAmelCase ) > 0: _snake_case : str = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("""T""") lowerCAmelCase_ = TypeVar("""U""") class _lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : T | None , UpperCamelCase : U | None ): '''simple docstring''' _snake_case : Optional[Any] = key _snake_case : List[Any] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self : Union[str, Any] ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : str ): '''simple docstring''' _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) _snake_case , _snake_case : List[str] = self.rear, self.head def __repr__( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = ['DoubleLinkedList'] _snake_case : Dict = self.head while node.next is not None: rep.append(str(UpperCamelCase ) ) _snake_case : Dict = node.next rep.append(str(self.rear ) ) return ",\n ".join(UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' _snake_case : str = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Tuple = node _snake_case : int = previous _snake_case : int = node _snake_case : int = self.rear def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None _snake_case : str = node.next _snake_case : List[str] = node.prev _snake_case : Union[str, Any] = None _snake_case : Optional[int] = None return node class _lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' a_ : dict[Callable[[T], U], LRUCache[T, U]] ={} def __init__( self : List[Any] , UpperCamelCase : int ): '''simple docstring''' _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Dict = capacity _snake_case : Tuple = 0 _snake_case : Optional[Any] = 0 _snake_case : Optional[Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Dict ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : List[str] , UpperCamelCase : T ): '''simple docstring''' return key in self.cache def UpperCamelCase_ ( self : Any , UpperCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Dict = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(UpperCamelCase ) return node.val self.miss += 1 return None def UpperCamelCase_ ( self : int , UpperCamelCase : T , UpperCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(UpperCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Any = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : str , UpperCamelCase : int = 1_28 ): '''simple docstring''' def cache_decorator_inner(UpperCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*UpperCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Union[str, Any] = LRUCache(UpperCamelCase ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Any = func(*UpperCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , UpperCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(UpperCamelCase , 'cache_info' , UpperCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] lowerCAmelCase_ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] lowerCAmelCase_ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): lowerCAmelCase_ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : str =["""image_processor""", """tokenizer"""] a_ : Union[str, Any] ="""BlipImageProcessor""" a_ : Dict ="""AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) # add QFormer tokenizer _snake_case : Optional[int] = qformer_tokenizer def __call__( self : Dict , UpperCamelCase : ImageInput = None , UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _snake_case : List[Any] = BatchFeature() if text is not None: _snake_case : List[Any] = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) encoding.update(UpperCamelCase ) _snake_case : str = self.qformer_tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) _snake_case : List[str] = qformer_text_encoding.pop('input_ids' ) _snake_case : Optional[Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase ) encoding.update(UpperCamelCase ) return encoding def UpperCamelCase_ ( self : Dict , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Dict = self.tokenizer.model_input_names _snake_case : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] , **UpperCamelCase : str ): '''simple docstring''' if os.path.isfile(UpperCamelCase ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) _snake_case : Any = os.path.join(UpperCamelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(UpperCamelCase ) return super().save_pretrained(UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Tuple , UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained(UpperCamelCase , subfolder='qformer_tokenizer' ) _snake_case : str = cls._get_arguments_from_pretrained(UpperCamelCase , **UpperCamelCase ) args.append(UpperCamelCase ) return cls(*UpperCamelCase )
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Any=13 , UpperCamelCase : int=7 , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : int=True , UpperCamelCase : Any=True , UpperCamelCase : Optional[int]=99 , UpperCamelCase : List[str]=16 , UpperCamelCase : Any=36 , UpperCamelCase : int=6 , UpperCamelCase : Optional[Any]=6 , UpperCamelCase : Union[str, Any]=6 , UpperCamelCase : int=37 , UpperCamelCase : Any="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=5_12 , UpperCamelCase : str=16 , UpperCamelCase : Dict=2 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Any=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Any=None , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Dict = batch_size _snake_case : List[Any] = seq_length _snake_case : Optional[int] = is_training _snake_case : Optional[Any] = use_input_mask _snake_case : Any = use_token_type_ids _snake_case : List[str] = use_labels _snake_case : str = vocab_size _snake_case : Dict = embedding_size _snake_case : List[Any] = hidden_size _snake_case : str = num_hidden_layers _snake_case : Any = num_hidden_groups _snake_case : Tuple = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : Optional[Any] = type_vocab_size _snake_case : Tuple = type_sequence_label_size _snake_case : Optional[Any] = initializer_range _snake_case : Any = num_labels _snake_case : str = num_choices _snake_case : Union[str, Any] = scope def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Tuple = None if self.use_input_mask: _snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Any = None if self.use_token_type_ids: _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : str = None _snake_case : int = None _snake_case : Optional[int] = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AlbertModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase ) _snake_case : Union[str, Any] = model(UpperCamelCase , token_type_ids=UpperCamelCase ) _snake_case : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = AlbertForPreTraining(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : int = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , sentence_order_label=UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = AlbertForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Union[str, Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[str] = AlbertForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Tuple = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Any = self.num_labels _snake_case : Optional[Any] = AlbertForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : int = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Dict = self.num_labels _snake_case : Optional[Any] = AlbertForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Tuple = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Optional[Any] = self.num_choices _snake_case : Dict = AlbertForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Optional[int] = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : str = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[str] = config_and_inputs _snake_case : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a_ : Dict =( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) a_ : List[str] =True def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Tuple=False ): '''simple docstring''' _snake_case : int = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class in get_values(UpperCamelCase ): _snake_case : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase ) _snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : str = AlbertModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case : int = type self.model_tester.create_and_check_model(*UpperCamelCase ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = AlbertModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = AlbertModel.from_pretrained('albert-base-v2' ) _snake_case : Optional[int] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _snake_case : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : Optional[Any] = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] _snake_case : Union[str, Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCamelCase ) _snake_case : List[str] = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) )
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] ="""xlm-roberta""" def __init__( self : str , UpperCamelCase : str=3_05_22 , UpperCamelCase : str=7_68 , UpperCamelCase : List[str]=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[str]=30_72 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=5_12 , UpperCamelCase : Any=2 , UpperCamelCase : int=0.02 , UpperCamelCase : Union[str, Any]=1e-1_2 , UpperCamelCase : Optional[int]=1 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : List[str]=2 , UpperCamelCase : List[str]="absolute" , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : List[Any] = vocab_size _snake_case : Dict = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : str = intermediate_size _snake_case : Dict = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : Optional[Any] = initializer_range _snake_case : Any = layer_norm_eps _snake_case : Union[str, Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : int = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any]=5 )-> int: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('<mask>' ) == 1 _snake_case : Any = torch.tensor(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ).unsqueeze(0 ) # Batch size 1 _snake_case : Optional[Any] = model(lowerCAmelCase )[0] # The last hidden-state is the first element of the output tuple _snake_case : Union[str, Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _snake_case : List[Any] = logits[0, masked_index, :] _snake_case : Tuple = logits.softmax(dim=0 ) _snake_case , _snake_case : Tuple = prob.topk(k=lowerCAmelCase , dim=0 ) _snake_case : List[Any] = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCAmelCase ) )] ) _snake_case : Tuple = tokenizer.mask_token _snake_case : List[Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): _snake_case : Dict = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(lowerCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(lowerCAmelCase ) , lowerCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCAmelCase , lowerCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCAmelCase_ = CamembertTokenizer.from_pretrained("""camembert-base""") lowerCAmelCase_ = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() lowerCAmelCase_ = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Image , lowerCAmelCase: float )-> Image: def brightness(lowerCAmelCase: int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowerCAmelCase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Any =GPTSwaTokenizer a_ : Dict =False a_ : Any =True a_ : Optional[int] =False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Union[str, Any] = GPTSwaTokenizer(UpperCamelCase , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : str = 'This is a test' _snake_case : Tuple = 'This is a test' return input_text, output_text def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = '<s>' _snake_case : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(UpperCamelCase ) , 20_00 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[Any] = GPTSwaTokenizer(UpperCamelCase ) _snake_case : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) _snake_case : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( UpperCamelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on _snake_case : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) _snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(UpperCamelCase ) # fmt: off self.assertListEqual( UpperCamelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = GPTSwaTokenizer(UpperCamelCase ) _snake_case : Tuple = ['This is a test', 'I was born in 92000, and this is falsé.'] _snake_case : Dict = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(UpperCamelCase , UpperCamelCase ): self.assertListEqual(tokenizer.encode_fast(UpperCamelCase ) , UpperCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(tokenizer.decode_fast(UpperCamelCase ) , UpperCamelCase ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off _snake_case : int = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='AI-Sweden/gpt-sw3-126m' , sequences=UpperCamelCase , )
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCAmelCase_ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import pytest lowerCAmelCase_ = """__dummy_dataset1__""" lowerCAmelCase_ = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowerCamelCase_ ( )-> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase_ ( )-> Dict: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: Any , lowerCAmelCase: Any )-> Optional[int]: _snake_case : List[Any] = dataset_loading_script_name _snake_case : List[Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=lowerCAmelCase ) _snake_case : int = script_dir / F"""{script_name}.py""" with open(lowerCAmelCase , 'w' ) as f: f.write(lowerCAmelCase ) return str(lowerCAmelCase )
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
import math def lowerCamelCase_ ( lowerCAmelCase: int )-> list[int]: _snake_case : str = [] _snake_case : Optional[int] = 2 _snake_case : int = int(math.sqrt(lowerCAmelCase ) ) # Size of every segment _snake_case : List[Any] = [True] * (end + 1) _snake_case : Dict = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase ) for i in range(start * start , end + 1 , lowerCAmelCase ): _snake_case : int = False start += 1 prime += in_prime _snake_case : Any = end + 1 _snake_case : int = min(2 * end , lowerCAmelCase ) while low <= n: _snake_case : List[str] = [True] * (high - low + 1) for each in in_prime: _snake_case : List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase , high + 1 , lowerCAmelCase ): _snake_case : Tuple = False for j in range(len(lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) _snake_case : List[Any] = high + 1 _snake_case : Tuple = min(high + end , lowerCAmelCase ) return prime print(sieve(10**6))
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] ="""hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[int]=0 ): '''simple docstring''' _snake_case : str = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(UpperCamelCase ) ) _snake_case : Optional[Any] = np.random.RandomState(UpperCamelCase ) _snake_case : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Optional[Any] = self.get_dummy_inputs() _snake_case : Optional[int] = pipe(**UpperCamelCase ).images _snake_case : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) _snake_case : Optional[Any] = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Dict = self.get_dummy_inputs() _snake_case : Optional[int] = pipe(**UpperCamelCase ).images _snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case : Union[str, Any] = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # warmup pass to apply optimizations _snake_case : int = pipe(**self.get_dummy_inputs() ) _snake_case : List[Any] = self.get_dummy_inputs() _snake_case : Dict = pipe(**UpperCamelCase ).images _snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case : List[Any] = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[Any] = self.get_dummy_inputs() _snake_case : List[str] = pipe(**UpperCamelCase ).images _snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case : Optional[Any] = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Any = self.get_dummy_inputs() _snake_case : List[Any] = pipe(**UpperCamelCase ).images _snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case : Any = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Union[str, Any] = self.get_dummy_inputs() _snake_case : Optional[int] = pipe(**UpperCamelCase ).images _snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case : Optional[Any] = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : int = ort.SessionOptions() _snake_case : str = False return options def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _snake_case : List[Any] = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default _snake_case : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Any = 'A fantasy landscape, trending on artstation' _snake_case : int = np.random.RandomState(0 ) _snake_case : Optional[int] = pipe( prompt=UpperCamelCase , image=UpperCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase , output_type='np' , ) _snake_case : int = output.images _snake_case : Any = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _snake_case : List[Any] = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _snake_case : Any = init_image.resize((7_68, 5_12) ) _snake_case : Optional[int] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _snake_case : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Optional[int] = 'A fantasy landscape, trending on artstation' _snake_case : Any = np.random.RandomState(0 ) _snake_case : List[str] = pipe( prompt=UpperCamelCase , image=UpperCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCamelCase , output_type='np' , ) _snake_case : int = output.images _snake_case : Tuple = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _snake_case : Union[str, Any] = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] ="""perceiver""" def __init__( self : Dict , UpperCamelCase : int=2_56 , UpperCamelCase : str=12_80 , UpperCamelCase : List[str]=7_68 , UpperCamelCase : Tuple=1 , UpperCamelCase : Optional[int]=26 , UpperCamelCase : Tuple=8 , UpperCamelCase : Dict=8 , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , UpperCamelCase : List[Any]="kv" , UpperCamelCase : List[Any]=1 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : int=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : List[str]=True , UpperCamelCase : Any=2_62 , UpperCamelCase : Any=20_48 , UpperCamelCase : Optional[Any]=56 , UpperCamelCase : Any=[3_68, 4_96] , UpperCamelCase : List[Any]=16 , UpperCamelCase : List[str]=19_20 , UpperCamelCase : int=16 , UpperCamelCase : Any=[1, 16, 2_24, 2_24] , **UpperCamelCase : Tuple , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Optional[int] = num_latents _snake_case : str = d_latents _snake_case : Dict = d_model _snake_case : Optional[int] = num_blocks _snake_case : int = num_self_attends_per_block _snake_case : Optional[int] = num_self_attention_heads _snake_case : Tuple = num_cross_attention_heads _snake_case : Tuple = qk_channels _snake_case : List[str] = v_channels _snake_case : int = cross_attention_shape_for_attention _snake_case : Union[str, Any] = self_attention_widening_factor _snake_case : Tuple = cross_attention_widening_factor _snake_case : List[str] = hidden_act _snake_case : str = attention_probs_dropout_prob _snake_case : Optional[Any] = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : Optional[int] = use_query_residual # masked language modeling attributes _snake_case : Tuple = vocab_size _snake_case : Optional[Any] = max_position_embeddings # image classification attributes _snake_case : Union[str, Any] = image_size # flow attributes _snake_case : str = train_size # multimodal autoencoding attributes _snake_case : int = num_frames _snake_case : List[Any] = audio_samples_per_frame _snake_case : int = samples_per_patch _snake_case : List[str] = output_shape class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return 1e-4 def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , UpperCamelCase : int = 3 , UpperCamelCase : int = 40 , UpperCamelCase : int = 40 , ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : Tuple = compute_effective_axis_dimension( UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case : List[str] = preprocessor.num_special_tokens_to_add(UpperCamelCase ) _snake_case : Union[str, Any] = compute_effective_axis_dimension( UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence _snake_case : List[str] = [' '.join(['a'] ) * seq_length] * batch_size _snake_case : List[Any] = dict(preprocessor(UpperCamelCase , return_tensors=UpperCamelCase ) ) _snake_case : List[str] = inputs.pop('input_ids' ) return inputs elif isinstance(UpperCamelCase , UpperCamelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : Optional[int] = compute_effective_axis_dimension(UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) _snake_case : Optional[int] = self._generate_dummy_images(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : Any = dict(preprocessor(images=UpperCamelCase , return_tensors=UpperCamelCase ) ) _snake_case : Optional[Any] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
def lowerCamelCase_ ( lowerCAmelCase: int = 1_00 )-> int: _snake_case : str = n * (n + 1) * (2 * n + 1) / 6 _snake_case : int = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase_ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple , lowerCAmelCase: Tuple )-> Union[str, Any]: for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _snake_case : Union[str, Any] = 'lm_head' _snake_case : str = getattr(lowerCAmelCase , lowerCAmelCase ) if weight_type is not None: _snake_case : Tuple = getattr(lowerCAmelCase , lowerCAmelCase ).shape else: _snake_case : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _snake_case : List[Any] = value elif weight_type == "weight_g": _snake_case : List[Any] = value elif weight_type == "weight_v": _snake_case : str = value elif weight_type == "bias": _snake_case : List[Any] = value else: _snake_case : Tuple = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[str] , lowerCAmelCase: Any )-> int: _snake_case : str = [] _snake_case : str = fairseq_model.state_dict() _snake_case : Tuple = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) _snake_case : List[Any] = True else: for key, mapped_key in MAPPING.items(): _snake_case : Any = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _snake_case : Optional[int] = True if "*" in mapped_key: _snake_case : List[Any] = name.split(lowerCAmelCase )[0].split('.' )[-2] _snake_case : Optional[Any] = mapped_key.replace('*' , lowerCAmelCase ) if "weight_g" in name: _snake_case : Optional[Any] = 'weight_g' elif "weight_v" in name: _snake_case : Dict = 'weight_v' elif "bias" in name: _snake_case : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case : List[str] = 'weight' else: _snake_case : Optional[int] = None set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: Tuple , lowerCAmelCase: Optional[Any] )-> Union[str, Any]: _snake_case : Optional[Any] = full_name.split('conv_layers.' )[-1] _snake_case : Dict = name.split('.' ) _snake_case : List[Any] = int(items[0] ) _snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _snake_case : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _snake_case : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _snake_case : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _snake_case : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: str=None , lowerCAmelCase: Any=True )-> int: if config_path is not None: _snake_case : Any = UniSpeechConfig.from_pretrained(lowerCAmelCase ) else: _snake_case : Union[str, Any] = UniSpeechConfig() if is_finetuned: if dict_path: _snake_case : Any = Dictionary.load_from_json(lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : Union[str, Any] = target_dict.pad_index _snake_case : str = target_dict.bos_index _snake_case : Dict = target_dict.eos_index _snake_case : Optional[Any] = len(target_dict.symbols ) _snake_case : Tuple = os.path.join(lowerCAmelCase , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase ) ) return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched _snake_case : Union[str, Any] = 42 _snake_case : List[str] = 43 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase , lowerCAmelCase ) _snake_case : Optional[Any] = WavaVecaPhonemeCTCTokenizer( lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase , ) _snake_case : List[str] = True if config.feat_extract_norm == 'layer' else False _snake_case : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) _snake_case : Union[str, Any] = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) _snake_case : Dict = UniSpeechForCTC(lowerCAmelCase ) else: _snake_case : Dict = UniSpeechForPreTraining(lowerCAmelCase ) if is_finetuned: _snake_case , _snake_case , _snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: _snake_case , _snake_case , _snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _snake_case : Tuple = model[0].eval() recursively_load_weights(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) hf_unispeech.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCAmelCase_ = Mapping[str, np.ndarray] lowerCAmelCase_ = Mapping[str, Any] # Is a nested dict. lowerCAmelCase_ = 0.01 @dataclasses.dataclass(frozen=UpperCAmelCase_ ) class _lowerCAmelCase : '''simple docstring''' a_ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. a_ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. a_ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. a_ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. a_ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions a_ : Optional[np.ndarray] =None # Optional remark about the protein. Included as a comment in output PDB # files a_ : Optional[str] =None # Templates used to generate this protein (prediction-only) a_ : Optional[Sequence[str]] =None # Chain corresponding to each parent a_ : Optional[Sequence[int]] =None def lowerCamelCase_ ( lowerCAmelCase: str )-> Protein: _snake_case : List[Any] = R'(\[[A-Z]+\]\n)' _snake_case : List[str] = [tag.strip() for tag in re.split(lowerCAmelCase , lowerCAmelCase ) if len(lowerCAmelCase ) > 0] _snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) _snake_case : List[str] = ["N", "CA", "C"] _snake_case : List[Any] = None _snake_case : Tuple = None _snake_case : Dict = None for g in groups: if "[PRIMARY]" == g[0]: _snake_case : Optional[Any] = g[1][0].strip() for i in range(len(lowerCAmelCase ) ): if seq[i] not in residue_constants.restypes: _snake_case : int = 'X' # FIXME: strings are immutable _snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(lowerCAmelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(lowerCAmelCase , g[1][axis].split() ) ) ) _snake_case : Optional[int] = np.array(lowerCAmelCase ) _snake_case : Dict = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase ): _snake_case : List[Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _snake_case : List[Any] = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) _snake_case : Union[str, Any] = np.zeros( ( len(lowerCAmelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase ): _snake_case : Optional[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowerCAmelCase , atom_mask=lowerCAmelCase , aatype=lowerCAmelCase , residue_index=np.arange(len(lowerCAmelCase ) ) , b_factors=lowerCAmelCase , ) def lowerCamelCase_ ( lowerCAmelCase: Protein , lowerCAmelCase: int = 0 )-> List[str]: _snake_case : List[str] = [] _snake_case : Dict = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) _snake_case : str = prot.parents _snake_case : Optional[Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _snake_case : Union[str, Any] = [p for i, p in zip(lowerCAmelCase , lowerCAmelCase ) if i == chain_id] if parents is None or len(lowerCAmelCase ) == 0: _snake_case : Optional[int] = ['N/A'] pdb_headers.append(F"""PARENT {' '.join(lowerCAmelCase )}""" ) return pdb_headers def lowerCamelCase_ ( lowerCAmelCase: Protein , lowerCAmelCase: str )-> str: _snake_case : List[str] = [] _snake_case : Union[str, Any] = pdb_str.split('\n' ) _snake_case : Any = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) _snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _snake_case : Any = [] if prot.parents_chain_index is not None: _snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowerCAmelCase ) , [] ) parent_dict[str(lowerCAmelCase )].append(lowerCAmelCase ) _snake_case : Any = max([int(lowerCAmelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _snake_case : List[Any] = parent_dict.get(str(lowerCAmelCase ) , ['N/A'] ) parents_per_chain.append(lowerCAmelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _snake_case : Optional[Any] = [['N/A']] def make_parent_line(lowerCAmelCase: Sequence[str] ) -> str: return F"""PARENT {' '.join(lowerCAmelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _snake_case : Optional[int] = 0 for i, l in enumerate(lowerCAmelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowerCAmelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowerCAmelCase ): _snake_case : int = parents_per_chain[chain_counter] else: _snake_case : Dict = ['N/A'] out_pdb_lines.append(make_parent_line(lowerCAmelCase ) ) return "\n".join(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Protein )-> str: _snake_case : int = residue_constants.restypes + ['X'] def res_atoa(lowerCAmelCase: int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) _snake_case : str = residue_constants.atom_types _snake_case : List[str] = [] _snake_case : Any = prot.atom_mask _snake_case : Optional[int] = prot.aatype _snake_case : str = prot.atom_positions _snake_case : Tuple = prot.residue_index.astype(np.intaa ) _snake_case : List[str] = prot.b_factors _snake_case : Dict = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) _snake_case : Any = get_pdb_headers(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: pdb_lines.extend(lowerCAmelCase ) _snake_case : Optional[Any] = aatype.shape[0] _snake_case : Optional[Any] = 1 _snake_case : Union[str, Any] = 0 _snake_case : int = string.ascii_uppercase _snake_case : str = None # Add all atom sites. for i in range(lowerCAmelCase ): _snake_case : Dict = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowerCAmelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _snake_case : Optional[Any] = 'ATOM' _snake_case : Tuple = atom_name if len(lowerCAmelCase ) == 4 else F""" {atom_name}""" _snake_case : Dict = '' _snake_case : Any = '' _snake_case : int = 1.0_0 _snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. _snake_case : List[str] = '' _snake_case : List[Any] = 'A' if chain_index is not None: _snake_case : List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _snake_case : str = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(lowerCAmelCase ) atom_index += 1 _snake_case : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _snake_case : str = True _snake_case : Optional[Any] = chain_index[i + 1] if should_terminate: # Close the chain. _snake_case : int = 'TER' _snake_case : List[str] = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(lowerCAmelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowerCAmelCase , lowerCAmelCase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Protein )-> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase_ ( lowerCAmelCase: FeatureDict , lowerCAmelCase: ModelOutput , lowerCAmelCase: Optional[np.ndarray] = None , lowerCAmelCase: Optional[np.ndarray] = None , lowerCAmelCase: Optional[str] = None , lowerCAmelCase: Optional[Sequence[str]] = None , lowerCAmelCase: Optional[Sequence[int]] = None , )-> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=lowerCAmelCase , remark=lowerCAmelCase , parents=lowerCAmelCase , parents_chain_index=lowerCAmelCase , )
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : List[str] =PegasusTokenizer a_ : List[Any] =PegasusTokenizerFast a_ : List[Any] =True a_ : List[str] =True def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : str = PegasusTokenizer(UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self : int ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def UpperCamelCase_ ( self : int , **UpperCamelCase : int ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = '</s>' _snake_case : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(UpperCamelCase ) , 11_03 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _snake_case : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _snake_case : List[str] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) _snake_case : Dict = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase , add_special_tokens=UpperCamelCase ).input_ids[0] _snake_case : str = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase , add_special_tokens=UpperCamelCase ).input_ids[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _snake_case : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' _snake_case : Any = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _snake_case : Optional[int] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase ).input_ids[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Dict = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _snake_case : int = 'To ensure a smooth flow of bank resolutions.' _snake_case : str = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _snake_case : Optional[int] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase ).input_ids[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = ['This is going to be way too long.' * 1_50, 'short example'] _snake_case : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] _snake_case : Dict = self._large_tokenizer(UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors='pt' ) _snake_case : Dict = self._large_tokenizer( text_target=UpperCamelCase , max_length=5 , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase ) == 2 # input_ids, attention_mask. @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : str = {'input_ids': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : List[Any] =PegasusTokenizer a_ : Optional[Any] =PegasusTokenizerFast a_ : Tuple =True a_ : int =True def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : str = PegasusTokenizer(UpperCamelCase , offset=0 , mask_token_sent=UpperCamelCase , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self : int ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def UpperCamelCase_ ( self : Dict , **UpperCamelCase : List[str] ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _snake_case : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _snake_case : str = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) _snake_case : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase , add_special_tokens=UpperCamelCase ).input_ids[0] _snake_case : List[Any] = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase , add_special_tokens=UpperCamelCase ).input_ids[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = ['This is going to be way too long.' * 10_00, 'short example'] _snake_case : Any = ['not super long but more than 5 tokens', 'tiny'] _snake_case : Optional[Any] = self._large_tokenizer(UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors='pt' ) _snake_case : Dict = self._large_tokenizer( text_target=UpperCamelCase , max_length=5 , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase ) == 2 # input_ids, attention_mask. def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) _snake_case : Optional[Any] = self._large_tokenizer(UpperCamelCase ).input_ids self.assertListEqual( UpperCamelCase , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
import math import flax.linen as nn import jax.numpy as jnp def lowerCamelCase_ ( lowerCAmelCase: jnp.ndarray , lowerCAmelCase: int , lowerCAmelCase: float = 1 , lowerCAmelCase: float = 1 , lowerCAmelCase: float = 1.0E4 , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1.0 , )-> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" _snake_case : Dict = float(embedding_dim // 2 ) _snake_case : Any = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _snake_case : List[Any] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) _snake_case : List[str] = jnp.expand_dims(lowerCAmelCase , 1 ) * jnp.expand_dims(lowerCAmelCase , 0 ) # scale embeddings _snake_case : Dict = scale * emb if flip_sin_to_cos: _snake_case : Optional[int] = jnp.concatenate([jnp.cos(lowerCAmelCase ), jnp.sin(lowerCAmelCase )] , axis=1 ) else: _snake_case : Any = jnp.concatenate([jnp.sin(lowerCAmelCase ), jnp.cos(lowerCAmelCase )] , axis=1 ) _snake_case : Optional[int] = jnp.reshape(lowerCAmelCase , [jnp.shape(lowerCAmelCase )[0], embedding_dim] ) return signal class _lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ : int =32 a_ : jnp.dtype =jnp.floataa @nn.compact def __call__( self : int , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(UpperCamelCase ) _snake_case : Optional[int] = nn.silu(UpperCamelCase ) _snake_case : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(UpperCamelCase ) return temb class _lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ : int =32 a_ : bool =False a_ : float =1 @nn.compact def __call__( self : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' return get_sinusoidal_embeddings( UpperCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: int , lowerCAmelCase: Tuple )-> List[Any]: _snake_case : Optional[int] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase , lowerCAmelCase ) _snake_case : Dict = a[end] _snake_case : Union[str, Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) count += _in_place_quick_sort(lowerCAmelCase , lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase , p + 1 , lowerCAmelCase ) return count def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: List[str] , lowerCAmelCase: List[Any] )-> Optional[Any]: _snake_case : Optional[int] = 0 _snake_case : Optional[Any] = randint(lowerCAmelCase , lowerCAmelCase ) _snake_case : Dict = a[end] _snake_case : Tuple = a[pivot] _snake_case : int = temp _snake_case : int = start - 1 for index in range(lowerCAmelCase , lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : List[Any] = new_pivot_index + 1 _snake_case : Union[str, Any] = a[new_pivot_index] _snake_case : Any = a[index] _snake_case : int = temp _snake_case : Union[str, Any] = a[new_pivot_index + 1] _snake_case : Dict = a[end] _snake_case : Optional[Any] = temp return new_pivot_index + 1, count lowerCAmelCase_ = TemporaryFile() lowerCAmelCase_ = 100 # 1000 elements are to be sorted lowerCAmelCase_ , lowerCAmelCase_ = 0, 1 # mean and standard deviation lowerCAmelCase_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array lowerCAmelCase_ = np.load(outfile) lowerCAmelCase_ = len(M) - 1 lowerCAmelCase_ = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase_ = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[str] )-> int: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> Union[str, Any]: config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] )-> Any: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? _snake_case : Optional[int] = tmp_path_factory.getbasetemp() / 'cache' _snake_case : Dict = test_hf_cache_home / 'datasets' _snake_case : List[Any] = test_hf_cache_home / 'metrics' _snake_case : Dict = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(lowerCAmelCase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(lowerCAmelCase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(lowerCAmelCase ) ) _snake_case : Optional[int] = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(lowerCAmelCase ) ) _snake_case : Optional[Any] = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(lowerCAmelCase ) ) @pytest.fixture(autouse=lowerCAmelCase , scope='session' ) def lowerCamelCase_ ( )-> Union[str, Any]: datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Optional[Any]: # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , lowerCAmelCase ) @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: int )-> Union[str, Any]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , lowerCAmelCase )
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase , UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = load_tool('text-classification' ) self.tool.setup() _snake_case : Union[str, Any] = load_tool('text-classification' , remote=UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(UpperCamelCase , 'positive' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(UpperCamelCase , 'positive' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(UpperCamelCase , 'positive' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(UpperCamelCase , 'positive' )
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCAmelCase_ = re.compile(r"""\s+""") def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Dict: return {"hash": hashlib.mda(re.sub(lowerCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Optional[int]: _snake_case : Optional[int] = [len(lowerCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowerCAmelCase ), "line_max": max(lowerCAmelCase )} def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> int: _snake_case : str = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] )-> int: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str=5 )-> List[str]: _snake_case : Dict = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case : Dict = example['content'].splitlines() for _, line in zip(range(lowerCAmelCase ) , lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Any=5 , lowerCAmelCase: List[Any]=0.0_5 )-> List[str]: _snake_case : Tuple = ['unit tests', 'test file', 'configuration file'] _snake_case : Any = example['content'].splitlines() _snake_case : List[str] = 0 _snake_case : Tuple = 0 # first test for _, line in zip(range(lowerCAmelCase ) , lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case : List[str] = example['content'].count('\n' ) _snake_case : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_ ( lowerCAmelCase: int )-> Dict: _snake_case : str = ['def ', 'class ', 'for ', 'while '] _snake_case : List[Any] = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict=4 )-> int: _snake_case : Tuple = example['content'].splitlines() _snake_case : Optional[int] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_ ( lowerCAmelCase: int )-> List[str]: _snake_case : int = tokenizer(example['content'] , truncation=lowerCAmelCase )['input_ids'] _snake_case : int = len(example['content'] ) / len(lowerCAmelCase ) return {"ratio": ratio} def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Dict: _snake_case : Optional[int] = {} results.update(get_hash(lowerCAmelCase ) ) results.update(line_stats(lowerCAmelCase ) ) results.update(alpha_stats(lowerCAmelCase ) ) results.update(char_token_ratio(lowerCAmelCase ) ) results.update(is_autogenerated(lowerCAmelCase ) ) results.update(is_config_or_test(lowerCAmelCase ) ) results.update(has_no_keywords(lowerCAmelCase ) ) results.update(has_few_assignments(lowerCAmelCase ) ) return results def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] )-> Dict: if not check_uniques(lowerCAmelCase , lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Any: with open(lowerCAmelCase , 'rb' ) as f_in: with gzip.open(str(lowerCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCAmelCase , lowerCAmelCase ) os.unlink(lowerCAmelCase ) # Settings lowerCAmelCase_ = HfArgumentParser(PreprocessingArguments) lowerCAmelCase_ = parser.parse_args() if args.num_workers is None: lowerCAmelCase_ = multiprocessing.cpu_count() lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCAmelCase_ = time.time() lowerCAmelCase_ = load_dataset(args.dataset_name, split="""train""") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowerCAmelCase_ = set(ds.unique("""hash""")) lowerCAmelCase_ = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCAmelCase_ = time.time() lowerCAmelCase_ , lowerCAmelCase_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowerCAmelCase_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) lowerCAmelCase_ = output_dir / """data""" data_dir.mkdir(exist_ok=True) lowerCAmelCase_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCAmelCase_ = str(data_dir / F"""file-{file_number+1:012}.json""") lowerCAmelCase_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""deformable_detr""" a_ : int ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[int] , UpperCamelCase : Any=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=3 , UpperCamelCase : Union[str, Any]=3_00 , UpperCamelCase : str=10_24 , UpperCamelCase : int=6 , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : List[str]=8 , UpperCamelCase : List[Any]=6 , UpperCamelCase : Union[str, Any]=10_24 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : str=True , UpperCamelCase : str="relu" , UpperCamelCase : Optional[Any]=2_56 , UpperCamelCase : str=0.1 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Optional[int]=1.0 , UpperCamelCase : str=True , UpperCamelCase : List[str]=False , UpperCamelCase : Any="sine" , UpperCamelCase : Tuple="resnet50" , UpperCamelCase : List[str]=True , UpperCamelCase : List[Any]=False , UpperCamelCase : Tuple=4 , UpperCamelCase : int=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : List[Any]=False , UpperCamelCase : Dict=3_00 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : str=5 , UpperCamelCase : str=2 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : str=1 , UpperCamelCase : str=5 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.25 , UpperCamelCase : Any=False , **UpperCamelCase : str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _snake_case : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : Dict = backbone_config.get('model_type' ) _snake_case : Tuple = CONFIG_MAPPING[backbone_model_type] _snake_case : int = config_class.from_dict(UpperCamelCase ) _snake_case : Union[str, Any] = use_timm_backbone _snake_case : Dict = backbone_config _snake_case : Optional[Any] = num_channels _snake_case : Any = num_queries _snake_case : List[Any] = max_position_embeddings _snake_case : Dict = d_model _snake_case : Optional[int] = encoder_ffn_dim _snake_case : Dict = encoder_layers _snake_case : Any = encoder_attention_heads _snake_case : List[Any] = decoder_ffn_dim _snake_case : Optional[int] = decoder_layers _snake_case : Any = decoder_attention_heads _snake_case : Tuple = dropout _snake_case : List[Any] = attention_dropout _snake_case : Optional[Any] = activation_dropout _snake_case : Tuple = activation_function _snake_case : Any = init_std _snake_case : List[str] = init_xavier_std _snake_case : Dict = encoder_layerdrop _snake_case : List[str] = auxiliary_loss _snake_case : Union[str, Any] = position_embedding_type _snake_case : Optional[Any] = backbone _snake_case : List[str] = use_pretrained_backbone _snake_case : Dict = dilation # deformable attributes _snake_case : Optional[int] = num_feature_levels _snake_case : Optional[Any] = encoder_n_points _snake_case : Union[str, Any] = decoder_n_points _snake_case : List[str] = two_stage _snake_case : Dict = two_stage_num_proposals _snake_case : Optional[Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _snake_case : str = class_cost _snake_case : List[str] = bbox_cost _snake_case : str = giou_cost # Loss coefficients _snake_case : str = mask_loss_coefficient _snake_case : Tuple = dice_loss_coefficient _snake_case : str = bbox_loss_coefficient _snake_case : str = giou_loss_coefficient _snake_case : List[Any] = eos_coefficient _snake_case : List[str] = focal_alpha _snake_case : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _snake_case : str = self.backbone_config.to_dict() _snake_case : List[str] = self.__class__.model_type return output
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""audio_values""", """audio_mask"""] def __init__( self : List[str] , UpperCamelCase : List[str]=20_48 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : Optional[Any]=[16, 16] , UpperCamelCase : Dict=1_28 , UpperCamelCase : str=4_41_00 , UpperCamelCase : List[str]=86 , UpperCamelCase : int=20_48 , UpperCamelCase : Tuple=0.0 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__( feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase , ) _snake_case : List[str] = spectrogram_length _snake_case : Optional[int] = num_channels _snake_case : List[Any] = patch_size _snake_case : List[Any] = feature_size // self.patch_size[1] _snake_case : Optional[Any] = n_fft _snake_case : Dict = sampling_rate // hop_length_to_sampling_rate _snake_case : Optional[int] = sampling_rate _snake_case : Any = padding_value _snake_case : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCamelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=UpperCamelCase , norm='slaney' , mel_scale='slaney' , ).T def UpperCamelCase_ ( self : int , UpperCamelCase : np.array ): '''simple docstring''' _snake_case : Any = spectrogram( UpperCamelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) _snake_case : List[str] = log_spec[:, :-1] _snake_case : Optional[Any] = log_spec - 20.0 _snake_case : Union[str, Any] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[bool] = True , UpperCamelCase : Optional[int] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , **UpperCamelCase : Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _snake_case : str = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _snake_case : Optional[int] = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): _snake_case : int = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _snake_case : List[Any] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCamelCase ): _snake_case : Union[str, Any] = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _snake_case : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _snake_case : Dict = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _snake_case : Optional[Any] = np.array(UpperCamelCase ).astype(np.floataa ) # convert into correct format for padding _snake_case : List[Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _snake_case : List[Any] = np.ones([len(UpperCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _snake_case : Optional[Any] = padded_audio_features * self.padding_value for i in range(len(UpperCamelCase ) ): _snake_case : str = audio_features[i] _snake_case : List[Any] = feature # return as BatchFeature if return_attention_mask: _snake_case : Union[str, Any] = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: _snake_case : int = {'audio_values': padded_audio_features} _snake_case : List[str] = BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase ) return encoded_inputs
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase_ = """bart""" lowerCAmelCase_ = True @st.cache(allow_output_mutation=lowerCAmelCase ) def lowerCamelCase_ ( )-> int: if LOAD_DENSE_INDEX: _snake_case : Any = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _snake_case : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _snake_case : List[Any] = qar_model.eval() else: _snake_case , _snake_case : Any = (None, None) if MODEL_TYPE == "bart": _snake_case : Optional[Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _snake_case : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _snake_case : List[str] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _snake_case : Optional[Any] = sas_model.eval() else: _snake_case , _snake_case : Optional[int] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCAmelCase ) def lowerCamelCase_ ( )-> Dict: if LOAD_DENSE_INDEX: _snake_case : Tuple = faiss.StandardGpuResources() _snake_case : List[str] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _snake_case : Any = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , ) _snake_case : int = faiss.IndexFlatIP(1_28 ) _snake_case : Optional[int] = faiss.index_cpu_to_gpu(lowerCAmelCase , 1 , lowerCAmelCase ) wikiaab_gpu_index_flat.add(lowerCAmelCase ) # TODO fix for larger GPU else: _snake_case , _snake_case : Any = (None, None) _snake_case : Dict = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCAmelCase ) def lowerCamelCase_ ( )-> Tuple: _snake_case : Optional[Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _snake_case : Dict = elia['train_eli5'] _snake_case : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) ) _snake_case : Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(lowerCAmelCase ) return (elia_train, eli5_train_q_index) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = load_indexes() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = load_models() lowerCAmelCase_ , lowerCAmelCase_ = load_train_data() def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any]=10 )-> Tuple: _snake_case : Tuple = embed_questions_for_retrieval([question] , lowerCAmelCase , lowerCAmelCase ) _snake_case , _snake_case : int = eli5_train_q_index.search(lowerCAmelCase , lowerCAmelCase ) _snake_case : Dict = [elia_train[int(lowerCAmelCase )] for i in I[0]] return nn_examples def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Any="wiki40b" , lowerCAmelCase: List[Any]="dense" , lowerCAmelCase: str=10 )-> Optional[Any]: if source == "none": _snake_case , _snake_case : List[Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _snake_case , _snake_case : int = query_qa_dense_index( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: _snake_case , _snake_case : Tuple = query_es_index( lowerCAmelCase , lowerCAmelCase , index_name='english_wiki40b_snippets_100w' , n_results=lowerCAmelCase , ) _snake_case : Any = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _snake_case : str = 'question: {} context: {}'.format(lowerCAmelCase , lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCAmelCase : None), } ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any , lowerCAmelCase: int , lowerCAmelCase: Tuple=64 , lowerCAmelCase: Tuple=2_56 , lowerCAmelCase: List[str]=False , lowerCAmelCase: str=2 , lowerCAmelCase: Optional[int]=0.9_5 , lowerCAmelCase: Optional[Any]=0.8 )-> Tuple: with torch.no_grad(): _snake_case : Optional[Any] = qa_sas_generate( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_answers=1 , num_beams=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase , do_sample=lowerCAmelCase , temp=lowerCAmelCase , top_p=lowerCAmelCase , top_k=lowerCAmelCase , max_input_length=10_24 , device='cuda:0' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar lowerCAmelCase_ = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" lowerCAmelCase_ = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase_ = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase_ = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] lowerCAmelCase_ = st.sidebar.checkbox("""Demo options""") if demo_options: lowerCAmelCase_ = st.sidebar.selectbox( """""", action_list, index=3, ) lowerCAmelCase_ = action_list.index(action_st) lowerCAmelCase_ = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) lowerCAmelCase_ = show_type == """Show full text of passages""" else: lowerCAmelCase_ = 3 lowerCAmelCase_ = True lowerCAmelCase_ = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: lowerCAmelCase_ = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) lowerCAmelCase_ = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) lowerCAmelCase_ = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: lowerCAmelCase_ = """wiki40b""" lowerCAmelCase_ = """dense""" lowerCAmelCase_ = """beam""" lowerCAmelCase_ = 2 lowerCAmelCase_ = 64 lowerCAmelCase_ = 256 lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = st.sidebar.checkbox("""Generation options""") if generate_options: lowerCAmelCase_ = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) lowerCAmelCase_ = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) lowerCAmelCase_ = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) lowerCAmelCase_ = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": lowerCAmelCase_ = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase_ = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowerCAmelCase_ = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowerCAmelCase_ = None # start main text lowerCAmelCase_ = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] lowerCAmelCase_ = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase_ = st.text_input("""Enter your question here:""", """""") else: lowerCAmelCase_ = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase_ , lowerCAmelCase_ = make_support(question, source=wiki_source, method="""dense""", n_results=10) lowerCAmelCase_ , lowerCAmelCase_ = make_support(question, source=wiki_source, method="""sparse""", n_results=10) lowerCAmelCase_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase_ = support_list[:10] lowerCAmelCase_ = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: lowerCAmelCase_ , lowerCAmelCase_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCAmelCase_ , lowerCAmelCase_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): lowerCAmelCase_ = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) lowerCAmelCase_ = res[1].strip() if sec_titles == "": lowerCAmelCase_ = """[{}]({})""".format(res[0], wiki_url) else: lowerCAmelCase_ = sec_titles.split(""" & """) lowerCAmelCase_ = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase_ = find_nearest_training(question) lowerCAmelCase_ = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) lowerCAmelCase_ = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) lowerCAmelCase_ = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowerCamelCase_ ( lowerCAmelCase: str = "" )-> dict[str, float]: _snake_case : Optional[Any] = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' _snake_case : List[str] = BeautifulSoup(requests.get(lowerCAmelCase ).text , 'html.parser' ) _snake_case : List[Any] = soup.find_all('td' , attrs='titleColumn' ) _snake_case : List[Any] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowerCAmelCase , lowerCAmelCase ) } def lowerCamelCase_ ( lowerCAmelCase: str = "IMDb_Top_250_Movies.csv" )-> None: _snake_case : Dict = get_imdb_top_aaa_movies() with open(lowerCAmelCase , 'w' , newline='' ) as out_file: _snake_case : Dict = csv.writer(lowerCAmelCase ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' def lowerCamelCase_ ( lowerCAmelCase: Optional[int] = 1_00 )-> List[Any]: _snake_case : Tuple = 0 _snake_case : Any = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase_ = False class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : str = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _snake_case : Optional[Any] = 'A painting of a squirrel eating a burger ' _snake_case : int = torch.manual_seed(0 ) _snake_case : Union[str, Any] = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A_ ) _snake_case : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _snake_case : str = generator.manual_seed(0 ) _snake_case : Optional[int] = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _snake_case : str = 'A painting of a squirrel eating a burger ' _snake_case : Optional[int] = torch.manual_seed(0 ) _snake_case : Any = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _snake_case : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _snake_case : Optional[int] = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
from collections import deque class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _snake_case : Dict = process_name # process name _snake_case : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _snake_case : Optional[Any] = arrival_time _snake_case : int = burst_time # remaining burst time _snake_case : Optional[Any] = 0 # total time of the process wait in ready queue _snake_case : Dict = 0 # time from arrival time to completion time class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : deque[Process] , UpperCamelCase : int , ): '''simple docstring''' _snake_case : List[str] = number_of_queues # time slice of queues that round robin algorithm applied _snake_case : Optional[Any] = time_slices # unfinished process is in this ready_queue _snake_case : List[str] = queue # current time _snake_case : List[Any] = current_time # finished process is in this sequence queue _snake_case : deque[Process] = deque() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCamelCase_ ( self : Any , UpperCamelCase : list[Process] ): '''simple docstring''' _snake_case : Optional[int] = [] for i in range(len(UpperCamelCase_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : list[Process] ): '''simple docstring''' _snake_case : Optional[Any] = [] for i in range(len(UpperCamelCase_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : list[Process] ): '''simple docstring''' _snake_case : Optional[Any] = [] for i in range(len(UpperCamelCase_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCamelCase_ ( self : Tuple , UpperCamelCase : deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : deque[Process] ): '''simple docstring''' _snake_case : deque[Process] = deque() # sequence deque of finished process while len(UpperCamelCase_ ) != 0: _snake_case : Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _snake_case : Any = 0 # set the process's turnaround time because it is finished _snake_case : Optional[Any] = self.current_time - cp.arrival_time # set the completion time _snake_case : Union[str, Any] = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase_ ) self.finish_queue.extend(UpperCamelCase_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : deque[Process] , UpperCamelCase : int ): '''simple docstring''' _snake_case : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase_ ) ): _snake_case : Any = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _snake_case : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _snake_case : Dict = 0 # set the finish time _snake_case : Union[str, Any] = self.current_time # update the process' turnaround time because it is finished _snake_case : str = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase_ ) self.finish_queue.extend(UpperCamelCase_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): _snake_case : List[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_ = Process("""P1""", 0, 53) lowerCAmelCase_ = Process("""P2""", 0, 17) lowerCAmelCase_ = Process("""P3""", 0, 68) lowerCAmelCase_ = Process("""P4""", 0, 24) lowerCAmelCase_ = 3 lowerCAmelCase_ = [17, 25] lowerCAmelCase_ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_ = Process("""P1""", 0, 53) lowerCAmelCase_ = Process("""P2""", 0, 17) lowerCAmelCase_ = Process("""P3""", 0, 68) lowerCAmelCase_ = Process("""P4""", 0, 24) lowerCAmelCase_ = 3 lowerCAmelCase_ = [17, 25] lowerCAmelCase_ = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_ = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } lowerCAmelCase_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> List[str]: _snake_case : List[str] = {} with open(_A , 'r' ) as file: for line_number, line in enumerate(_A ): _snake_case : int = line.strip() if line: _snake_case : Any = line.split() _snake_case : Any = line_number _snake_case : List[Any] = words[0] _snake_case : int = value return result def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple )-> int: for attribute in key.split('.' ): _snake_case : Any = getattr(_A , _A ) _snake_case : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): _snake_case : int = PARAM_MAPPING[full_name.split('.' )[-1]] _snake_case : Tuple = "param" if weight_type is not None and weight_type != "param": _snake_case : Union[str, Any] = getattr(_A , _A ).shape elif weight_type is not None and weight_type == "param": _snake_case : Tuple = hf_pointer for attribute in hf_param_name.split('.' ): _snake_case : Tuple = getattr(_A , _A ) _snake_case : List[str] = shape_pointer.shape # let's reduce dimension _snake_case : List[str] = value[0] else: _snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _snake_case : Dict = value elif weight_type == "weight_g": _snake_case : Union[str, Any] = value elif weight_type == "weight_v": _snake_case : Union[str, Any] = value elif weight_type == "bias": _snake_case : int = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): _snake_case : Any = getattr(_A , _A ) _snake_case : int = value else: _snake_case : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Any , lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple )-> str: _snake_case : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): _snake_case : List[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] _snake_case : int = "param" if weight_type is not None and weight_type != "param": _snake_case : Union[str, Any] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _snake_case : Union[str, Any] = ".".join([key, hf_param_name] ) else: _snake_case : str = key _snake_case : List[str] = value if "lm_head" in full_key else value[0] lowerCAmelCase_ = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Any , lowerCAmelCase: Optional[Any]=None , lowerCAmelCase: Tuple=None )-> List[Any]: _snake_case : int = False for key, mapped_key in MAPPING.items(): _snake_case : Dict = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _snake_case : Tuple = True if "*" in mapped_key: _snake_case : Any = name.split(_A )[0].split('.' )[-2] _snake_case : Optional[int] = mapped_key.replace('*' , _A ) if "weight_g" in name: _snake_case : Union[str, Any] = "weight_g" elif "weight_v" in name: _snake_case : List[Any] = "weight_v" elif "bias" in name: _snake_case : List[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case : Optional[Any] = "weight" else: _snake_case : Tuple = None if hf_dict is not None: rename_dict(_A , _A , _A , _A , _A ) else: set_recursively(_A , _A , _A , _A , _A ) return is_used return is_used def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: int , lowerCAmelCase: int )-> Dict: _snake_case : List[Any] = [] _snake_case : Union[str, Any] = fairseq_model.state_dict() _snake_case : Optional[int] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) _snake_case : Optional[int] = True else: _snake_case : Optional[int] = load_wavaveca_layer(_A , _A , _A ) if not is_used: unused_weights.append(_A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Dict , lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] , lowerCAmelCase: Union[str, Any] )-> Optional[Any]: _snake_case : int = full_name.split('conv_layers.' )[-1] _snake_case : Optional[Any] = name.split('.' ) _snake_case : Any = int(items[0] ) _snake_case : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _snake_case : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _snake_case : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _snake_case : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _snake_case : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_A ) @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Any , lowerCAmelCase: Any=None , lowerCAmelCase: List[Any]=None , lowerCAmelCase: Tuple=True , lowerCAmelCase: List[Any]=False )-> List[str]: if config_path is not None: _snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_A ) else: _snake_case : str = WavaVecaConfig() if is_seq_class: _snake_case : str = read_txt_into_dict(_A ) _snake_case : List[Any] = idalabel _snake_case : List[Any] = WavaVecaForSequenceClassification(_A ) _snake_case : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) feature_extractor.save_pretrained(_A ) elif is_finetuned: if dict_path: _snake_case : Dict = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : List[Any] = target_dict.pad_index _snake_case : str = target_dict.bos_index _snake_case : str = target_dict.eos_index _snake_case : Tuple = len(target_dict.symbols ) _snake_case : Optional[Any] = os.path.join(_A , 'vocab.json' ) if not os.path.isdir(_A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_A ) ) return os.makedirs(_A , exist_ok=_A ) _snake_case : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched _snake_case : str = 0 _snake_case : Dict = 1 with open(_A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_A , _A ) _snake_case : Any = WavaVecaCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_A , ) _snake_case : Dict = True if config.feat_extract_norm == "layer" else False _snake_case : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) _snake_case : Any = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) _snake_case : int = WavaVecaForCTC(_A ) else: _snake_case : Optional[Any] = WavaVecaForPreTraining(_A ) if is_finetuned or is_seq_class: _snake_case : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _snake_case : Dict = argparse.Namespace(task='audio_pretraining' ) _snake_case : Any = fairseq.tasks.setup_task(_A ) _snake_case : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_A ) _snake_case : List[str] = model[0].eval() recursively_load_weights(_A , _A , not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Tuple )-> List[Any]: _snake_case : List[str] = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) _snake_case : Tuple = downstream_dict['projector.weight'] _snake_case : Any = downstream_dict['projector.bias'] _snake_case : Dict = downstream_dict['model.post_net.linear.weight'] _snake_case : int = downstream_dict['model.post_net.linear.bias'] return model def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Dict , lowerCAmelCase: Any )-> int: _snake_case : Dict = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) _snake_case : List[str] = downstream_dict['model.linear.weight'] _snake_case : Optional[int] = downstream_dict['model.linear.bias'] return model def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any] )-> Tuple: _snake_case : Tuple = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) _snake_case : Tuple = downstream_dict['connector.weight'] _snake_case : str = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _snake_case : Tuple = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _snake_case : str = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _snake_case : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _snake_case : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _snake_case : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _snake_case : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _snake_case : int = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any] )-> Dict: _snake_case : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu' ) _snake_case : int = checkpoint['Downstream'] _snake_case : Union[str, Any] = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) _snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) _snake_case : Optional[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _snake_case : List[str] = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('ForAudioFrameClassification' ): _snake_case : List[str] = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('ForXVector' ): _snake_case : Optional[int] = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _snake_case : Optional[int] = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") lowerCAmelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
import doctest from collections import deque import numpy as np class _lowerCAmelCase : '''simple docstring''' def __init__( self : str ): '''simple docstring''' _snake_case : List[Any] = [2, 1, 2, -1] _snake_case : str = [1, 2, 3, 4] def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = len(self.first_signal ) _snake_case : List[str] = len(self.second_signal ) _snake_case : List[str] = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length _snake_case : Union[str, Any] = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): _snake_case : Optional[int] = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal _snake_case : List[str] = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( __A ): '''simple docstring''' a_ : Optional[int] =["""image_processor""", """tokenizer"""] a_ : Dict ="""AutoImageProcessor""" a_ : Dict ="""AutoTokenizer""" def __init__( self : Dict , UpperCamelCase : int , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = self.image_processor def __call__( self : Dict , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : int=None , UpperCamelCase : str=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Dict = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : List[str] , **UpperCamelCase : int ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> Union[str, Any]: if hor == 1_28: _snake_case : Tuple = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _snake_case : List[str] = (32, 1_28, 2_56) _snake_case : List[Any] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: _snake_case : Optional[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _snake_case : List[str] = (32, 64, 1_28, 2_56) _snake_case : Tuple = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') _snake_case : Optional[int] = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _snake_case : str = model.state_dict() _snake_case : List[Any] = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } _snake_case : Optional[int] = UNetaDModel(**__lowerCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : Union[str, Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : List[Any] = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase_ ( )-> Optional[int]: _snake_case : Tuple = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } _snake_case : Optional[int] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) _snake_case : Union[str, Any] = model _snake_case : str = UNetaDModel(**__lowerCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : List[str] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : List[Any] = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCAmelCase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCAmelCase_ = logging.WARNING def lowerCamelCase_ ( )-> str: _snake_case : Union[str, Any] = os.getenv('DATASETS_VERBOSITY' , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowerCamelCase_ ( )-> str: return __name__.split('.' )[0] def lowerCamelCase_ ( )-> logging.Logger: return logging.getLogger(_get_library_name() ) def lowerCamelCase_ ( )-> None: _snake_case : List[str] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCamelCase_ ( )-> None: _snake_case : Dict = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] = None )-> logging.Logger: if name is None: _snake_case : Union[str, Any] = _get_library_name() return logging.getLogger(lowerCamelCase__ ) def lowerCamelCase_ ( )-> int: return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> None: _get_library_root_logger().setLevel(lowerCamelCase__ ) def lowerCamelCase_ ( )-> Union[str, Any]: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> List[Any]: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> Optional[int]: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> Dict: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> None: _snake_case : Dict = False def lowerCamelCase_ ( )-> None: _snake_case : Optional[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): # pylint: disable=unused-argument '''simple docstring''' _snake_case : List[Any] = args[0] if args else None def __iter__( self : int ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' def empty_fn(*UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ): '''simple docstring''' return self def __exit__( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' return lowerCAmelCase_ = True class _lowerCAmelCase : '''simple docstring''' def __call__( self : Dict , *UpperCamelCase : List[Any] , UpperCamelCase : int=False , **UpperCamelCase : List[Any] ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase_ , **UpperCamelCase_ ) else: return EmptyTqdm(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase_ = _tqdm_cls() def lowerCamelCase_ ( )-> bool: global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase_ ( )-> List[Any]: global _tqdm_active _snake_case : Dict = True def lowerCamelCase_ ( )-> Any: global _tqdm_active _snake_case : List[Any] = False
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =["""image_processor""", """tokenizer"""] a_ : Tuple ="""OwlViTImageProcessor""" a_ : Union[str, Any] =("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[Any] , UpperCamelCase : str=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _snake_case : Union[str, Any] = kwargs.pop('feature_extractor' ) _snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self : Any , UpperCamelCase : Tuple=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Union[str, Any]="max_length" , UpperCamelCase : Dict="np" , **UpperCamelCase : int ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): _snake_case : Tuple = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): _snake_case : Dict = [] # Maximum number of queries across batch _snake_case : Optional[int] = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: _snake_case : Optional[Any] = t + [" "] * (max_num_queries - len(__A )) _snake_case : Union[str, Any] = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": _snake_case : int = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) _snake_case : List[str] = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _snake_case : str = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) _snake_case : List[str] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _snake_case : Tuple = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) _snake_case : List[str] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _snake_case : str = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) _snake_case : str = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) _snake_case : Tuple = BatchEncoding() _snake_case : List[Any] = input_ids _snake_case : Dict = attention_mask if query_images is not None: _snake_case : Tuple = BatchEncoding() _snake_case : Optional[Any] = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values _snake_case : Tuple = query_pixel_values if images is not None: _snake_case : Tuple = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _snake_case : Dict = image_features.pixel_values return encoding elif query_images is not None and images is not None: _snake_case : str = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : int , **UpperCamelCase : Tuple ): '''simple docstring''' return self.image_processor.post_process(*__A , **__A ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__A , **__A ) def UpperCamelCase_ ( self : Optional[int] , *UpperCamelCase : int , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def UpperCamelCase_ ( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase_ ( self : Tuple , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
import math import sys import cva import numpy as np def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: Any )-> np.ndarray: # For applying gaussian function for each element in matrix. _snake_case : Union[str, Any] = math.sqrt(__lowerCAmelCase ) _snake_case : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any , lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] )-> np.ndarray: _snake_case : str = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple )-> np.ndarray: # Creates a gaussian kernel of given dimension. _snake_case : int = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCAmelCase ): for j in range(0 , __lowerCAmelCase ): _snake_case : Tuple = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Tuple , lowerCAmelCase: int , lowerCAmelCase: str , )-> np.ndarray: _snake_case : Optional[Any] = np.zeros(img.shape ) _snake_case : Any = get_gauss_kernel(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Any = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _snake_case : str = get_slice(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _snake_case : int = img_s - img_s[kernel_size // 2, kernel_size // 2] _snake_case : Optional[int] = vec_gaussian(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[Any] = np.multiply(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : List[str] = np.multiply(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Dict = np.sum(__lowerCAmelCase ) / np.sum(__lowerCAmelCase ) _snake_case : Optional[Any] = val return imga def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> tuple: _snake_case : List[Any] = args[1] if args[1:] else """../image_data/lena.jpg""" _snake_case : Any = float(args[2] ) if args[2:] else 1.0 _snake_case : Any = float(args[3] ) if args[3:] else 1.0 if args[4:]: _snake_case : int = int(args[4] ) _snake_case : Tuple = kernel_size + abs(kernel_size % 2 - 1 ) else: _snake_case : Union[str, Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase_ = parse_args(sys.argv) lowerCAmelCase_ = cva.imread(filename, 0) cva.imshow("""input image""", img) lowerCAmelCase_ = img / 255 lowerCAmelCase_ = out.astype("""float32""") lowerCAmelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase_ = out * 255 lowerCAmelCase_ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase_ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> List[str]: if not head: return True # split the list to two parts _snake_case , _snake_case : str = head.next, head while fast and fast.next: _snake_case : Tuple = fast.next.next _snake_case : Optional[Any] = slow.next _snake_case : Optional[Any] = slow.next _snake_case : Any = None # Don't forget here! But forget still works! # reverse the second part _snake_case : Tuple = None while second: _snake_case : int = second.next _snake_case : Optional[int] = node _snake_case : Optional[int] = second _snake_case : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _snake_case : Any = node.next _snake_case : str = head.next return True def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> List[str]: if not head or not head.next: return True # 1. Get the midpoint (slow) _snake_case : Tuple = head while fast and fast.next: _snake_case , _snake_case : int = fast.next.next, slow.next # 2. Push the second half into the stack _snake_case : Any = [slow.val] while slow.next: _snake_case : Dict = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _snake_case : Optional[Any] = cur.next return True def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Dict: if not head or not head.next: return True _snake_case : List[str] = {} _snake_case : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: _snake_case : int = [pos] _snake_case : str = head.next pos += 1 _snake_case : Union[str, Any] = pos - 1 _snake_case : Tuple = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: _snake_case : List[Any] = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : List[Any] =RobertaTokenizer a_ : str =RobertaTokenizerFast a_ : List[str] =True a_ : Dict ={"""cls_token""": """<s>"""} def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _snake_case : List[str] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _snake_case : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : Union[str, Any] = {"""unk_token""": """<unk>"""} _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def UpperCamelCase_ ( self : int , **UpperCamelCase : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase_ ( self : int , **UpperCamelCase : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str ): '''simple docstring''' _snake_case : Tuple = """lower newer""" _snake_case : Dict = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : List[Any] = """lower newer""" _snake_case : str = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _snake_case : Any = tokenizer.tokenize(_UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : Optional[Any] = tokens + [tokenizer.unk_token] _snake_case : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained('roberta-base' ) _snake_case : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCamelCase ) _snake_case : Dict = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = self.get_tokenizer() _snake_case : List[Any] = """Encode this sequence.""" _snake_case : Any = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments _snake_case : Any = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : List[str] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case : Optional[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _snake_case : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # Testing spaces after special tokens _snake_case : Optional[Any] = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase )} ) # mask token has a left space _snake_case : int = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) _snake_case : str = """Encode <mask> sequence""" _snake_case : Union[str, Any] = """Encode <mask>sequence""" _snake_case : str = tokenizer.encode(_UpperCamelCase ) _snake_case : Optional[int] = encoded.index(_UpperCamelCase ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : Any = tokenizer.encode(_UpperCamelCase ) _snake_case : Any = encoded.index(_UpperCamelCase ) _snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _snake_case : Dict = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _snake_case : str = """A, <mask> AllenNLP sentence.""" _snake_case : int = tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : str = f"""{text_of_1_token} {text_of_1_token}""" _snake_case : int = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[str] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : int = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Tuple = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , )
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] =KandinskyVaaControlnetPipeline a_ : str =["""image_embeds""", """negative_image_embeds""", """hint"""] a_ : Tuple =["""image_embeds""", """negative_image_embeds""", """hint"""] a_ : List[str] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ : List[str] =False @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return 1_00 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _snake_case : int = UNetaDConditionModel(**_A ) return model @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.dummy_unet _snake_case : int = self.dummy_movq _snake_case : str = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='epsilon' , thresholding=_A , ) _snake_case : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : Dict=0 ): '''simple docstring''' _snake_case : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) _snake_case : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create hint _snake_case : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('mps' ): _snake_case : List[Any] = torch.manual_seed(_A ) else: _snake_case : str = torch.Generator(device=_A ).manual_seed(_A ) _snake_case : str = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = 'cpu' _snake_case : Tuple = self.get_dummy_components() _snake_case : List[Any] = self.pipeline_class(**_A ) _snake_case : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _snake_case : int = pipe(**self.get_dummy_inputs(_A ) ) _snake_case : Any = output.images _snake_case : List[str] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] _snake_case : List[Any] = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : int = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) _snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _snake_case : Optional[int] = torch.from_numpy(np.array(_A ) ).float() / 2_55.0 _snake_case : Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _snake_case : List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) _snake_case : Any = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _snake_case : int = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) _snake_case : List[str] = 'A robot, 4k photo' _snake_case : Optional[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) _snake_case : Tuple = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _snake_case : Any = torch.Generator(device='cuda' ).manual_seed(0 ) _snake_case : List[Any] = pipeline( image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=1_00 , output_type='np' , ) _snake_case : Dict = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_A , _A )
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : int =42 a_ : List[str] =42 class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : int ): '''simple docstring''' _snake_case : list[list[Edge]] = [[] for _ in range(__lowerCamelCase )] _snake_case : int = size def __getitem__( self : Optional[int] , UpperCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self._size def UpperCamelCase_ ( self : Dict , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(__lowerCamelCase , __lowerCamelCase ) ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _snake_case : List[Any] = deque([start_vertex] ) _snake_case : list[int | None] = [None] * self.size _snake_case : str = 0 while queue: _snake_case : Union[str, Any] = queue.popleft() _snake_case : int = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _snake_case : Tuple = current_distance + edge.weight _snake_case : str = distances[edge.destination_vertex] if ( isinstance(__lowerCamelCase , __lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue _snake_case : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: int=False )-> Union[str, Any]: try: _snake_case : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _snake_case : Optional[int] = default else: # KEY is set, convert it to True or False. try: _snake_case : List[str] = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value lowerCAmelCase_ = parse_flag_from_env("""RUN_SLOW""", default=False) lowerCAmelCase_ = parse_flag_from_env("""RUN_REMOTE""", default=False) lowerCAmelCase_ = parse_flag_from_env("""RUN_LOCAL""", default=True) lowerCAmelCase_ = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression lowerCAmelCase_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") lowerCAmelCase_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") lowerCAmelCase_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio lowerCAmelCase_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam lowerCAmelCase_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility lowerCAmelCase_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows lowerCAmelCase_ = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Dict: try: import faiss # noqa except ImportError: _snake_case : Dict = unittest.skip('test requires faiss' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: Any )-> Optional[int]: try: import regex # noqa except ImportError: _snake_case : int = unittest.skip('test requires regex' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> List[str]: try: import elasticsearch # noqa except ImportError: _snake_case : Optional[int] = unittest.skip('test requires elasticsearch' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: int )-> Tuple: try: import sqlalchemy # noqa except ImportError: _snake_case : List[str] = unittest.skip('test requires sqlalchemy' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> int: if not config.TORCH_AVAILABLE: _snake_case : List[Any] = unittest.skip('test requires PyTorch' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: int )-> List[Any]: if not config.TF_AVAILABLE: _snake_case : Any = unittest.skip('test requires TensorFlow' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: Dict )-> Any: if not config.JAX_AVAILABLE: _snake_case : List[str] = unittest.skip('test requires JAX' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Any: if not config.PIL_AVAILABLE: _snake_case : List[Any] = unittest.skip('test requires Pillow' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Tuple: try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(a_ ) else: return test_case def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> Optional[int]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(a_ ) else: return test_case def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> int: try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(a_ ) else: return test_case def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: def _require_spacy_model(lowerCAmelCase: Optional[int] ): try: import spacy # noqa F401 spacy.load(a_ ) except ImportError: return unittest.skip('test requires spacy' )(a_ ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(a_ ) )(a_ ) else: return test_case return _require_spacy_model def lowerCamelCase_ ( lowerCAmelCase: str )-> int: try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(a_ ) else: return test_case def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Optional[Any]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(a_ ) else: return test_case def lowerCamelCase_ ( lowerCAmelCase: Dict )-> str: if not _run_slow_tests or _run_slow_tests == 0: _snake_case : Union[str, Any] = unittest.skip('test is slow' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: str )-> List[Any]: if not _run_local_tests or _run_local_tests == 0: _snake_case : Optional[int] = unittest.skip('test is local' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: str )-> str: if not _run_packaged_tests or _run_packaged_tests == 0: _snake_case : int = unittest.skip('test is packaged' )(a_ ) return test_case def lowerCamelCase_ ( lowerCAmelCase: str )-> Tuple: if not _run_remote_tests or _run_remote_tests == 0: _snake_case : Optional[int] = unittest.skip('test requires remote' )(a_ ) return test_case def lowerCamelCase_ ( *lowerCAmelCase: int )-> Tuple: def decorate(cls: Any ): for name, fn in cls.__dict__.items(): if callable(a_ ) and name.startswith('test' ): for decorator in decorators: _snake_case : Optional[Any] = decorator(a_ ) setattr(cls , a_ , a_ ) return cls return decorate class _lowerCAmelCase ( _UpperCAmelCase ): '''simple docstring''' pass class _lowerCAmelCase ( _UpperCAmelCase ): '''simple docstring''' a_ : Optional[Any] =0 a_ : Any =1 a_ : int =2 @contextmanager def lowerCamelCase_ ( lowerCAmelCase: List[str]=OfflineSimulationMode.CONNECTION_FAILS , lowerCAmelCase: List[Any]=1E-16 )-> str: _snake_case : List[Any] = requests.Session().request def timeout_request(lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: Dict , **lowerCAmelCase: Tuple ): # Change the url to an invalid url so that the connection hangs _snake_case : Union[str, Any] = '''https://10.255.255.1''' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _snake_case : Dict = timeout try: return online_request(a_ , a_ , **a_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _snake_case : int = url _snake_case : Any = e.args[0] _snake_case : Optional[int] = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) _snake_case : Union[str, Any] = (max_retry_error,) raise def raise_connection_error(lowerCAmelCase: Dict , lowerCAmelCase: Dict , **lowerCAmelCase: List[Any] ): raise requests.ConnectionError('Offline mode is enabled.' , request=a_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , a_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , a_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , a_ ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def lowerCamelCase_ ( *lowerCAmelCase: Optional[int] , **lowerCAmelCase: Any )-> List[Any]: _snake_case : Union[str, Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*a_ , **a_ ) as tmp_dir: try: os.chdir(a_ ) yield finally: os.chdir(a_ ) @contextmanager def lowerCamelCase_ ( )-> Optional[int]: import gc gc.collect() _snake_case : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCamelCase_ ( )-> List[str]: import gc gc.collect() _snake_case : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: str )-> List[str]: return deepcopy(a_ ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(a_ ).integers(0 , 1_00 , 10 ).tolist() def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> Tuple: import decorator from requests.exceptions import HTTPError def _wrapper(lowerCAmelCase: Dict , *lowerCAmelCase: int , **lowerCAmelCase: Tuple ): try: return func(*a_ , **a_ ) except HTTPError as err: if str(a_ ).startswith('500' ) or str(a_ ).startswith('502' ): pytest.xfail(str(a_ ) ) raise err return decorator.decorator(_wrapper , a_ ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' _snake_case : Any = returncode _snake_case : int = stdout _snake_case : Tuple = stderr async def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Optional[int] )-> Tuple: while True: _snake_case : int = await stream.readline() if line: callback(a_ ) else: break async def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any]=None , lowerCAmelCase: int=None , lowerCAmelCase: int=None , lowerCAmelCase: List[str]=False , lowerCAmelCase: Optional[Any]=False )-> _RunOutput: if echo: print('\nRunning: ' , ' '.join(a_ ) ) _snake_case : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _snake_case : str = [] _snake_case : Tuple = [] def tee(lowerCAmelCase: int , lowerCAmelCase: Tuple , lowerCAmelCase: Any , lowerCAmelCase: Optional[Any]="" ): _snake_case : Union[str, Any] = line.decode('utf-8' ).rstrip() sink.append(a_ ) if not quiet: print(a_ , a_ , file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCAmelCase : tee(a_ , a_ , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda lowerCAmelCase : tee(a_ , a_ , sys.stderr , label='stderr:' ) ), ] , timeout=a_ , ) return _RunOutput(await p.wait() , a_ , a_ ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any=None , lowerCAmelCase: List[str]=None , lowerCAmelCase: Tuple=1_80 , lowerCAmelCase: List[Any]=False , lowerCAmelCase: str=True )-> _RunOutput: _snake_case : int = asyncio.get_event_loop() _snake_case : Any = loop.run_until_complete( _stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) ) _snake_case : Optional[Any] = ''' '''.join(a_ ) if result.returncode > 0: _snake_case : List[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def lowerCamelCase_ ( )-> List[str]: _snake_case : List[Any] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) _snake_case : Union[str, Any] = re.sub(R'^gw' , '' , a_ , 0 , re.M ) return int(a_ ) def lowerCamelCase_ ( )-> Tuple: _snake_case : Any = 2_95_00 _snake_case : str = pytest_xdist_worker_id() return port + uniq_delta
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( _UpperCAmelCase ): '''simple docstring''' a_ : Tuple =['pixel_values'] def __init__( self : Optional[int] , UpperCamelCase : bool = True , UpperCamelCase : Optional[Dict[str, int]] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 2_55 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**__UpperCamelCase ) _snake_case : str = size if size is not None else {'shortest_edge': 2_56} _snake_case : Optional[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _snake_case : Dict = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _snake_case : Any = get_size_dict(__UpperCamelCase , param_name='crop_size' ) _snake_case : Optional[Any] = do_resize _snake_case : Dict = size _snake_case : List[Any] = resample _snake_case : List[str] = do_center_crop _snake_case : List[str] = crop_size _snake_case : Optional[Any] = do_rescale _snake_case : Optional[Any] = rescale_factor _snake_case : Tuple = do_normalize _snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[str] , ): '''simple docstring''' _snake_case : Optional[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _snake_case : List[str] = get_resize_output_image_size(__UpperCamelCase , size=size['shortest_edge'] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Tuple , ): '''simple docstring''' _snake_case : Optional[int] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__UpperCamelCase , size=(size['height'], size['width']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : np.ndarray , UpperCamelCase : float , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[str] , ): '''simple docstring''' return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : ImageInput , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[float] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Optional[int] , ): '''simple docstring''' _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : int = size if size is not None else self.size _snake_case : Tuple = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _snake_case : List[str] = resample if resample is not None else self.resample _snake_case : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : List[Any] = crop_size if crop_size is not None else self.crop_size _snake_case : Optional[Any] = get_size_dict(__UpperCamelCase , param_name='crop_size' ) _snake_case : Any = do_rescale if do_rescale is not None else self.do_rescale _snake_case : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _snake_case : Any = image_mean if image_mean is not None else self.image_mean _snake_case : Optional[int] = image_std if image_std is not None else self.image_std _snake_case : Optional[int] = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _snake_case : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _snake_case : Union[str, Any] = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _snake_case : Any = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _snake_case : int = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _snake_case : List[Any] = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _snake_case : Optional[Any] = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _snake_case : int = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[Tuple] = None ): '''simple docstring''' _snake_case : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__UpperCamelCase ): _snake_case : Tuple = target_sizes.numpy() _snake_case : Union[str, Any] = [] for idx in range(len(__UpperCamelCase ) ): _snake_case : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__UpperCamelCase ) _snake_case : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCamelCase ) else: _snake_case : Dict = logits.argmax(dim=1 ) _snake_case : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCAmelCase_ = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] = "dhaka" , lowerCAmelCase: Union[str, Any] = 5 )-> int: _snake_case : Tuple = min(lowerCAmelCase , 50 ) # Prevent abuse! _snake_case : Any = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } _snake_case : Optional[int] = requests.get('https://www.google.com/search' , params=lowerCAmelCase , headers=lowerCAmelCase ) _snake_case : List[Any] = BeautifulSoup(html.text , 'html.parser' ) _snake_case : Optional[Any] = ''.join( re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) _snake_case : List[str] = json.dumps(lowerCAmelCase ) _snake_case : int = json.loads(lowerCAmelCase ) _snake_case : List[str] = re.findall( R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , lowerCAmelCase , ) if not matched_google_image_data: return 0 _snake_case : Optional[int] = re.sub( R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(lowerCAmelCase ) , ) _snake_case : Union[str, Any] = re.findall( R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(lowerCAmelCase ): if index >= max_images: return index _snake_case : List[Any] = bytes(lowerCAmelCase , 'ascii' ).decode( 'unicode-escape' ) _snake_case : Any = bytes(lowerCAmelCase , 'ascii' ).decode( 'unicode-escape' ) _snake_case : List[str] = urllib.request.build_opener() _snake_case : List[Any] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(lowerCAmelCase ) _snake_case : Dict = F"""query_{query.replace(' ' , '_' )}""" if not os.path.exists(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 lowerCAmelCase , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: lowerCAmelCase_ = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print("""Please provide a search term.""") raise
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Dict=False )-> int: _snake_case : int = OmegaConf.load(__UpperCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCamelCase ) ) ) return config def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[int]=None , lowerCAmelCase: List[str]=None )-> Optional[Any]: if conf_path is None: _snake_case : List[str] = """./model_checkpoints/vqgan_only.yaml""" _snake_case : Tuple = load_config(__UpperCamelCase , display=__UpperCamelCase ) _snake_case : int = VQModel(**config.model.params ) if ckpt_path is None: _snake_case : List[Any] = """./model_checkpoints/vqgan_only.pt""" _snake_case : int = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) if ".ckpt" in ckpt_path: _snake_case : Optional[int] = sd["""state_dict"""] model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) model.to(__UpperCamelCase ) del sd return model def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: str )-> List[str]: _snake_case : Union[str, Any] = model.encode(__UpperCamelCase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) _snake_case : int = model.decode(__UpperCamelCase ) return xrec def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: List[Any]=False )-> List[Any]: _snake_case : Tuple = string.rsplit('.' , 1 ) if reload: _snake_case : Tuple = importlib.import_module(__UpperCamelCase ) importlib.reload(__UpperCamelCase ) return getattr(importlib.import_module(__UpperCamelCase , package=__UpperCamelCase ) , cls ) def lowerCamelCase_ ( lowerCAmelCase: Dict )-> List[str]: if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: int=True , lowerCAmelCase: str=True )-> str: _snake_case : int = instantiate_from_config(__UpperCamelCase ) if sd is not None: model.load_state_dict(__UpperCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Dict , lowerCAmelCase: Dict , lowerCAmelCase: Tuple )-> Tuple: if ckpt: _snake_case : int = torch.load(__UpperCamelCase , map_location='cpu' ) _snake_case : List[str] = pl_sd["""global_step"""] print(F"""loaded model from global step {global_step}.""" ) else: _snake_case : int = {"""state_dict""": None} _snake_case : Any = None _snake_case : Dict = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=__UpperCamelCase , eval_mode=__UpperCamelCase )["""model"""] return model, global_step
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( _lowercase , unittest.TestCase ): '''simple docstring''' a_ : List[Any] =LEDTokenizer a_ : Optional[int] =LEDTokenizerFast a_ : Union[str, Any] =True def UpperCamelCase_ ( self : int ): '''simple docstring''' super().setUp() _snake_case : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case : List[Any] = dict(zip(A_ , range(len(A_ ) ) ) ) _snake_case : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case : int = {'unk_token': '<unk>'} _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def UpperCamelCase_ ( self : Dict , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def UpperCamelCase_ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case : Union[str, Any] = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : str = tokenizer(A_ , max_length=len(A_ ) , padding=A_ , return_tensors='pt' ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(A_ , A_ ) @require_torch def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : List[str] = tokenizer(A_ , padding=A_ , return_tensors='pt' ) self.assertIn('input_ids' , A_ ) self.assertIn('attention_mask' , A_ ) self.assertNotIn('labels' , A_ ) self.assertNotIn('decoder_attention_mask' , A_ ) @require_torch def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : int = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Dict = tokenizer(text_target=A_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : str = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=A_ , truncation=A_ , return_tensors='pt' ) self.assertIsInstance(A_ , A_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = ['A long paragraph for summarization.'] _snake_case : List[str] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Union[str, Any] = tokenizer(A_ , return_tensors='pt' ) _snake_case : int = tokenizer(text_target=A_ , return_tensors='pt' ) _snake_case : str = inputs['input_ids'] _snake_case : Any = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Optional[Any] = ['Summary of the text.', 'Another summary.'] _snake_case : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case : List[str] = tokenizer(A_ , padding=A_ ) _snake_case : Any = [[0] * len(A_ ) for x in encoded_output['input_ids']] _snake_case : Optional[Any] = tokenizer.pad(A_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , A_ ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Any = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) _snake_case : int = self.tokenizer_class.from_pretrained(A_ , **A_ ) _snake_case : List[Any] = 'A, <mask> AllenNLP sentence.' _snake_case : Dict = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) _snake_case : List[str] = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' def lowerCamelCase_ ( lowerCAmelCase: str )-> bool: _snake_case : Optional[int] = 0 for ch in input_str: _snake_case : int = ord(__SCREAMING_SNAKE_CASE ) _snake_case : Optional[Any] = pow(2 , __SCREAMING_SNAKE_CASE ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
lowerCAmelCase_ = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def lowerCamelCase_ ( lowerCAmelCase: float )-> Any: assert type(lowerCAmelCase ) in (int, float) and decimal == int(lowerCAmelCase ) _snake_case : Tuple = int(lowerCAmelCase ) _snake_case : List[Any] = '' _snake_case : str = False if decimal < 0: _snake_case : Tuple = True decimal *= -1 while decimal > 0: _snake_case , _snake_case : Tuple = divmod(lowerCAmelCase , 16 ) _snake_case : int = values[remainder] + hexadecimal _snake_case : Tuple = '0x' + hexadecimal if negative: _snake_case : str = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("""KEY""") lowerCAmelCase_ = TypeVar("""VAL""") @dataclass(frozen=UpperCamelCase_ , slots=UpperCamelCase_ ) class _lowerCAmelCase ( Generic[KEY, VAL] ): '''simple docstring''' a_ : int =42 a_ : List[str] =42 class _lowerCAmelCase ( _Item ): '''simple docstring''' def __init__( self : Tuple ): '''simple docstring''' super().__init__(__A , __A ) def __bool__( self : Dict ): '''simple docstring''' return False lowerCAmelCase_ = _DeletedItem() class _lowerCAmelCase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : int = 8 , UpperCamelCase : float = 0.75 ): '''simple docstring''' _snake_case : Dict = initial_block_size _snake_case : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _snake_case : Optional[Any] = capacity_factor _snake_case : str = 0 def UpperCamelCase_ ( self : List[str] , UpperCamelCase : KEY ): '''simple docstring''' return hash(__A ) % len(self._buckets ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : KEY , UpperCamelCase : VAL ): '''simple docstring''' _snake_case : Tuple = self._buckets[ind] if not stored: _snake_case : List[Any] = _Item(__A , __A ) self._len += 1 return True elif stored.key == key: _snake_case : List[str] = _Item(__A , __A ) return True else: return False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__A ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False _snake_case : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int ): '''simple docstring''' _snake_case : Optional[Any] = self._buckets _snake_case : Optional[int] = [None] * new_size _snake_case : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCamelCase_ ( self : int , UpperCamelCase : KEY ): '''simple docstring''' _snake_case : List[Any] = self._get_bucket_index(__A ) for _ in range(len(self._buckets ) ): yield ind _snake_case : int = self._get_next_ind(__A ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : KEY , UpperCamelCase : VAL ): '''simple docstring''' for ind in self._iterate_buckets(__A ): if self._try_set(__A , __A , __A ): break def __setitem__( self : Union[str, Any] , UpperCamelCase : KEY , UpperCamelCase : VAL ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__A , __A ) def __delitem__( self : List[str] , UpperCamelCase : KEY ): '''simple docstring''' for ind in self._iterate_buckets(__A ): _snake_case : str = self._buckets[ind] if item is None: raise KeyError(__A ) if item is _deleted: continue if item.key == key: _snake_case : str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , UpperCamelCase : KEY ): '''simple docstring''' for ind in self._iterate_buckets(__A ): _snake_case : Dict = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__A ) def __len__( self : int ): '''simple docstring''' return self._len def __iter__( self : List[str] ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: PreTrainedTokenizer , lowerCAmelCase: int , lowerCAmelCase: Optional[int] = None , )-> Optional[Any]: _snake_case : str = {} if train_file is not None: _snake_case : Optional[Any] = [train_file] if eval_file is not None: _snake_case : int = [eval_file] if test_file is not None: _snake_case : int = [test_file] _snake_case : Optional[int] = datasets.load_dataset('csv' , data_files=_lowerCamelCase ) _snake_case : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) _snake_case : int = features_name.pop(_lowerCamelCase ) _snake_case : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) _snake_case : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} _snake_case : Optional[int] = tokenizer.model_input_names _snake_case : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): _snake_case : List[Any] = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): _snake_case : Any = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _snake_case : Tuple = {k: v for k, v in ex.items() if k in input_names} _snake_case : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _snake_case : int = {k: v for k, v in ex.items() if k in input_names} _snake_case : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _snake_case : int = {k: v for k, v in ex.items() if k in input_names} _snake_case : Optional[Any] = labelaid[ex[label_name]] yield (d, label) _snake_case : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _snake_case : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _snake_case : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _snake_case : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _snake_case : Dict = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _snake_case : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[int] =field(metadata={"""help""": """Which column contains the label"""} ) a_ : int =field(default=lowercase__ , metadata={"""help""": """The path of the training file"""} ) a_ : Dict =field(default=lowercase__ , metadata={"""help""": """The path of the development file"""} ) a_ : Tuple =field(default=lowercase__ , metadata={"""help""": """The path of the test file"""} ) a_ : Optional[int] =field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : Any =field( default=lowercase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[int] =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Tuple =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : List[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : Union[str, Any] =field(default=lowercase__ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ : Tuple =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowerCamelCase_ ( )-> int: _snake_case : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _snake_case : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _snake_case : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _snake_case : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase: EvalPrediction ) -> Dict: _snake_case : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _snake_case : str = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : str = trainer.evaluate() _snake_case : Union[str, Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(_lowerCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
def lowerCamelCase_ ( lowerCAmelCase: int = 1_00 )-> str: _snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 _snake_case : str = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str ): '''simple docstring''' super().__init__() _snake_case : Dict = nn.Linear(3 , 4 ) _snake_case : int = nn.BatchNormad(4 ) _snake_case : Tuple = nn.Linear(4 , 5 ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : int ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , model.state_dict() ) _snake_case : str = os.path.join(a_ , 'index.json' ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: _snake_case : int = os.path.join(a_ , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: _snake_case : Any = torch.randn(2 , 3 , dtype=a_ ) with TemporaryDirectory() as tmp_dir: _snake_case : List[Any] = offload_weight(a_ , 'weight' , a_ , {} ) _snake_case : str = os.path.join(a_ , 'weight.dat' ) self.assertTrue(os.path.isfile(a_ ) ) self.assertDictEqual(a_ , {'weight': {'shape': [2, 3], 'dtype': str(a_ ).split('.' )[1]}} ) _snake_case : List[str] = load_offloaded_weight(a_ , index['weight'] ) self.assertTrue(torch.equal(a_ , a_ ) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = ModelForTest() _snake_case : int = model.state_dict() _snake_case : str = {k: v for k, v in state_dict.items() if """linear2""" not in k} _snake_case : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) _snake_case : Tuple = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) _snake_case : Dict = {k: v for k, v in state_dict.items() if """weight""" in k} _snake_case : str = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) _snake_case : Optional[int] = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) # Duplicates are removed _snake_case : Union[str, Any] = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} _snake_case : Optional[Any] = extract_submodules_state_dict(a_ , ['a.1', 'a.2'] ) self.assertDictEqual(a_ , {'a.1': 0, 'a.2': 2} ) _snake_case : List[Any] = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} _snake_case : Tuple = extract_submodules_state_dict(a_ , ['a.1', 'a.2'] ) self.assertDictEqual(a_ , {'a.1.a': 0, 'a.2.a': 2} )
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> List[Any]: if "model" in orig_key: _snake_case : Union[str, Any] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: _snake_case : List[str] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: _snake_case : Optional[Any] = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: _snake_case : Union[str, Any] = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: _snake_case : Optional[int] = orig_key.split('.' )[0].split('_' )[-1] _snake_case : Union[str, Any] = orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: _snake_case : Dict = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: _snake_case : Union[str, Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: _snake_case : int = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: _snake_case : str = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: _snake_case : str = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: _snake_case : Any = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: _snake_case : str = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: _snake_case : List[str] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: _snake_case : Dict = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: _snake_case : Tuple = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: _snake_case : List[str] = 'yoso.' + orig_key return orig_key def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Any )-> List[Any]: for key in orig_state_dict.copy().keys(): _snake_case : Any = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: _snake_case : str = val _snake_case : List[Any] = orig_state_dict['cls.predictions.decoder.bias'] _snake_case : Dict = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] )-> int: _snake_case : Union[str, Any] = torch.load(__snake_case , map_location='cpu' )['model_state_dict'] _snake_case : Tuple = YosoConfig.from_json_file(__snake_case ) _snake_case : Optional[Any] = YosoForMaskedLM(__snake_case ) _snake_case : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def lowerCamelCase_ ( lowerCAmelCase: Accelerator , lowerCAmelCase: int = 16 , lowerCAmelCase: str = "bert-base-cased" )-> Tuple: _snake_case : str = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) _snake_case : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase: str ): # max_length=None => use the model max length (it's actually the default) _snake_case : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _snake_case : Optional[Any] = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase: List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _snake_case : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) _snake_case : str = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: Dict )-> Tuple: model.eval() _snake_case : List[str] = 0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Union[str, Any] = model(**UpperCAmelCase__ ) _snake_case : int = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _snake_case : List[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase__ ) - 1: _snake_case : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _snake_case : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) _snake_case : List[str] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> List[str]: # Initialize accelerator _snake_case : Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : List[Any] = config["""lr"""] _snake_case : int = int(config['num_epochs'] ) _snake_case : Dict = int(config['seed'] ) _snake_case : Optional[Any] = int(config['batch_size'] ) _snake_case : Tuple = args.model_name_or_path set_seed(UpperCAmelCase__ ) _snake_case : Tuple = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : int = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) # Instantiate optimizer _snake_case : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _snake_case : str = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: _snake_case : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _snake_case : List[Any] = 1 _snake_case : List[str] = (len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _snake_case : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase__ , ) else: _snake_case : str = DummyScheduler(UpperCAmelCase__ , total_num_steps=UpperCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case : Optional[int] = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # We need to keep track of how many total steps we have iterated over _snake_case : Any = 0 # We also need to keep track of the stating epoch so files are named properly _snake_case : Optional[Any] = 0 _snake_case : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) _snake_case : Optional[Any] = num_epochs if args.partial_train_epoch is not None: _snake_case : List[str] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _snake_case : Optional[int] = args.resume_from_checkpoint.split('epoch_' )[1] _snake_case : str = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _snake_case : Union[str, Any] = int(UpperCAmelCase__ ) + 1 _snake_case : Optional[Any] = evaluation_loop(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) accelerator.print('resumed checkpoint performance:' , UpperCAmelCase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , 'r' ) as f: _snake_case : Any = json.load(UpperCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _snake_case : Optional[int] = {} for epoch in range(UpperCAmelCase__ , UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): _snake_case : Union[str, Any] = model(**UpperCAmelCase__ ) _snake_case : Dict = outputs.loss _snake_case : List[str] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _snake_case : List[str] = F"""epoch_{epoch}""" _snake_case : Dict = os.path.join(args.output_dir , UpperCAmelCase__ ) accelerator.save_state(UpperCAmelCase__ ) _snake_case : Dict = evaluation_loop(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _snake_case : Optional[int] = accuracy _snake_case : List[str] = lr_scheduler.get_lr()[0] _snake_case : List[str] = optimizer.param_groups[0]["""lr"""] _snake_case : List[str] = epoch _snake_case : List[str] = overall_step accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( )-> str: _snake_case : Optional[int] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase__ , default=2 , help='Number of train epochs.' , ) _snake_case : Dict = parser.parse_args() _snake_case : Tuple = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''ViTFeatureExtractor'''] lowerCAmelCase_ = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0