code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase_ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple , lowerCAmelCase: Tuple )-> Union[str, Any]: for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _snake_case : Union[str, Any] = 'lm_head' _snake_case : str = getattr(lowerCAmelCase , lowerCAmelCase ) if weight_type is not None: _snake_case : Tuple = getattr(lowerCAmelCase , lowerCAmelCase ).shape else: _snake_case : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _snake_case : List[Any] = value elif weight_type == "weight_g": _snake_case : List[Any] = value elif weight_type == "weight_v": _snake_case : str = value elif weight_type == "bias": _snake_case : List[Any] = value else: _snake_case : Tuple = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[str] , lowerCAmelCase: Any )-> int: _snake_case : str = [] _snake_case : str = fairseq_model.state_dict() _snake_case : Tuple = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) _snake_case : List[Any] = True else: for key, mapped_key in MAPPING.items(): _snake_case : Any = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _snake_case : Optional[int] = True if "*" in mapped_key: _snake_case : List[Any] = name.split(lowerCAmelCase )[0].split('.' )[-2] _snake_case : Optional[Any] = mapped_key.replace('*' , lowerCAmelCase ) if "weight_g" in name: _snake_case : Optional[Any] = 'weight_g' elif "weight_v" in name: _snake_case : Dict = 'weight_v' elif "bias" in name: _snake_case : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case : List[str] = 'weight' else: _snake_case : Optional[int] = None set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: Tuple , lowerCAmelCase: Optional[Any] )-> Union[str, Any]: _snake_case : Optional[Any] = full_name.split('conv_layers.' )[-1] _snake_case : Dict = name.split('.' ) _snake_case : List[Any] = int(items[0] ) _snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _snake_case : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _snake_case : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _snake_case : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _snake_case : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: str=None , lowerCAmelCase: Any=True )-> int: if config_path is not None: _snake_case : Any = UniSpeechConfig.from_pretrained(lowerCAmelCase ) else: _snake_case : Union[str, Any] = UniSpeechConfig() if is_finetuned: if dict_path: _snake_case : Any = Dictionary.load_from_json(lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : Union[str, Any] = target_dict.pad_index _snake_case : str = target_dict.bos_index _snake_case : Dict = target_dict.eos_index _snake_case : Optional[Any] = len(target_dict.symbols ) _snake_case : Tuple = os.path.join(lowerCAmelCase , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase ) ) return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched _snake_case : Union[str, Any] = 42 _snake_case : List[str] = 43 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase , lowerCAmelCase ) _snake_case : Optional[Any] = WavaVecaPhonemeCTCTokenizer( lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase , ) _snake_case : List[str] = True if config.feat_extract_norm == 'layer' else False _snake_case : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) _snake_case : Union[str, Any] = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) _snake_case : Dict = UniSpeechForCTC(lowerCAmelCase ) else: _snake_case : Dict = UniSpeechForPreTraining(lowerCAmelCase ) if is_finetuned: _snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: _snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _snake_case : Tuple = model[0].eval() recursively_load_weights(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) hf_unispeech.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _snake_case : Any = model _snake_case : Optional[int] = kwargs.get('model_save_dir' , UpperCamelCase ) _snake_case : Optional[Any] = kwargs.get('latest_model_name' , UpperCamelCase ) def __call__( self : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = {k: np.array(UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase , UpperCamelCase ) @staticmethod def UpperCamelCase_ ( UpperCamelCase : Union[str, Path] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None ): '''simple docstring''' if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _snake_case : str = 'CPUExecutionProvider' return ort.InferenceSession(UpperCamelCase , providers=[provider] , sess_options=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Union[str, Path] , UpperCamelCase : Optional[str] = None , **UpperCamelCase : str ): '''simple docstring''' _snake_case : int = file_name if file_name is not None else ONNX_WEIGHTS_NAME _snake_case : Union[str, Any] = self.model_save_dir.joinpath(self.latest_model_name ) _snake_case : Dict = Path(UpperCamelCase ).joinpath(UpperCamelCase ) try: shutil.copyfile(UpperCamelCase , UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _snake_case : Optional[Any] = self.model_save_dir.joinpath(UpperCamelCase ) if src_path.exists(): _snake_case : Union[str, Any] = Path(UpperCamelCase ).joinpath(UpperCamelCase ) try: shutil.copyfile(UpperCamelCase , UpperCamelCase ) except shutil.SameFileError: pass def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' if os.path.isfile(UpperCamelCase ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) # saving model weights/files self._save_pretrained(UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Tuple , UpperCamelCase : Union[str, Path] , UpperCamelCase : Optional[Union[bool, str, None]] = None , UpperCamelCase : Optional[Union[str, None]] = None , UpperCamelCase : bool = False , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional["ort.SessionOptions"] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase ): _snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase , UpperCamelCase ) , provider=UpperCamelCase , sess_options=UpperCamelCase ) _snake_case : Union[str, Any] = Path(UpperCamelCase ) # load model from hub else: # download model _snake_case : List[str] = hf_hub_download( repo_id=UpperCamelCase , filename=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , ) _snake_case : str = Path(UpperCamelCase ).parent _snake_case : str = Path(UpperCamelCase ).name _snake_case : List[Any] = OnnxRuntimeModel.load_model(UpperCamelCase , provider=UpperCamelCase , sess_options=UpperCamelCase ) return cls(model=UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : List[str] , UpperCamelCase : Union[str, Path] , UpperCamelCase : bool = True , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , **UpperCamelCase : Any , ): '''simple docstring''' _snake_case : List[str] = None if len(str(UpperCamelCase ).split('@' ) ) == 2: _snake_case : List[Any] = model_id.split('@' ) return cls._from_pretrained( model_id=UpperCamelCase , revision=UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , use_auth_token=UpperCamelCase , **UpperCamelCase , )
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCAmelCase_ = Mapping[str, np.ndarray] lowerCAmelCase_ = Mapping[str, Any] # Is a nested dict. lowerCAmelCase_ = 0.01 @dataclasses.dataclass(frozen=UpperCAmelCase_ ) class _lowerCAmelCase : '''simple docstring''' a_ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. a_ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. a_ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. a_ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. a_ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions a_ : Optional[np.ndarray] =None # Optional remark about the protein. Included as a comment in output PDB # files a_ : Optional[str] =None # Templates used to generate this protein (prediction-only) a_ : Optional[Sequence[str]] =None # Chain corresponding to each parent a_ : Optional[Sequence[int]] =None def lowerCamelCase_ ( lowerCAmelCase: str )-> Protein: _snake_case : List[Any] = R'(\[[A-Z]+\]\n)' _snake_case : List[str] = [tag.strip() for tag in re.split(lowerCAmelCase , lowerCAmelCase ) if len(lowerCAmelCase ) > 0] _snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) _snake_case : List[str] = ["N", "CA", "C"] _snake_case : List[Any] = None _snake_case : Tuple = None _snake_case : Dict = None for g in groups: if "[PRIMARY]" == g[0]: _snake_case : Optional[Any] = g[1][0].strip() for i in range(len(lowerCAmelCase ) ): if seq[i] not in residue_constants.restypes: _snake_case : int = 'X' # FIXME: strings are immutable _snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(lowerCAmelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(lowerCAmelCase , g[1][axis].split() ) ) ) _snake_case : Optional[int] = np.array(lowerCAmelCase ) _snake_case : Dict = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase ): _snake_case : List[Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _snake_case : List[Any] = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) _snake_case : Union[str, Any] = np.zeros( ( len(lowerCAmelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase ): _snake_case : Optional[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowerCAmelCase , atom_mask=lowerCAmelCase , aatype=lowerCAmelCase , residue_index=np.arange(len(lowerCAmelCase ) ) , b_factors=lowerCAmelCase , ) def lowerCamelCase_ ( lowerCAmelCase: Protein , lowerCAmelCase: int = 0 )-> List[str]: _snake_case : List[str] = [] _snake_case : Dict = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) _snake_case : str = prot.parents _snake_case : Optional[Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _snake_case : Union[str, Any] = [p for i, p in zip(lowerCAmelCase , lowerCAmelCase ) if i == chain_id] if parents is None or len(lowerCAmelCase ) == 0: _snake_case : Optional[int] = ['N/A'] pdb_headers.append(F"""PARENT {' '.join(lowerCAmelCase )}""" ) return pdb_headers def lowerCamelCase_ ( lowerCAmelCase: Protein , lowerCAmelCase: str )-> str: _snake_case : List[str] = [] _snake_case : Union[str, Any] = pdb_str.split('\n' ) _snake_case : Any = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) _snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _snake_case : Any = [] if prot.parents_chain_index is not None: _snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowerCAmelCase ) , [] ) parent_dict[str(lowerCAmelCase )].append(lowerCAmelCase ) _snake_case : Any = max([int(lowerCAmelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _snake_case : List[Any] = parent_dict.get(str(lowerCAmelCase ) , ['N/A'] ) parents_per_chain.append(lowerCAmelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _snake_case : Optional[Any] = [['N/A']] def make_parent_line(lowerCAmelCase: Sequence[str] ) -> str: return F"""PARENT {' '.join(lowerCAmelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _snake_case : Optional[int] = 0 for i, l in enumerate(lowerCAmelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowerCAmelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowerCAmelCase ): _snake_case : int = parents_per_chain[chain_counter] else: _snake_case : Dict = ['N/A'] out_pdb_lines.append(make_parent_line(lowerCAmelCase ) ) return "\n".join(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Protein )-> str: _snake_case : int = residue_constants.restypes + ['X'] def res_atoa(lowerCAmelCase: int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) _snake_case : str = residue_constants.atom_types _snake_case : List[str] = [] _snake_case : Any = prot.atom_mask _snake_case : Optional[int] = prot.aatype _snake_case : str = prot.atom_positions _snake_case : Tuple = prot.residue_index.astype(np.intaa ) _snake_case : List[str] = prot.b_factors _snake_case : Dict = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) _snake_case : Any = get_pdb_headers(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: pdb_lines.extend(lowerCAmelCase ) _snake_case : Optional[Any] = aatype.shape[0] _snake_case : Optional[Any] = 1 _snake_case : Union[str, Any] = 0 _snake_case : int = string.ascii_uppercase _snake_case : str = None # Add all atom sites. for i in range(lowerCAmelCase ): _snake_case : Dict = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowerCAmelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _snake_case : Optional[Any] = 'ATOM' _snake_case : Tuple = atom_name if len(lowerCAmelCase ) == 4 else F""" {atom_name}""" _snake_case : Dict = '' _snake_case : Any = '' _snake_case : int = 1.0_0 _snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. _snake_case : List[str] = '' _snake_case : List[Any] = 'A' if chain_index is not None: _snake_case : List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _snake_case : str = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(lowerCAmelCase ) atom_index += 1 _snake_case : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _snake_case : str = True _snake_case : Optional[Any] = chain_index[i + 1] if should_terminate: # Close the chain. _snake_case : int = 'TER' _snake_case : List[str] = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(lowerCAmelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowerCAmelCase , lowerCAmelCase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Protein )-> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase_ ( lowerCAmelCase: FeatureDict , lowerCAmelCase: ModelOutput , lowerCAmelCase: Optional[np.ndarray] = None , lowerCAmelCase: Optional[np.ndarray] = None , lowerCAmelCase: Optional[str] = None , lowerCAmelCase: Optional[Sequence[str]] = None , lowerCAmelCase: Optional[Sequence[int]] = None , )-> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=lowerCAmelCase , remark=lowerCAmelCase , parents=lowerCAmelCase , parents_chain_index=lowerCAmelCase , )
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""image_processor"""] a_ : Optional[Any] ="""SamImageProcessor""" def __init__( self : Tuple , UpperCamelCase : Any ): '''simple docstring''' super().__init__(UpperCamelCase ) _snake_case : Dict = self.image_processor _snake_case : str = -10 _snake_case : int = self.image_processor.size['longest_edge'] def __call__( self : int , UpperCamelCase : Any=None , UpperCamelCase : Dict=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : str , ): '''simple docstring''' _snake_case : Optional[int] = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # pop arguments that are not used in the foward but used nevertheless _snake_case : int = encoding_image_processor['original_sizes'] if hasattr(UpperCamelCase , 'numpy' ): # Checks if Torch or TF tensor _snake_case : str = original_sizes.numpy() _snake_case : List[str] = self._check_and_preprocess_points( input_points=UpperCamelCase , input_labels=UpperCamelCase , input_boxes=UpperCamelCase , ) _snake_case : Optional[Any] = self._normalize_and_convert( UpperCamelCase , UpperCamelCase , input_points=UpperCamelCase , input_labels=UpperCamelCase , input_boxes=UpperCamelCase , return_tensors=UpperCamelCase , ) return encoding_image_processor def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Tuple=None , UpperCamelCase : int="pt" , ): '''simple docstring''' if input_points is not None: if len(UpperCamelCase ) != len(UpperCamelCase ): _snake_case : Dict = [ self._normalize_coordinates(self.target_size , UpperCamelCase , original_sizes[0] ) for point in input_points ] else: _snake_case : Dict = [ self._normalize_coordinates(self.target_size , UpperCamelCase , UpperCamelCase ) for point, original_size in zip(UpperCamelCase , UpperCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _snake_case : Optional[Any] = self._pad_points_and_labels(UpperCamelCase , UpperCamelCase ) _snake_case : Tuple = np.array(UpperCamelCase ) if input_labels is not None: _snake_case : Optional[int] = np.array(UpperCamelCase ) if input_boxes is not None: if len(UpperCamelCase ) != len(UpperCamelCase ): _snake_case : Dict = [ self._normalize_coordinates(self.target_size , UpperCamelCase , original_sizes[0] , is_bounding_box=UpperCamelCase ) for box in input_boxes ] else: _snake_case : List[str] = [ self._normalize_coordinates(self.target_size , UpperCamelCase , UpperCamelCase , is_bounding_box=UpperCamelCase ) for box, original_size in zip(UpperCamelCase , UpperCamelCase ) ] _snake_case : str = np.array(UpperCamelCase ) if input_boxes is not None: if return_tensors == "pt": _snake_case : int = torch.from_numpy(UpperCamelCase ) # boxes batch size of 1 by default _snake_case : Any = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _snake_case : List[str] = tf.convert_to_tensor(UpperCamelCase ) # boxes batch size of 1 by default _snake_case : Any = tf.expand_dims(UpperCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": _snake_case : Optional[int] = torch.from_numpy(UpperCamelCase ) # point batch size of 1 by default _snake_case : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _snake_case : int = tf.convert_to_tensor(UpperCamelCase ) # point batch size of 1 by default _snake_case : Optional[Any] = tf.expand_dims(UpperCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": _snake_case : Optional[Any] = torch.from_numpy(UpperCamelCase ) # point batch size of 1 by default _snake_case : Optional[int] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _snake_case : int = tf.convert_to_tensor(UpperCamelCase ) # point batch size of 1 by default _snake_case : Tuple = tf.expand_dims(UpperCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Any = max([point.shape[0] for point in input_points] ) _snake_case : int = [] for i, point in enumerate(UpperCamelCase ): if point.shape[0] != expected_nb_points: _snake_case : List[str] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _snake_case : Optional[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(UpperCamelCase ) _snake_case : Union[str, Any] = processed_input_points return input_points, input_labels def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : np.ndarray , UpperCamelCase : Dict , UpperCamelCase : List[str]=False ): '''simple docstring''' _snake_case : Optional[int] = original_size _snake_case : str = self.image_processor._get_preprocess_shape(UpperCamelCase , longest_edge=UpperCamelCase ) _snake_case : Optional[Any] = deepcopy(UpperCamelCase ).astype(UpperCamelCase ) if is_bounding_box: _snake_case : str = coords.reshape(-1 , 2 , 2 ) _snake_case : Union[str, Any] = coords[..., 0] * (new_w / old_w) _snake_case : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: _snake_case : Any = coords.reshape(-1 , 4 ) return coords def UpperCamelCase_ ( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : int=None , ): '''simple docstring''' if input_points is not None: if hasattr(UpperCamelCase , 'numpy' ): # Checks for TF or Torch tensor _snake_case : Union[str, Any] = input_points.numpy().tolist() if not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_points[0] , UpperCamelCase ): raise ValueError('Input points must be a list of list of floating points.' ) _snake_case : Tuple = [np.array(UpperCamelCase ) for input_point in input_points] else: _snake_case : Optional[Any] = None if input_labels is not None: if hasattr(UpperCamelCase , 'numpy' ): _snake_case : Dict = input_labels.numpy().tolist() if not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_labels[0] , UpperCamelCase ): raise ValueError('Input labels must be a list of list integers.' ) _snake_case : Optional[Any] = [np.array(UpperCamelCase ) for label in input_labels] else: _snake_case : Optional[Any] = None if input_boxes is not None: if hasattr(UpperCamelCase , 'numpy' ): _snake_case : Tuple = input_boxes.numpy().tolist() if ( not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_boxes[0] , UpperCamelCase ) or not isinstance(input_boxes[0][0] , UpperCamelCase ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) _snake_case : Tuple = [np.array(UpperCamelCase ).astype(np.floataa ) for box in input_boxes] else: _snake_case : Any = None return input_points, input_labels, input_boxes @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(UpperCamelCase ) ) def UpperCamelCase_ ( self : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : Any ): '''simple docstring''' return self.image_processor.post_process_masks(*UpperCamelCase , **UpperCamelCase )
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCAmelCase_ = """CompVis/stable-diffusion-v1-1""" lowerCAmelCase_ = """CompVis/stable-diffusion-v1-2""" lowerCAmelCase_ = """CompVis/stable-diffusion-v1-3""" lowerCAmelCase_ = """CompVis/stable-diffusion-v1-4""" class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : AutoencoderKL , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase : StableDiffusionSafetyChecker , UpperCamelCase : CLIPImageProcessor , UpperCamelCase : bool = True , ): '''simple docstring''' super()._init_() _snake_case : List[str] = StableDiffusionPipeline.from_pretrained(UpperCamelCase ) _snake_case : Tuple = StableDiffusionPipeline.from_pretrained(UpperCamelCase ) _snake_case : Tuple = StableDiffusionPipeline.from_pretrained(UpperCamelCase ) _snake_case : List[str] = StableDiffusionPipeline( vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , requires_safety_checker=UpperCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return {k: getattr(self , UpperCamelCase ) for k in self.config.keys() if not k.startswith('_' )} def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.enable_attention_slicing(UpperCamelCase ) @torch.no_grad() def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : List[str] , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : Tuple , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : Any , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : List[str] , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(UpperCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 _snake_case : Union[str, Any] = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 _snake_case : Union[str, Any] = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 _snake_case : Dict = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 _snake_case : List[str] = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import qiskit def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> qiskit.result.counts.Counts: _snake_case : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _snake_case : Union[str, Any] = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _snake_case : int = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( lowerCAmelCase: Dict )-> List[str]: _snake_case : str = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> Optional[Any]: _snake_case : Any = emb.weight.shape _snake_case : Union[str, Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) _snake_case : Tuple = emb.weight.data return lin_layer def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> Any: _snake_case : Optional[Any] = torch.load(lowerCAmelCase , map_location='cpu' ) _snake_case : Optional[int] = Namespace(**checkpoint['cfg']['model'] ) _snake_case : Optional[Any] = checkpoint['model'] remove_ignore_keys_(lowerCAmelCase ) _snake_case : str = state_dict['decoder.embed_tokens.weight'].shape[0] _snake_case : Union[str, Any] = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} _snake_case : List[str] = XGLMConfig( vocab_size=lowerCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case : List[Any] = XGLMForCausalLM(lowerCAmelCase ) _snake_case : Optional[int] = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : int=None , UpperCamelCase : List[Any]=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Tuple = parent _snake_case : Union[str, Any] = config_class _snake_case : Optional[int] = has_text_modality _snake_case : Optional[int] = kwargs _snake_case : str = common_properties def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = self.config_class(**self.inputs_dict ) _snake_case : Any = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCamelCase ): try: setattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) self.parent.assertEqual( getattr(UpperCamelCase , UpperCamelCase ) , UpperCamelCase , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCamelCase , UpperCamelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCamelCase ): try: _snake_case : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCamelCase , UpperCamelCase ) , UpperCamelCase , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCamelCase , UpperCamelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : int = self.config_class(**self.inputs_dict ) _snake_case : List[Any] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : str = os.path.join(UpperCamelCase , 'config.json' ) config_first.to_json_file(UpperCamelCase ) _snake_case : str = self.config_class.from_json_file(UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCamelCase ) _snake_case : Dict = self.config_class.from_pretrained(UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = self.config_class(**self.inputs_dict ) _snake_case : Optional[int] = 'test' with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Optional[Any] = os.path.join(UpperCamelCase , UpperCamelCase ) config_first.save_pretrained(UpperCamelCase ) _snake_case : Optional[Any] = self.config_class.from_pretrained(UpperCamelCase , subfolder=UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _snake_case : List[str] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if self.config_class.is_composition: return _snake_case : Tuple = self.config_class() self.parent.assertIsNotNone(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = copy.deepcopy(UpperCamelCase ) _snake_case : int = self.config_class(**UpperCamelCase ) _snake_case : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(UpperCamelCase , UpperCamelCase ) != value: wrong_values.append((key, getattr(UpperCamelCase , UpperCamelCase ), value) ) if len(UpperCamelCase ) > 0: _snake_case : Union[str, Any] = '\n'.join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=0.01 , UpperCamelCase : Optional[Any]=10_00 ): '''simple docstring''' _snake_case : Tuple = p_stop _snake_case : Dict = max_length def __iter__( self : Any ): '''simple docstring''' _snake_case : Tuple = 0 _snake_case : Optional[Any] = False while not stop and count < self.max_length: yield count count += 1 _snake_case : str = random.random() < self.p_stop class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[Any]=False , UpperCamelCase : List[str]=True ): '''simple docstring''' _snake_case : Optional[Any] = [ BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) for i in range(2 ) ] _snake_case : Any = [list(UpperCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCamelCase ) for shard in batch_sampler_shards] , [len(UpperCamelCase ) for e in expected] ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Any = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Optional[int] = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Dict = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : int = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Union[str, Any] = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _snake_case : int = [BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , even_batches=UpperCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int]=False , UpperCamelCase : int=2 , UpperCamelCase : List[Any]=False ): '''simple docstring''' random.seed(UpperCamelCase ) _snake_case : Optional[Any] = list(UpperCamelCase ) _snake_case : Any = [ IterableDatasetShard( UpperCamelCase , batch_size=UpperCamelCase , drop_last=UpperCamelCase , num_processes=UpperCamelCase , process_index=UpperCamelCase , split_batches=UpperCamelCase , ) for i in range(UpperCamelCase ) ] _snake_case : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCamelCase ) iterable_dataset_lists.append(list(UpperCamelCase ) ) _snake_case : str = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _snake_case : Optional[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) self.assertTrue(len(UpperCamelCase ) % shard_batch_size == 0 ) _snake_case : Tuple = [] for idx in range(0 , len(UpperCamelCase ) , UpperCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCamelCase ) < len(UpperCamelCase ): reference += reference self.assertListEqual(UpperCamelCase , reference[: len(UpperCamelCase )] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = 42 _snake_case : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) # Edge case with a very small dataset _snake_case : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = SkipBatchSampler(UpperCamelCase , 2 ) self.assertListEqual(list(UpperCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) _snake_case : int = skip_first_batches(UpperCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' Accelerator() _snake_case : Tuple = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Dict =CLIPTokenizer a_ : str =CLIPTokenizerFast a_ : str =True a_ : Union[str, Any] ={} a_ : List[str] =False def UpperCamelCase_ ( self : int ): '''simple docstring''' super().setUp() # fmt: off _snake_case : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case : Optional[Any] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _snake_case : Tuple = {'unk_token': '<unk>'} _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Optional[int] , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[Any] = 'lower newer' _snake_case : List[str] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : int = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : Tuple = 'lower newer' _snake_case : List[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _snake_case : Union[str, Any] = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : List[str] = tokens + [tokenizer.unk_token] _snake_case : Any = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) @require_ftfy def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : str = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) _snake_case : int = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _snake_case : Dict = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : Dict = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _snake_case : Union[str, Any] = 'xa\u0303y' + ' ' + 'x\xe3y' _snake_case : Any = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : int = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Test that the tokenization is identical on unicode of space type _snake_case : int = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _snake_case : Tuple = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : Optional[Any] = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Test that the tokenization is identical on unicode of line break type _snake_case : Optional[int] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _snake_case : List[str] = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : List[str] = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Tuple = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : int = f"""{text_of_1_token} {text_of_1_token}""" _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , ) _snake_case : int = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : Tuple = f""" {text}""" _snake_case : str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , ) _snake_case : Optional[Any] = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase ) + 1, 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaises(UpperCamelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = inspect.getfile(accelerate.test_utils ) _snake_case : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _snake_case : List[Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() _snake_case : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any ="""timm_backbone""" def __init__( self : Optional[int] , UpperCamelCase : Dict=None , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=True , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : str = backbone _snake_case : str = num_channels _snake_case : Optional[Any] = features_only _snake_case : List[Any] = use_pretrained_backbone _snake_case : Union[str, Any] = True _snake_case : Any = out_indices if out_indices is not None else (-1,)
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase_ ( lowerCAmelCase: str )-> str: if "://" in dataset_path: _snake_case : List[Any] = dataset_path.split('://' )[1] return dataset_path def lowerCamelCase_ ( lowerCAmelCase: fsspec.AbstractFileSystem )-> bool: if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase_ ( lowerCAmelCase: fsspec.AbstractFileSystem , lowerCAmelCase: str , lowerCAmelCase: str )-> Union[str, Any]: _snake_case : Optional[int] = not is_remote_filesystem(lowerCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCAmelCase ) , fs._strip_protocol(lowerCAmelCase ) ) else: fs.mv(lowerCAmelCase , lowerCAmelCase , recursive=lowerCAmelCase ) def lowerCamelCase_ ( )-> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _snake_case : Tuple = None _snake_case : Any = None _snake_case : Optional[int] = threading.Lock()
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
import math from datetime import datetime, timedelta def lowerCamelCase_ ( lowerCAmelCase: int )-> datetime: _snake_case : Optional[Any] = year % 19 _snake_case : List[Any] = year % 4 _snake_case : Optional[Any] = year % 7 _snake_case : List[str] = math.floor(year / 1_00 ) _snake_case : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _snake_case : Union[str, Any] = leap_day_inhibits / 4 _snake_case : List[str] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _snake_case : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _snake_case : List[str] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _snake_case : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase , 4 , 18 ) else: return datetime(lowerCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowerCAmelCase_ = """will be""" if year > datetime.now().year else """was""" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Any=13 , UpperCamelCase : List[Any]=32 , UpperCamelCase : int=3 , UpperCamelCase : List[str]=4 , UpperCamelCase : Optional[Any]=[10, 20, 30, 40] , UpperCamelCase : Union[str, Any]=[2, 2, 3, 2] , UpperCamelCase : Tuple=True , UpperCamelCase : int=True , UpperCamelCase : Tuple=37 , UpperCamelCase : Union[str, Any]="gelu" , UpperCamelCase : str=10 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : Tuple=["stage2", "stage3", "stage4"] , UpperCamelCase : Dict=3 , UpperCamelCase : Optional[Any]=None , ): '''simple docstring''' _snake_case : Union[str, Any] = parent _snake_case : Optional[int] = batch_size _snake_case : Optional[int] = image_size _snake_case : Dict = num_channels _snake_case : str = num_stages _snake_case : str = hidden_sizes _snake_case : Optional[Any] = depths _snake_case : List[Any] = is_training _snake_case : Tuple = use_labels _snake_case : Dict = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : List[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[Any] = out_features _snake_case : Optional[Any] = num_labels _snake_case : int = scope _snake_case : Union[str, Any] = num_stages def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : str = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = UperNetForSemanticSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Any = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() ( _snake_case ) : Tuple = config_and_inputs _snake_case : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] =(UperNetForSemanticSegmentation,) if is_torch_available() else () a_ : Union[str, Any] ={"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ : int =False a_ : List[str] =False a_ : List[Any] =False a_ : Any =False a_ : Optional[int] =False a_ : Dict =False def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = UperNetModelTester(self ) _snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(UpperCamelCase ) _snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : int ): _snake_case : List[Any] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _snake_case : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Any = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[Any] = _config_zero_init(UpperCamelCase ) _snake_case : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : List[str] = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase_ ( )-> Optional[Any]: _snake_case : List[str] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) _snake_case : int = Image.open(lowerCAmelCase ).convert('RGB' ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Tuple = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) _snake_case : Tuple = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(UpperCamelCase ) _snake_case : int = prepare_img() _snake_case : List[Any] = processor(images=UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) with torch.no_grad(): _snake_case : Dict = model(**UpperCamelCase ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) _snake_case : Optional[Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[str] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) _snake_case : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(UpperCamelCase ) _snake_case : Optional[Any] = prepare_img() _snake_case : Tuple = processor(images=UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) with torch.no_grad(): _snake_case : Dict = model(**UpperCamelCase ) _snake_case : int = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) _snake_case : List[str] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) )
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: def wrapper(*lowerCAmelCase: Tuple , **lowerCAmelCase: int ): _snake_case : Any = timeit.default_timer() _snake_case : Dict = func(*lowerCAmelCase , **lowerCAmelCase ) _snake_case : Optional[int] = timeit.default_timer() - starttime return delta _snake_case : List[str] = func.__name__ return wrapper def lowerCamelCase_ ( lowerCAmelCase: dict , lowerCAmelCase: Dict=1_00 , lowerCAmelCase: Optional[Any]=None )-> List[Any]: _snake_case : Optional[int] = [] _snake_case : List[str] = seq_shapes or {} for i in range(lowerCAmelCase ): _snake_case : Optional[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): _snake_case : Union[str, Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": _snake_case : Optional[Any] = 'The small grey turtle was surprisingly fast when challenged.' else: _snake_case : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): _snake_case : Optional[Any] = v.feature _snake_case : Optional[int] = seq_shapes[k] _snake_case : Tuple = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) _snake_case : Optional[int] = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[str] , lowerCAmelCase: Dict=1_00 , lowerCAmelCase: Optional[Any]=None )-> Dict: _snake_case : List[Any] = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: _snake_case : Union[str, Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) _snake_case : List[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _snake_case : Optional[Any] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase_ = """bart""" lowerCAmelCase_ = True @st.cache(allow_output_mutation=lowerCAmelCase ) def lowerCamelCase_ ( )-> int: if LOAD_DENSE_INDEX: _snake_case : Any = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _snake_case : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _snake_case : List[Any] = qar_model.eval() else: _snake_case : Any = (None, None) if MODEL_TYPE == "bart": _snake_case : Optional[Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _snake_case : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _snake_case : List[str] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _snake_case : Optional[Any] = sas_model.eval() else: _snake_case : Optional[int] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCAmelCase ) def lowerCamelCase_ ( )-> Dict: if LOAD_DENSE_INDEX: _snake_case : Tuple = faiss.StandardGpuResources() _snake_case : List[str] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _snake_case : Any = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , ) _snake_case : int = faiss.IndexFlatIP(1_28 ) _snake_case : Optional[int] = faiss.index_cpu_to_gpu(lowerCAmelCase , 1 , lowerCAmelCase ) wikiaab_gpu_index_flat.add(lowerCAmelCase ) # TODO fix for larger GPU else: _snake_case : Any = (None, None) _snake_case : Dict = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCAmelCase ) def lowerCamelCase_ ( )-> Tuple: _snake_case : Optional[Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _snake_case : Dict = elia['train_eli5'] _snake_case : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) ) _snake_case : Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(lowerCAmelCase ) return (elia_train, eli5_train_q_index) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = load_indexes() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = load_models() lowerCAmelCase_ , lowerCAmelCase_ = load_train_data() def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any]=10 )-> Tuple: _snake_case : Tuple = embed_questions_for_retrieval([question] , lowerCAmelCase , lowerCAmelCase ) _snake_case : int = eli5_train_q_index.search(lowerCAmelCase , lowerCAmelCase ) _snake_case : Dict = [elia_train[int(lowerCAmelCase )] for i in I[0]] return nn_examples def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Any="wiki40b" , lowerCAmelCase: List[Any]="dense" , lowerCAmelCase: str=10 )-> Optional[Any]: if source == "none": _snake_case : List[Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _snake_case : int = query_qa_dense_index( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: _snake_case : Tuple = query_es_index( lowerCAmelCase , lowerCAmelCase , index_name='english_wiki40b_snippets_100w' , n_results=lowerCAmelCase , ) _snake_case : Any = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _snake_case : str = 'question: {} context: {}'.format(lowerCAmelCase , lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCAmelCase : None), } ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any , lowerCAmelCase: int , lowerCAmelCase: Tuple=64 , lowerCAmelCase: Tuple=2_56 , lowerCAmelCase: List[str]=False , lowerCAmelCase: str=2 , lowerCAmelCase: Optional[int]=0.9_5 , lowerCAmelCase: Optional[Any]=0.8 )-> Tuple: with torch.no_grad(): _snake_case : Optional[Any] = qa_sas_generate( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_answers=1 , num_beams=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase , do_sample=lowerCAmelCase , temp=lowerCAmelCase , top_p=lowerCAmelCase , top_k=lowerCAmelCase , max_input_length=10_24 , device='cuda:0' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar lowerCAmelCase_ = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" lowerCAmelCase_ = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase_ = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase_ = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] lowerCAmelCase_ = st.sidebar.checkbox("""Demo options""") if demo_options: lowerCAmelCase_ = st.sidebar.selectbox( """""", action_list, index=3, ) lowerCAmelCase_ = action_list.index(action_st) lowerCAmelCase_ = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) lowerCAmelCase_ = show_type == """Show full text of passages""" else: lowerCAmelCase_ = 3 lowerCAmelCase_ = True lowerCAmelCase_ = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: lowerCAmelCase_ = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) lowerCAmelCase_ = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) lowerCAmelCase_ = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: lowerCAmelCase_ = """wiki40b""" lowerCAmelCase_ = """dense""" lowerCAmelCase_ = """beam""" lowerCAmelCase_ = 2 lowerCAmelCase_ = 64 lowerCAmelCase_ = 256 lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = st.sidebar.checkbox("""Generation options""") if generate_options: lowerCAmelCase_ = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) lowerCAmelCase_ = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) lowerCAmelCase_ = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) lowerCAmelCase_ = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": lowerCAmelCase_ = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase_ = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowerCAmelCase_ = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowerCAmelCase_ = None # start main text lowerCAmelCase_ = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] lowerCAmelCase_ = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase_ = st.text_input("""Enter your question here:""", """""") else: lowerCAmelCase_ = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase_ , lowerCAmelCase_ = make_support(question, source=wiki_source, method="""dense""", n_results=10) lowerCAmelCase_ , lowerCAmelCase_ = make_support(question, source=wiki_source, method="""sparse""", n_results=10) lowerCAmelCase_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase_ = support_list[:10] lowerCAmelCase_ = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: lowerCAmelCase_ , lowerCAmelCase_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCAmelCase_ , lowerCAmelCase_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): lowerCAmelCase_ = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) lowerCAmelCase_ = res[1].strip() if sec_titles == "": lowerCAmelCase_ = """[{}]({})""".format(res[0], wiki_url) else: lowerCAmelCase_ = sec_titles.split(""" & """) lowerCAmelCase_ = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase_ = find_nearest_training(question) lowerCAmelCase_ = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) lowerCAmelCase_ = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) lowerCAmelCase_ = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] ="""perceiver""" def __init__( self : Dict , UpperCamelCase : int=2_56 , UpperCamelCase : str=12_80 , UpperCamelCase : List[str]=7_68 , UpperCamelCase : Tuple=1 , UpperCamelCase : Optional[int]=26 , UpperCamelCase : Tuple=8 , UpperCamelCase : Dict=8 , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , UpperCamelCase : List[Any]="kv" , UpperCamelCase : List[Any]=1 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : int=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : List[str]=True , UpperCamelCase : Any=2_62 , UpperCamelCase : Any=20_48 , UpperCamelCase : Optional[Any]=56 , UpperCamelCase : Any=[3_68, 4_96] , UpperCamelCase : List[Any]=16 , UpperCamelCase : List[str]=19_20 , UpperCamelCase : int=16 , UpperCamelCase : Any=[1, 16, 2_24, 2_24] , **UpperCamelCase : Tuple , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Optional[int] = num_latents _snake_case : str = d_latents _snake_case : Dict = d_model _snake_case : Optional[int] = num_blocks _snake_case : int = num_self_attends_per_block _snake_case : Optional[int] = num_self_attention_heads _snake_case : Tuple = num_cross_attention_heads _snake_case : Tuple = qk_channels _snake_case : List[str] = v_channels _snake_case : int = cross_attention_shape_for_attention _snake_case : Union[str, Any] = self_attention_widening_factor _snake_case : Tuple = cross_attention_widening_factor _snake_case : List[str] = hidden_act _snake_case : str = attention_probs_dropout_prob _snake_case : Optional[Any] = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : Optional[int] = use_query_residual # masked language modeling attributes _snake_case : Tuple = vocab_size _snake_case : Optional[Any] = max_position_embeddings # image classification attributes _snake_case : Union[str, Any] = image_size # flow attributes _snake_case : str = train_size # multimodal autoencoding attributes _snake_case : int = num_frames _snake_case : List[Any] = audio_samples_per_frame _snake_case : int = samples_per_patch _snake_case : List[str] = output_shape class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return 1e-4 def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , UpperCamelCase : int = 3 , UpperCamelCase : int = 40 , UpperCamelCase : int = 40 , ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : Tuple = compute_effective_axis_dimension( UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case : List[str] = preprocessor.num_special_tokens_to_add(UpperCamelCase ) _snake_case : Union[str, Any] = compute_effective_axis_dimension( UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence _snake_case : List[str] = [' '.join(['a'] ) * seq_length] * batch_size _snake_case : List[Any] = dict(preprocessor(UpperCamelCase , return_tensors=UpperCamelCase ) ) _snake_case : List[str] = inputs.pop('input_ids' ) return inputs elif isinstance(UpperCamelCase , UpperCamelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : Optional[int] = compute_effective_axis_dimension(UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) _snake_case : Optional[int] = self._generate_dummy_images(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : Any = dict(preprocessor(images=UpperCamelCase , return_tensors=UpperCamelCase ) ) _snake_case : Optional[Any] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : bool =field(default=UpperCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) a_ : int =field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCamelCase_ ( )-> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) _snake_case : int = import_module('tasks' ) try: _snake_case : List[Any] = getattr(lowerCAmelCase , model_args.task_type ) _snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _snake_case : Optional[int] = token_classification_task.get_labels(data_args.labels ) _snake_case : Dict[int, str] = dict(enumerate(lowerCAmelCase ) ) _snake_case : Optional[Any] = len(lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , idalabel=lowerCAmelCase , labelaid={label: i for i, label in enumerate(lowerCAmelCase )} , cache_dir=model_args.cache_dir , ) _snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _snake_case : Tuple = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets _snake_case : List[Any] = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase , labels=lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _snake_case : int = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase , labels=lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase: np.ndarray , lowerCAmelCase: np.ndarray ) -> Tuple[List[int], List[int]]: _snake_case : Tuple = np.argmax(lowerCAmelCase , axis=2 ) _snake_case : Union[str, Any] = preds.shape _snake_case : int = [[] for _ in range(lowerCAmelCase )] _snake_case : Any = [[] for _ in range(lowerCAmelCase )] for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase: EvalPrediction ) -> Dict: _snake_case : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCAmelCase , lowerCAmelCase ), "precision": precision_score(lowerCAmelCase , lowerCAmelCase ), "recall": recall_score(lowerCAmelCase , lowerCAmelCase ), "f1": fa_score(lowerCAmelCase , lowerCAmelCase ), } # Data collator _snake_case : List[str] = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _snake_case : Dict = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=lowerCAmelCase , eval_dataset=lowerCAmelCase , compute_metrics=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : Tuple = trainer.evaluate() _snake_case : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowerCAmelCase , lowerCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(lowerCAmelCase ) # Predict if training_args.do_predict: _snake_case : Dict = TokenClassificationDataset( token_classification_task=lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase , labels=lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _snake_case : Union[str, Any] = trainer.predict(lowerCAmelCase ) _snake_case : Optional[int] = align_predictions(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , lowerCAmelCase , lowerCAmelCase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _snake_case : Tuple = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return results def lowerCamelCase_ ( lowerCAmelCase: Any )-> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] ="""Speech2TextFeatureExtractor""" a_ : Union[str, Any] ="""Speech2TextTokenizer""" def __init__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : int ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = self.feature_extractor _snake_case : Tuple = False def __call__( self : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase , **UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _snake_case : int = kwargs.pop('raw_speech' ) else: _snake_case : List[str] = kwargs.pop('audio' , UpperCamelCase ) _snake_case : str = kwargs.pop('sampling_rate' , UpperCamelCase ) _snake_case : Tuple = kwargs.pop('text' , UpperCamelCase ) if len(UpperCamelCase ) > 0: _snake_case : Optional[Any] = args[0] _snake_case : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _snake_case : Optional[int] = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase ) if text is not None: _snake_case : Optional[Any] = self.tokenizer(UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : str = encodings['input_ids'] return inputs def UpperCamelCase_ ( self : str , *UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @contextmanager def UpperCamelCase_ ( self : str ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _snake_case : Optional[Any] = True _snake_case : List[str] = self.tokenizer yield _snake_case : List[Any] = self.feature_extractor _snake_case : List[str] = False
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("""T""") class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' a_ : deque[T] # Cache store of keys a_ : set[T] # References of the keys in cache a_ : int =10 # Maximum capacity of cache def __init__( self : Optional[Any] , UpperCamelCase : int ): '''simple docstring''' _snake_case : Dict = deque() _snake_case : str = set() if not n: _snake_case : Dict = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: _snake_case : Any = n def UpperCamelCase_ ( self : Dict , UpperCamelCase : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _snake_case : Dict = self.dq_store.pop() self.key_reference.remove(UpperCamelCase ) else: self.dq_store.remove(UpperCamelCase ) self.dq_store.appendleft(UpperCamelCase ) self.key_reference.add(UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase ) def __repr__( self : Dict ): '''simple docstring''' return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> float: return base * power(lowerCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") lowerCAmelCase_ = int(input("""Enter the base: """).strip()) lowerCAmelCase_ = int(input("""Enter the exponent: """).strip()) lowerCAmelCase_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase_ = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
from torch import nn class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : str = class_size _snake_case : Any = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _snake_case : Any = nn.Linear(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = self.mlp(UpperCamelCase ) return logits
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""image_processor""", """tokenizer"""] a_ : Dict ="""AutoImageProcessor""" a_ : str ="""AutoTokenizer""" def __init__( self : Optional[Any] , UpperCamelCase : List[str]=None , UpperCamelCase : int=None , **UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : int = kwargs.pop('feature_extractor' ) _snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) _snake_case : Tuple = self.image_processor _snake_case : Optional[Any] = False def __call__( self : str , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase , **UpperCamelCase ) _snake_case : str = kwargs.pop('images' , UpperCamelCase ) _snake_case : Optional[int] = kwargs.pop('text' , UpperCamelCase ) if len(UpperCamelCase ) > 0: _snake_case : Optional[Any] = args[0] _snake_case : Dict = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _snake_case : Dict = self.image_processor(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) if text is not None: _snake_case : Optional[Any] = self.tokenizer(UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: _snake_case : Optional[Any] = encodings['input_ids'] return inputs def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @contextmanager def UpperCamelCase_ ( self : Any ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) _snake_case : Any = True _snake_case : List[str] = self.tokenizer yield _snake_case : Optional[int] = self.image_processor _snake_case : Optional[int] = False def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=None ): '''simple docstring''' if added_vocab is None: _snake_case : int = self.tokenizer.get_added_vocab() _snake_case : Optional[int] = {} while tokens: _snake_case : Optional[Any] = re.search(R'<s_(.*?)>' , UpperCamelCase , re.IGNORECASE ) if start_token is None: break _snake_case : Tuple = start_token.group(1 ) _snake_case : str = re.search(Rf"""</s_{key}>""" , UpperCamelCase , re.IGNORECASE ) _snake_case : int = start_token.group() if end_token is None: _snake_case : str = tokens.replace(UpperCamelCase , '' ) else: _snake_case : Optional[Any] = end_token.group() _snake_case : Tuple = re.escape(UpperCamelCase ) _snake_case : Any = re.escape(UpperCamelCase ) _snake_case : Union[str, Any] = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCamelCase , re.IGNORECASE ) if content is not None: _snake_case : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _snake_case : Optional[int] = self.tokenajson(UpperCamelCase , is_inner_value=UpperCamelCase , added_vocab=UpperCamelCase ) if value: if len(UpperCamelCase ) == 1: _snake_case : List[Any] = value[0] _snake_case : Optional[Any] = value else: # leaf nodes _snake_case : int = [] for leaf in content.split(R'<sep/>' ): _snake_case : Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _snake_case : List[Any] = leaf[1:-2] # for categorical special tokens output[key].append(UpperCamelCase ) if len(output[key] ) == 1: _snake_case : Optional[Any] = output[key][0] _snake_case : str = tokens[tokens.find(UpperCamelCase ) + len(UpperCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCamelCase , added_vocab=UpperCamelCase ) if len(UpperCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self : str ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class lowerCAmelCase_ ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""deformable_detr""" a_ : int ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[int] , UpperCamelCase : Any=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=3 , UpperCamelCase : Union[str, Any]=3_00 , UpperCamelCase : str=10_24 , UpperCamelCase : int=6 , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : List[str]=8 , UpperCamelCase : List[Any]=6 , UpperCamelCase : Union[str, Any]=10_24 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : str=True , UpperCamelCase : str="relu" , UpperCamelCase : Optional[Any]=2_56 , UpperCamelCase : str=0.1 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Optional[int]=1.0 , UpperCamelCase : str=True , UpperCamelCase : List[str]=False , UpperCamelCase : Any="sine" , UpperCamelCase : Tuple="resnet50" , UpperCamelCase : List[str]=True , UpperCamelCase : List[Any]=False , UpperCamelCase : Tuple=4 , UpperCamelCase : int=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : List[Any]=False , UpperCamelCase : Dict=3_00 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : str=5 , UpperCamelCase : str=2 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : str=1 , UpperCamelCase : str=5 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.25 , UpperCamelCase : Any=False , **UpperCamelCase : str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _snake_case : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : Dict = backbone_config.get('model_type' ) _snake_case : Tuple = CONFIG_MAPPING[backbone_model_type] _snake_case : int = config_class.from_dict(UpperCamelCase ) _snake_case : Union[str, Any] = use_timm_backbone _snake_case : Dict = backbone_config _snake_case : Optional[Any] = num_channels _snake_case : Any = num_queries _snake_case : List[Any] = max_position_embeddings _snake_case : Dict = d_model _snake_case : Optional[int] = encoder_ffn_dim _snake_case : Dict = encoder_layers _snake_case : Any = encoder_attention_heads _snake_case : List[Any] = decoder_ffn_dim _snake_case : Optional[int] = decoder_layers _snake_case : Any = decoder_attention_heads _snake_case : Tuple = dropout _snake_case : List[Any] = attention_dropout _snake_case : Optional[Any] = activation_dropout _snake_case : Tuple = activation_function _snake_case : Any = init_std _snake_case : List[str] = init_xavier_std _snake_case : Dict = encoder_layerdrop _snake_case : List[str] = auxiliary_loss _snake_case : Union[str, Any] = position_embedding_type _snake_case : Optional[Any] = backbone _snake_case : List[str] = use_pretrained_backbone _snake_case : Dict = dilation # deformable attributes _snake_case : Optional[int] = num_feature_levels _snake_case : Optional[Any] = encoder_n_points _snake_case : Union[str, Any] = decoder_n_points _snake_case : List[str] = two_stage _snake_case : Dict = two_stage_num_proposals _snake_case : Optional[Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _snake_case : str = class_cost _snake_case : List[str] = bbox_cost _snake_case : str = giou_cost # Loss coefficients _snake_case : str = mask_loss_coefficient _snake_case : Tuple = dice_loss_coefficient _snake_case : str = bbox_loss_coefficient _snake_case : str = giou_loss_coefficient _snake_case : List[Any] = eos_coefficient _snake_case : List[str] = focal_alpha _snake_case : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _snake_case : str = self.backbone_config.to_dict() _snake_case : List[str] = self.__class__.model_type return output
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list )-> float: if not nums: raise ValueError('List is empty' ) return sum(lowerCAmelCase ) / len(lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =KandinskyVaaImgaImgPipeline a_ : int =["""image_embeds""", """negative_image_embeds""", """image"""] a_ : List[str] =[ """image_embeds""", """negative_image_embeds""", """image""", ] a_ : Dict =[ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ : Optional[Any] =False @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return 1_00 @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _snake_case : List[str] = UNetaDConditionModel(**UpperCamelCase ) return model @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Any = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_unet _snake_case : Tuple = self.dummy_movq _snake_case : int = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _snake_case : int = DDIMScheduler(**UpperCamelCase ) _snake_case : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict=0 ): '''simple docstring''' _snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _snake_case : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) # create init_image _snake_case : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : Any = Image.fromarray(np.uinta(UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) if str(UpperCamelCase ).startswith('mps' ): _snake_case : Union[str, Any] = torch.manual_seed(UpperCamelCase ) else: _snake_case : Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Dict = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' _snake_case : str = self.get_dummy_components() _snake_case : Union[str, Any] = self.pipeline_class(**UpperCamelCase ) _snake_case : Tuple = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[str] = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) _snake_case : Any = output.images _snake_case : int = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Union[str, Any] = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) _snake_case : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _snake_case : Union[str, Any] = 'A red cartoon frog, 4k' _snake_case : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) _snake_case : Dict = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) _snake_case : Any = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case : List[str] = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _snake_case : List[Any] = pipeline( image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='np' , ) _snake_case : int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] ="""mobilenet_v2""" def __init__( self : Dict , UpperCamelCase : str=3 , UpperCamelCase : int=2_24 , UpperCamelCase : Any=1.0 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Tuple=8 , UpperCamelCase : List[str]=6 , UpperCamelCase : str=32 , UpperCamelCase : int=True , UpperCamelCase : str=True , UpperCamelCase : Dict="relu6" , UpperCamelCase : int=True , UpperCamelCase : Tuple=0.8 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : List[Any]=0.0_01 , UpperCamelCase : List[Any]=2_55 , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _snake_case : List[str] = num_channels _snake_case : Tuple = image_size _snake_case : Any = depth_multiplier _snake_case : Tuple = depth_divisible_by _snake_case : Union[str, Any] = min_depth _snake_case : Tuple = expand_ratio _snake_case : Dict = output_stride _snake_case : List[Any] = first_layer_is_expansion _snake_case : Union[str, Any] = finegrained_output _snake_case : Dict = hidden_act _snake_case : Any = tf_padding _snake_case : str = classifier_dropout_prob _snake_case : Optional[int] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : List[str] = semantic_loss_ignore_index class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 1e-4
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCAmelCase_ = True except ImportError: lowerCAmelCase_ = False try: from torch.hub import _get_torch_home lowerCAmelCase_ = _get_torch_home() except ImportError: lowerCAmelCase_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowerCAmelCase_ = os.path.join(torch_cache_home, """transformers""") lowerCAmelCase_ = """https://cdn.huggingface.co""" lowerCAmelCase_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowerCAmelCase_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowerCAmelCase_ = os.path.join(PATH, """config.yaml""") lowerCAmelCase_ = os.path.join(PATH, """attributes.txt""") lowerCAmelCase_ = os.path.join(PATH, """objects.txt""") lowerCAmelCase_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowerCAmelCase_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowerCAmelCase_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowerCAmelCase_ = """pytorch_model.bin""" lowerCAmelCase_ = """config.yaml""" def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any]=OBJECTS , lowerCAmelCase: Optional[Any]=ATTRIBUTES )-> int: _snake_case : Optional[int] = [] with open(lowerCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) _snake_case : Tuple = [] with open(lowerCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> List[str]: _snake_case : Optional[int] = OrderedDict() with open(lowerCAmelCase , 'rb' ) as f: _snake_case : str = pkl.load(lowerCAmelCase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): _snake_case : Tuple = ckp.pop(lowerCAmelCase ) if isinstance(lowerCAmelCase , np.ndarray ): _snake_case : Dict = torch.tensor(lowerCAmelCase ) else: assert isinstance(lowerCAmelCase , torch.tensor ), type(lowerCAmelCase ) _snake_case : List[Any] = v return r class _lowerCAmelCase : '''simple docstring''' a_ : List[Any] ={} def __init__( self : Optional[Any] , UpperCamelCase : dict , UpperCamelCase : str = "root" , UpperCamelCase : Dict=0 ): '''simple docstring''' _snake_case : List[Any] = name _snake_case : str = level _snake_case : List[Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _snake_case : Optional[int] = copy.deepcopy(UpperCamelCase ) _snake_case : List[str] = copy.deepcopy(UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : str = Config(UpperCamelCase , name=UpperCamelCase , level=level + 1 ) _snake_case : str = v setattr(self , UpperCamelCase , UpperCamelCase ) _snake_case : Any = d def __repr__( self : Dict ): '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = val _snake_case : List[str] = val _snake_case : Optional[Any] = key.split('.' ) _snake_case : Dict = len(UpperCamelCase ) - 1 _snake_case : int = self._pointer if len(UpperCamelCase ) > 1: for i, l in enumerate(UpperCamelCase ): if hasattr(self , UpperCamelCase ) and isinstance(getattr(self , UpperCamelCase ) , UpperCamelCase ): setattr(getattr(self , UpperCamelCase ) , '.'.join(levels[i:] ) , UpperCamelCase ) if l == last_level: _snake_case : Optional[Any] = val else: _snake_case : Any = pointer[l] def UpperCamelCase_ ( self : int ): '''simple docstring''' return self._pointer def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' with open(f"""{file_name}""" , 'w' ) as stream: dump(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' with open(f"""{file_name}""" , 'w' ) as stream: json.dump(UpperCamelCase , UpperCamelCase ) @staticmethod def UpperCamelCase_ ( UpperCamelCase : Tuple ): '''simple docstring''' with open(UpperCamelCase ) as stream: _snake_case : Optional[Any] = load(UpperCamelCase , Loader=UpperCamelCase ) return data def __str__( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = ' ' if self._name != "root": _snake_case : Tuple = f"""{t * (self._level-1)}{self._name}:\n""" else: _snake_case : Union[str, Any] = '' _snake_case : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCamelCase , UpperCamelCase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(UpperCamelCase ).__name__})\n""" _snake_case : List[str] = level return r[:-1] @classmethod def UpperCamelCase_ ( cls : Optional[int] , UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Dict = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) return cls(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Any , UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : int = kwargs.pop('cache_dir' , UpperCamelCase ) _snake_case : str = kwargs.pop('force_download' , UpperCamelCase ) _snake_case : Dict = kwargs.pop('resume_download' , UpperCamelCase ) _snake_case : List[Any] = kwargs.pop('proxies' , UpperCamelCase ) _snake_case : List[Any] = kwargs.pop('local_files_only' , UpperCamelCase ) if os.path.isdir(UpperCamelCase ): _snake_case : Any = os.path.join(UpperCamelCase , UpperCamelCase ) elif os.path.isfile(UpperCamelCase ) or is_remote_url(UpperCamelCase ): _snake_case : List[Any] = pretrained_model_name_or_path else: _snake_case : Dict = hf_bucket_url(UpperCamelCase , filename=UpperCamelCase , use_cdn=UpperCamelCase ) try: # Load from URL or cache if already cached _snake_case : Any = cached_path( UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , proxies=UpperCamelCase , resume_download=UpperCamelCase , local_files_only=UpperCamelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _snake_case : Any = Config.load_yaml(UpperCamelCase ) except EnvironmentError: _snake_case : Tuple = 'Can\'t load config for' raise EnvironmentError(UpperCamelCase ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(UpperCamelCase ), kwargs def lowerCamelCase_ ( lowerCAmelCase: Any )-> List[Any]: _snake_case : int = torch.load('dump.pt' , map_location=in_tensor.device ) _snake_case : str = in_tensor.numpy() _snake_case : str = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowerCAmelCase , lowerCAmelCase , rtol=0.0_1 , atol=0.1 ), ( F"""{sum([1 for x in np.isclose(lowerCAmelCase , lowerCAmelCase , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Optional[int]: _snake_case : Union[str, Any] = urlparse(lowerCAmelCase ) return parsed.scheme in ("http", "https") def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: Optional[Any]=True )-> str: _snake_case : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _snake_case : Optional[Any] = '/' not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: Dict , lowerCAmelCase: Any=None , lowerCAmelCase: str=0 , lowerCAmelCase: str=None , )-> Optional[int]: _snake_case : int = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase , lowerCAmelCase ): ua += "; " + "; ".join('{}/{}'.format(lowerCAmelCase , lowerCAmelCase ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): ua += "; " + user_agent _snake_case : str = {'user-agent': ua} if resume_size > 0: _snake_case : List[Any] = 'bytes=%d-' % (resume_size,) _snake_case : List[Any] = requests.get(lowerCAmelCase , stream=lowerCAmelCase , proxies=lowerCAmelCase , headers=lowerCAmelCase ) if response.status_code == 4_16: # Range not satisfiable return _snake_case : Dict = response.headers.get('Content-Length' ) _snake_case : Any = resume_size + int(lowerCAmelCase ) if content_length is not None else None _snake_case : Optional[Any] = tqdm( unit='B' , unit_scale=lowerCAmelCase , total=lowerCAmelCase , initial=lowerCAmelCase , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase ) ) temp_file.write(lowerCAmelCase ) progress.close() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Any=False , lowerCAmelCase: Tuple=None , lowerCAmelCase: List[Any]=10 , lowerCAmelCase: Optional[int]=False , lowerCAmelCase: Optional[int]=None , lowerCAmelCase: Dict=False , )-> Optional[Any]: if cache_dir is None: _snake_case : Optional[Any] = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = str(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _snake_case : str = None if not local_files_only: try: _snake_case : List[str] = requests.head(lowerCAmelCase , allow_redirects=lowerCAmelCase , proxies=lowerCAmelCase , timeout=lowerCAmelCase ) if response.status_code == 2_00: _snake_case : Tuple = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _snake_case : List[str] = url_to_filename(lowerCAmelCase , lowerCAmelCase ) # get cache path to put the file _snake_case : List[str] = os.path.join(lowerCAmelCase , lowerCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase ): return cache_path else: _snake_case : Dict = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(lowerCAmelCase ) > 0: return os.path.join(lowerCAmelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _snake_case : Optional[int] = cache_path + '.lock' with FileLock(lowerCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _snake_case : Tuple = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase , 'a+b' ) as f: yield f _snake_case : Optional[int] = _resumable_file_manager if os.path.exists(lowerCAmelCase ): _snake_case : List[str] = os.stat(lowerCAmelCase ).st_size else: _snake_case : Optional[Any] = 0 else: _snake_case : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=lowerCAmelCase , delete=lowerCAmelCase ) _snake_case : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , lowerCAmelCase , temp_file.name , ) http_get( lowerCAmelCase , lowerCAmelCase , proxies=lowerCAmelCase , resume_size=lowerCAmelCase , user_agent=lowerCAmelCase , ) os.replace(temp_file.name , lowerCAmelCase ) _snake_case : Optional[Any] = {'url': url, 'etag': etag} _snake_case : Dict = cache_path + '.json' with open(lowerCAmelCase , 'w' ) as meta_file: json.dump(lowerCAmelCase , lowerCAmelCase ) return cache_path def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Dict=None )-> Tuple: _snake_case : Tuple = url.encode('utf-8' ) _snake_case : Optional[Any] = shaaaa(lowerCAmelCase ) _snake_case : Optional[int] = url_hash.hexdigest() if etag: _snake_case : int = etag.encode('utf-8' ) _snake_case : List[str] = shaaaa(lowerCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple=None , lowerCAmelCase: Union[str, Any]=False , lowerCAmelCase: Optional[int]=None , lowerCAmelCase: str=False , lowerCAmelCase: List[Any]=None , lowerCAmelCase: Tuple=False , lowerCAmelCase: Dict=False , lowerCAmelCase: Optional[int]=False , )-> List[Any]: if cache_dir is None: _snake_case : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Tuple = str(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = str(lowerCAmelCase ) if is_remote_url(lowerCAmelCase ): # URL, so get it from the cache (downloading if necessary) _snake_case : List[Any] = get_from_cache( lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , proxies=lowerCAmelCase , resume_download=lowerCAmelCase , user_agent=lowerCAmelCase , local_files_only=lowerCAmelCase , ) elif os.path.exists(lowerCAmelCase ): # File, and it exists. _snake_case : List[str] = url_or_filename elif urlparse(lowerCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(lowerCAmelCase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(lowerCAmelCase ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase ) and not tarfile.is_tarfile(lowerCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _snake_case : List[str] = os.path.split(lowerCAmelCase ) _snake_case : List[Any] = output_file.replace('.' , '-' ) + '-extracted' _snake_case : List[Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.isdir(lowerCAmelCase ) and os.listdir(lowerCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions _snake_case : Optional[Any] = output_path + '.lock' with FileLock(lowerCAmelCase ): shutil.rmtree(lowerCAmelCase , ignore_errors=lowerCAmelCase ) os.makedirs(lowerCAmelCase ) if is_zipfile(lowerCAmelCase ): with ZipFile(lowerCAmelCase , 'r' ) as zip_file: zip_file.extractall(lowerCAmelCase ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase ): _snake_case : List[str] = tarfile.open(lowerCAmelCase ) tar_file.extractall(lowerCAmelCase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(lowerCAmelCase ) ) return output_path_extracted return output_path def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Optional[int]="," )-> List[Any]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) if os.path.isfile(lowerCAmelCase ): with open(lowerCAmelCase ) as f: _snake_case : List[str] = eval(f.read() ) else: _snake_case : Optional[int] = requests.get(lowerCAmelCase ) try: _snake_case : Optional[int] = requests.json() except Exception: _snake_case : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _snake_case : List[str] = eval(lowerCAmelCase ) except Exception: _snake_case : Tuple = data.split('\n' ) req.close() return data def lowerCamelCase_ ( lowerCAmelCase: int )-> int: _snake_case : Tuple = requests.get(lowerCAmelCase ) _snake_case : str = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCamelCase_ ( lowerCAmelCase: str )-> List[Any]: _snake_case : Union[str, Any] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase ) with open(lowerCAmelCase , 'rb' ) as stream: _snake_case : Dict = pkl.load(lowerCAmelCase ) _snake_case : Tuple = weights.pop('model' ) _snake_case : Any = {} for k, v in model.items(): _snake_case : Any = torch.from_numpy(lowerCAmelCase ) if "running_var" in k: _snake_case : List[str] = torch.tensor([0] ) _snake_case : List[str] = k.replace('running_var' , 'num_batches_tracked' ) _snake_case : Tuple = zero return new def lowerCamelCase_ ( )-> str: print(F"""{os.path.abspath(os.path.join(lowerCAmelCase , os.pardir ) )}/demo.ipynb""" ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any]="RGB" )-> List[str]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) if os.path.isfile(lowerCAmelCase ): _snake_case : Tuple = cva.imread(lowerCAmelCase ) else: _snake_case : Any = get_image_from_url(lowerCAmelCase ) assert img is not None, F"""could not connect to: {im}""" _snake_case : Union[str, Any] = cva.cvtColor(lowerCAmelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": _snake_case : Dict = img[:, :, ::-1] return img def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: List[Any]=1 )-> List[str]: return (images[i : i + batch] for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ))
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
import numpy as np class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' _snake_case : Any = (0, 0) _snake_case : Any = None _snake_case : List[Any] = 0 _snake_case : Union[str, Any] = 0 _snake_case : Union[str, Any] = 0 def __eq__( self : int , UpperCamelCase : Dict ): '''simple docstring''' return self.position == cell.position def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' print(self.position ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any , UpperCamelCase : str=(5, 5) ): '''simple docstring''' _snake_case : Tuple = np.zeros(UpperCamelCase ) _snake_case : List[str] = world_size[0] _snake_case : Optional[Any] = world_size[1] def UpperCamelCase_ ( self : str ): '''simple docstring''' print(self.w ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _snake_case : List[Any] = cell.position[0] _snake_case : str = cell.position[1] _snake_case : List[str] = [] for n in neughbour_cord: _snake_case : Any = current_x + n[0] _snake_case : List[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _snake_case : Optional[int] = Cell() _snake_case : int = (x, y) _snake_case : Any = cell neighbours.append(UpperCamelCase ) return neighbours def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple )-> Optional[int]: _snake_case : Dict = [] _snake_case : List[str] = [] _open.append(lowerCAmelCase ) while _open: _snake_case : Union[str, Any] = np.argmin([n.f for n in _open] ) _snake_case : Union[str, Any] = _open[min_f] _closed.append(_open.pop(lowerCAmelCase ) ) if current == goal: break for n in world.get_neigbours(lowerCAmelCase ): for c in _closed: if c == n: continue _snake_case : Dict = current.g + 1 _snake_case : Any = n.position _snake_case : Dict = goal.position _snake_case : Optional[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 _snake_case : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCAmelCase ) _snake_case : int = [] while current.parent is not None: path.append(current.position ) _snake_case : Tuple = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCAmelCase_ = Gridworld() # Start position and goal lowerCAmelCase_ = Cell() lowerCAmelCase_ = (0, 0) lowerCAmelCase_ = Cell() lowerCAmelCase_ = (4, 4) print(F"""path from {start.position} to {goal.position}""") lowerCAmelCase_ = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCAmelCase_ = 1 print(world.w)
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCAmelCase_ = re.compile(r"""\s+""") def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Dict: return {"hash": hashlib.mda(re.sub(lowerCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Optional[int]: _snake_case : Optional[int] = [len(lowerCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowerCAmelCase ), "line_max": max(lowerCAmelCase )} def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> int: _snake_case : str = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] )-> int: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str=5 )-> List[str]: _snake_case : Dict = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case : Dict = example['content'].splitlines() for _, line in zip(range(lowerCAmelCase ) , lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Any=5 , lowerCAmelCase: List[Any]=0.0_5 )-> List[str]: _snake_case : Tuple = ['unit tests', 'test file', 'configuration file'] _snake_case : Any = example['content'].splitlines() _snake_case : List[str] = 0 _snake_case : Tuple = 0 # first test for _, line in zip(range(lowerCAmelCase ) , lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case : List[str] = example['content'].count('\n' ) _snake_case : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_ ( lowerCAmelCase: int )-> Dict: _snake_case : str = ['def ', 'class ', 'for ', 'while '] _snake_case : List[Any] = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict=4 )-> int: _snake_case : Tuple = example['content'].splitlines() _snake_case : Optional[int] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_ ( lowerCAmelCase: int )-> List[str]: _snake_case : int = tokenizer(example['content'] , truncation=lowerCAmelCase )['input_ids'] _snake_case : int = len(example['content'] ) / len(lowerCAmelCase ) return {"ratio": ratio} def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Dict: _snake_case : Optional[int] = {} results.update(get_hash(lowerCAmelCase ) ) results.update(line_stats(lowerCAmelCase ) ) results.update(alpha_stats(lowerCAmelCase ) ) results.update(char_token_ratio(lowerCAmelCase ) ) results.update(is_autogenerated(lowerCAmelCase ) ) results.update(is_config_or_test(lowerCAmelCase ) ) results.update(has_no_keywords(lowerCAmelCase ) ) results.update(has_few_assignments(lowerCAmelCase ) ) return results def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] )-> Dict: if not check_uniques(lowerCAmelCase , lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Any: with open(lowerCAmelCase , 'rb' ) as f_in: with gzip.open(str(lowerCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCAmelCase , lowerCAmelCase ) os.unlink(lowerCAmelCase ) # Settings lowerCAmelCase_ = HfArgumentParser(PreprocessingArguments) lowerCAmelCase_ = parser.parse_args() if args.num_workers is None: lowerCAmelCase_ = multiprocessing.cpu_count() lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCAmelCase_ = time.time() lowerCAmelCase_ = load_dataset(args.dataset_name, split="""train""") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowerCAmelCase_ = set(ds.unique("""hash""")) lowerCAmelCase_ = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCAmelCase_ = time.time() lowerCAmelCase_ , lowerCAmelCase_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowerCAmelCase_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) lowerCAmelCase_ = output_dir / """data""" data_dir.mkdir(exist_ok=True) lowerCAmelCase_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCAmelCase_ = str(data_dir / F"""file-{file_number+1:012}.json""") lowerCAmelCase_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
from collections.abc import Generator def lowerCamelCase_ ( )-> Generator[int, None, None]: _snake_case : Optional[Any] = 0, 1 while True: _snake_case : str = b, a + b yield b def lowerCamelCase_ ( lowerCAmelCase: int = 10_00 )-> int: _snake_case : int = 1 _snake_case : Tuple = fibonacci_generator() while len(str(next(lowerCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
def lowerCamelCase_ ( lowerCAmelCase: float )-> float: return 10 - x * x def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowerCAmelCase ) * equation(lowerCAmelCase ) >= 0: raise ValueError('Wrong space!' ) _snake_case : Optional[int] = a while (b - a) >= 0.0_1: # Find middle point _snake_case : Any = (a + b) / 2 # Check if middle point is root if equation(lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCAmelCase ) * equation(lowerCAmelCase ) < 0: _snake_case : Optional[Any] = c else: _snake_case : Optional[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""audio_values""", """audio_mask"""] def __init__( self : List[str] , UpperCamelCase : List[str]=20_48 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : Optional[Any]=[16, 16] , UpperCamelCase : Dict=1_28 , UpperCamelCase : str=4_41_00 , UpperCamelCase : List[str]=86 , UpperCamelCase : int=20_48 , UpperCamelCase : Tuple=0.0 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__( feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase , ) _snake_case : List[str] = spectrogram_length _snake_case : Optional[int] = num_channels _snake_case : List[Any] = patch_size _snake_case : List[Any] = feature_size // self.patch_size[1] _snake_case : Optional[Any] = n_fft _snake_case : Dict = sampling_rate // hop_length_to_sampling_rate _snake_case : Optional[int] = sampling_rate _snake_case : Any = padding_value _snake_case : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCamelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=UpperCamelCase , norm='slaney' , mel_scale='slaney' , ).T def UpperCamelCase_ ( self : int , UpperCamelCase : np.array ): '''simple docstring''' _snake_case : Any = spectrogram( UpperCamelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) _snake_case : List[str] = log_spec[:, :-1] _snake_case : Optional[Any] = log_spec - 20.0 _snake_case : Union[str, Any] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[bool] = True , UpperCamelCase : Optional[int] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , **UpperCamelCase : Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _snake_case : str = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _snake_case : Optional[int] = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): _snake_case : int = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _snake_case : List[Any] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCamelCase ): _snake_case : Union[str, Any] = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _snake_case : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _snake_case : Dict = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _snake_case : Optional[Any] = np.array(UpperCamelCase ).astype(np.floataa ) # convert into correct format for padding _snake_case : List[Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _snake_case : List[Any] = np.ones([len(UpperCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _snake_case : Optional[Any] = padded_audio_features * self.padding_value for i in range(len(UpperCamelCase ) ): _snake_case : str = audio_features[i] _snake_case : List[Any] = feature # return as BatchFeature if return_attention_mask: _snake_case : Union[str, Any] = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: _snake_case : int = {'audio_values': padded_audio_features} _snake_case : List[str] = BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase ) return encoded_inputs
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: str=1.0 , lowerCAmelCase: int=None , lowerCAmelCase: Union[str, Any]=None )-> Optional[int]: if rng is None: _snake_case : List[str] = global_rng _snake_case : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any]=7 , UpperCamelCase : Tuple=4_00 , UpperCamelCase : int=20_00 , UpperCamelCase : List[str]=10 , UpperCamelCase : int=1_60 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : List[Any]=40_00 , UpperCamelCase : Any=False , UpperCamelCase : Dict=True , ): '''simple docstring''' _snake_case : List[Any] = parent _snake_case : Tuple = batch_size _snake_case : List[Any] = min_seq_length _snake_case : Dict = max_seq_length _snake_case : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case : Optional[int] = padding_value _snake_case : int = sampling_rate _snake_case : Optional[int] = return_attention_mask _snake_case : Union[str, Any] = do_normalize _snake_case : int = feature_size _snake_case : List[str] = chunk_length _snake_case : List[Any] = hop_length def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[Any]=False , UpperCamelCase : List[str]=False ): '''simple docstring''' def _flatten(UpperCamelCase : Tuple ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: _snake_case : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case : List[str] = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : List[Any] =WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = WhisperFeatureExtractionTester(self ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Optional[int] = feat_extract_first.save_pretrained(UpperCamelCase )[0] check_json_file_has_correct_format(UpperCamelCase ) _snake_case : Optional[Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase ) _snake_case : Dict = feat_extract_first.to_dict() _snake_case : Union[str, Any] = feat_extract_second.to_dict() _snake_case : Optional[Any] = feat_extract_first.mel_filters _snake_case : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : List[Any] = os.path.join(UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase ) _snake_case : str = self.feature_extraction_class.from_json_file(UpperCamelCase ) _snake_case : int = feat_extract_first.to_dict() _snake_case : Union[str, Any] = feat_extract_second.to_dict() _snake_case : Optional[int] = feat_extract_first.mel_filters _snake_case : Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case : Dict = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _snake_case : Optional[Any] = feature_extractor(UpperCamelCase , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _snake_case : Dict = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _snake_case : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test batched _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features _snake_case : List[str] = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _snake_case : Tuple = np.asarray(UpperCamelCase ) _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features _snake_case : Optional[int] = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test truncation required _snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] _snake_case : List[Any] = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] _snake_case : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _snake_case : Optional[Any] = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs_truncated] _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features _snake_case : Any = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' import torch _snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Any = np.random.rand(1_00 , 32 ).astype(np.floataa ) _snake_case : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case : List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _snake_case : str = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : str = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _snake_case : List[Any] = ds.sort('id' ).select(range(UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _snake_case : int = self._load_datasamples(1 ) _snake_case : int = WhisperFeatureExtractor() _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase , atol=1e-4 ) ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : str = self._load_datasamples(1 )[0] _snake_case : Optional[int] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue _snake_case : Tuple = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase )[0] self.assertTrue(np.all(np.mean(UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase ) - 1 ) < 1e-3 ) )
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : str=99 , UpperCamelCase : str=13 , UpperCamelCase : Optional[int]=7 , UpperCamelCase : Union[str, Any]=9 , UpperCamelCase : Tuple=True , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[int]=False , UpperCamelCase : Dict=32 , UpperCamelCase : Any=5 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=37 , UpperCamelCase : Dict=8 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=0.0_02 , UpperCamelCase : str=1 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=None , ): '''simple docstring''' _snake_case : Union[str, Any] = parent _snake_case : Tuple = batch_size _snake_case : Dict = encoder_seq_length _snake_case : Dict = decoder_seq_length # For common tests _snake_case : Union[str, Any] = self.decoder_seq_length _snake_case : Dict = is_training _snake_case : str = use_attention_mask _snake_case : Optional[Any] = use_labels _snake_case : Optional[Any] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Union[str, Any] = d_ff _snake_case : List[Any] = relative_attention_num_buckets _snake_case : int = dropout_rate _snake_case : int = initializer_factor _snake_case : Optional[int] = eos_token_id _snake_case : Any = pad_token_id _snake_case : str = decoder_start_token_id _snake_case : Optional[int] = None _snake_case : List[Any] = decoder_layers def UpperCamelCase_ ( self : str ): '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base' ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=None , UpperCamelCase : Dict=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , ): '''simple docstring''' if attention_mask is None: _snake_case : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _snake_case : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _snake_case : Any = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase ) if decoder_head_mask is None: _snake_case : int = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) if cross_attn_head_mask is None: _snake_case : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _snake_case : Tuple = input_ids.clamp(self.pad_token_id + 1 ) _snake_case : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) _snake_case : Tuple = self.get_config() _snake_case : int = config.num_attention_heads _snake_case : Optional[int] = self.prepare_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, input_dict def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self : int ): '''simple docstring''' return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Optional[int] , ): '''simple docstring''' _snake_case : Optional[Any] = UMTaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[int] = model( input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase , attention_mask=UpperCamelCase , decoder_attention_mask=UpperCamelCase , ) _snake_case : Dict = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) _snake_case : List[Any] = result.last_hidden_state _snake_case : int = result.past_key_values _snake_case : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : str = UMTaModel(config=UpperCamelCase ).get_decoder().to(UpperCamelCase ).eval() # first forward pass _snake_case : Optional[Any] = model(UpperCamelCase , use_cache=UpperCamelCase ) _snake_case : Dict = model(UpperCamelCase ) _snake_case : Union[str, Any] = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) _snake_case : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case : Union[str, Any] = model(UpperCamelCase )['last_hidden_state'] _snake_case : Optional[Any] = model(UpperCamelCase , past_key_values=UpperCamelCase )['last_hidden_state'] # select random slice _snake_case : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() _snake_case : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , ): '''simple docstring''' _snake_case : Optional[int] = UMTaModel(config=UpperCamelCase ).to(UpperCamelCase ).half().eval() _snake_case : int = model(**UpperCamelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCamelCase ).any().item() ) @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a_ : Union[str, Any] =(UMTaForConditionalGeneration,) if is_torch_available() else () a_ : List[str] =( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a_ : Optional[Any] =True a_ : Tuple =False a_ : Dict =False a_ : List[Any] =True a_ : str =True # The small UMT5 model needs higher percentages for CPU/MP tests a_ : Optional[Any] =[0.8, 0.9] def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() _snake_case : Optional[int] = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCamelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Any = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _snake_case : Any = self.model_tester.prepare_config_and_inputs() _snake_case : List[str] = config_and_inputs[0] _snake_case : Tuple = UMTaForConditionalGeneration(UpperCamelCase ).eval() model.to(UpperCamelCase ) _snake_case : List[str] = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), } for attn_name, (name, mask) in zip(UpperCamelCase , head_masking.items() ): _snake_case : Tuple = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _snake_case : int = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase ) _snake_case : str = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase , return_dict_in_generate=UpperCamelCase , **UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _snake_case : List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCamelCase ).to(UpperCamelCase ) _snake_case : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCamelCase , legacy=UpperCamelCase ) _snake_case : List[Any] = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _snake_case : Optional[int] = tokenizer(UpperCamelCase , return_tensors='pt' , padding=UpperCamelCase ).input_ids # fmt: off _snake_case : List[Any] = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = model.generate(input_ids.to(UpperCamelCase ) ) _snake_case : List[str] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _snake_case : List[Any] = tokenizer.batch_decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =[ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : Union[str, Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : Optional[Any] = deprecated_arg[3:] setattr(self , UpperCamelCase , not kwargs.pop(UpperCamelCase ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _snake_case : Union[str, Any] = kwargs.pop('torchscript' , self.torchscript ) _snake_case : Dict = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) _snake_case : Any = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**UpperCamelCase ) a_ : bool =field(default=UpperCAmelCase_ , metadata={"""help""": """Trace the models using torchscript"""} ) a_ : bool =field(default=UpperCAmelCase_ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) a_ : str =field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: _snake_case : List[str] = torch.device('cpu' ) _snake_case : Dict = 0 elif is_torch_tpu_available(): _snake_case : str = xm.xla_device() _snake_case : Optional[Any] = 0 else: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _snake_case : Any = torch.cuda.device_count() return device, n_gpu @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def UpperCamelCase_ ( self : str ): '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self.n_gpu > 0
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
def lowerCamelCase_ ( lowerCAmelCase: int = 50 )-> int: _snake_case : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""bert""" def __init__( self : Union[str, Any] , UpperCamelCase : Optional[int]=3_05_22 , UpperCamelCase : str=7_68 , UpperCamelCase : List[str]=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : str=2 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Optional[int]=1e-1_2 , UpperCamelCase : int=0 , UpperCamelCase : Tuple="absolute" , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Dict = vocab_size _snake_case : int = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : int = layer_norm_eps _snake_case : int = position_embedding_type _snake_case : Dict = use_cache _snake_case : Any = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> int: return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase_ ( )-> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase_ = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } lowerCAmelCase_ = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def lowerCamelCase_ ( lowerCAmelCase: Any )-> Tuple: _snake_case : str = list(state_dict.keys() ) for name in state_dict_keys: _snake_case : List[Any] = state_dict.pop(lowerCAmelCase ) # emb -> embedding if name.startswith('emb.' ): _snake_case : List[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _snake_case : Union[str, Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _snake_case : Dict = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , lowerCAmelCase ) # ffn -> feed_forward _snake_case : Dict = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , lowerCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _snake_case : Union[str, Any] = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _snake_case : Tuple = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _snake_case : Optional[Any] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _snake_case : str = 'rwkv.' + name _snake_case : Optional[int] = weight return state_dict def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] , lowerCAmelCase: Any , lowerCAmelCase: Any=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Optional[Any]=False , lowerCAmelCase: Optional[Any]=None )-> Union[str, Any]: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _snake_case : int = 5_02_77 _snake_case : int = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _snake_case : List[Any] = PreTrainedTokenizerFast(tokenizer_file=lowerCAmelCase ) _snake_case : Tuple = len(lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) # 2. Build the config _snake_case : Union[str, Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _snake_case : Optional[Any] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _snake_case : Optional[Any] = RwkvConfig( vocab_size=lowerCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCAmelCase ) # 3. Download model file then convert state_dict _snake_case : int = hf_hub_download(lowerCAmelCase , lowerCAmelCase ) _snake_case : Dict = torch.load(lowerCAmelCase , map_location='cpu' ) _snake_case : str = convert_state_dict(lowerCAmelCase ) # 4. Split in shards and save _snake_case : Optional[Any] = shard_checkpoint(lowerCAmelCase ) for shard_file, shard in shards.items(): torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if index is not None: _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) # Save the index as well with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: _snake_case : Any = json.dumps(lowerCAmelCase , indent=2 , sort_keys=lowerCAmelCase ) + '\n' f.write(lowerCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _snake_case : int = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _snake_case : Optional[Any] = torch.load(os.path.join(lowerCAmelCase , lowerCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase ) model.push_to_hub(lowerCAmelCase , max_shard_size='2GB' ) tokenizer.push_to_hub(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) lowerCAmelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase_ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase_ = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCAmelCase_ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCamelCase_ ( lowerCAmelCase: int )-> List[Any]: _snake_case : Dict = None # source code of `config_class` _snake_case : List[Any] = inspect.getsource(lowerCAmelCase ) _snake_case : List[Any] = _re_checkpoint.findall(lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _snake_case : Optional[int] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _snake_case : Dict = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: _snake_case : Any = ckpt_name break return checkpoint def lowerCamelCase_ ( )-> int: _snake_case : List[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _snake_case : List[Any] = get_checkpoint_from_config_class(lowerCAmelCase ) _snake_case : int = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _snake_case : List[str] = '\n'.join(sorted(lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } lowerCAmelCase_ = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =VOCAB_FILES_NAMES a_ : int =PRETRAINED_VOCAB_FILES_MAP a_ : List[str] =PRETRAINED_INIT_CONFIGURATION a_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] =BertTokenizer def __init__( self : Any , UpperCamelCase : str=None , UpperCamelCase : Any=None , UpperCamelCase : str=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : int="[SEP]" , UpperCamelCase : Any="[PAD]" , UpperCamelCase : Tuple="[CLS]" , UpperCamelCase : Any="[MASK]" , UpperCamelCase : int=True , UpperCamelCase : int=None , **UpperCamelCase : int , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : Union[str, Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[Any] = do_lower_case _snake_case : Tuple = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : int = normalizer_class(**UpperCamelCase ) _snake_case : List[Any] = do_lower_case def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : int=None ): '''simple docstring''' _snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[str] = [self.sep_token_id] _snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Dict = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase_ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowerCamelCase_ ( lowerCAmelCase: str )-> Dict: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model _snake_case : Optional[int] = list(s_dict.keys() ) for key in keys: _snake_case : Union[str, Any] = R'.*/layers_(\d+)' _snake_case : Union[str, Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , lowerCAmelCase ) _snake_case : Optional[Any] = R'(encoder|decoder)\/' if re.match(lowerCAmelCase , lowerCAmelCase ): _snake_case : int = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": _snake_case : Optional[Any] = re.sub(R'/mlp/' , R'/1/mlp/' , lowerCAmelCase ) _snake_case : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , lowerCAmelCase ) elif groups[0] == "decoder": _snake_case : Tuple = re.sub(R'/mlp/' , R'/2/mlp/' , lowerCAmelCase ) _snake_case : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _snake_case : Optional[int] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(F"""{key} -> {new_key}""" ) _snake_case : List[str] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _snake_case : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _snake_case : Any = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _snake_case : str = s_dict[key].shape[0] _snake_case : Any = s_dict[key] for idx in range(lowerCAmelCase ): _snake_case : Tuple = expert_weihts[idx] print(F"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase ) return s_dict lowerCAmelCase_ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple )-> int: # Convert a google style config to the hugging face fromat import regex as re with open(lowerCAmelCase , 'r' ) as f: _snake_case : Any = f.read() _snake_case : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , lowerCAmelCase ) _snake_case : List[str] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _snake_case : Optional[Any] = float(lowerCAmelCase ) if '.' in value else int(lowerCAmelCase ) _snake_case : Any = re.findall(R'(.*activations) = \(\'(.*)\',\)' , lowerCAmelCase )[0] _snake_case : Any = str(activation[1] ) _snake_case : int = num_experts _snake_case : int = SwitchTransformersConfig(**lowerCAmelCase ) return config def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any]=None , lowerCAmelCase: Optional[Any]="./" , lowerCAmelCase: int=8 )-> List[Any]: # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) _snake_case : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: _snake_case : Optional[int] = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: _snake_case : Optional[Any] = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) _snake_case : Dict = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) _snake_case : Optional[Any] = flax_params['target'] _snake_case : Any = flatten_dict(lowerCAmelCase , sep='/' ) _snake_case : Union[str, Any] = rename_keys(lowerCAmelCase ) _snake_case : Optional[Any] = unflatten_dict(lowerCAmelCase , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCAmelCase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =(CMStochasticIterativeScheduler,) a_ : Any =10 def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : Any ): '''simple docstring''' _snake_case : Optional[Any] = { 'num_train_timesteps': 2_01, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } config.update(**UpperCamelCase ) return config def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = 10 _snake_case : Tuple = self.get_scheduler_config() _snake_case : Optional[Any] = self.scheduler_classes[0](**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) _snake_case : List[str] = scheduler.timesteps[0] _snake_case : Union[str, Any] = scheduler.timesteps[1] _snake_case : Any = self.dummy_sample _snake_case : List[str] = 0.1 * sample _snake_case : Tuple = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample _snake_case : Union[str, Any] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : Dict = self.get_scheduler_config() _snake_case : List[Any] = scheduler_class(**UpperCamelCase ) _snake_case : Tuple = 1 scheduler.set_timesteps(UpperCamelCase ) _snake_case : Any = scheduler.timesteps _snake_case : Dict = torch.manual_seed(0 ) _snake_case : Optional[int] = self.dummy_model() _snake_case : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCamelCase ): # 1. scale model input _snake_case : Optional[int] = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual _snake_case : Optional[Any] = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 _snake_case : Any = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample _snake_case : Tuple = pred_prev_sample _snake_case : List[str] = torch.sum(torch.abs(UpperCamelCase ) ) _snake_case : Optional[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1e-2 assert abs(result_mean.item() - 0.25_10 ) < 1e-3 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**UpperCamelCase ) _snake_case : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=UpperCamelCase ) _snake_case : Optional[Any] = scheduler.timesteps _snake_case : Any = torch.manual_seed(0 ) _snake_case : Union[str, Any] = self.dummy_model() _snake_case : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _snake_case : int = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual _snake_case : Union[str, Any] = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 _snake_case : Optional[int] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample _snake_case : Union[str, Any] = pred_prev_sample _snake_case : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase ) ) _snake_case : Tuple = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1e-2 assert abs(result_mean.item() - 0.45_27 ) < 1e-3 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config() _snake_case : Optional[int] = scheduler_class(**UpperCamelCase ) _snake_case : Optional[Any] = [39, 30, 12, 15, 0] with self.assertRaises(UpperCamelCase , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : List[Any] = self.get_scheduler_config() _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = [39, 30, 12, 1, 0] _snake_case : Union[str, Any] = len(UpperCamelCase ) with self.assertRaises(UpperCamelCase , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase , timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCamelCase )
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") lowerCAmelCase_ = [file for file in filepaths if """ """ in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") lowerCAmelCase_ = [file for file in filepaths if """-""" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") lowerCAmelCase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") lowerCAmelCase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase_ ( lowerCAmelCase: Dict )-> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def lowerCamelCase_ ( lowerCAmelCase: str )-> int: # word like '180' or '身高' or '神' for char in word: _snake_case : List[Any] = ord(lowerCAmelCase ) if not _is_chinese_char(lowerCAmelCase ): return 0 return 1 def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> int: _snake_case : List[Any] = set() for token in tokens: _snake_case : Tuple = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase ) if chinese_word: word_set.add(lowerCAmelCase ) _snake_case : Tuple = list(lowerCAmelCase ) return word_list def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: set() )-> Optional[int]: if not chinese_word_set: return bert_tokens _snake_case : Optional[Any] = max([len(lowerCAmelCase ) for w in chinese_word_set] ) _snake_case : str = bert_tokens _snake_case : List[Any] = 0, len(lowerCAmelCase ) while start < end: _snake_case : Optional[int] = True if is_chinese(bert_word[start] ): _snake_case : List[Any] = min(end - start , lowerCAmelCase ) for i in range(lowerCAmelCase , 1 , -1 ): _snake_case : int = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _snake_case : Optional[Any] = '##' + bert_word[j] _snake_case : Any = start + i _snake_case : Optional[Any] = False break if single_word: start += 1 return bert_word def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: LTP , lowerCAmelCase: BertTokenizer )-> List[str]: _snake_case : str = [] for i in range(0 , len(lowerCAmelCase ) , 1_00 ): _snake_case : List[str] = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] _snake_case : List[str] = [get_chinese_word(lowerCAmelCase ) for r in res] ltp_res.extend(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) _snake_case : List[Any] = [] for i in range(0 , len(lowerCAmelCase ) , 1_00 ): _snake_case : int = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) _snake_case : List[Any] = [] for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = [] for id in input_ids: _snake_case : int = bert_tokenizer._convert_id_to_token(lowerCAmelCase ) input_tokens.append(lowerCAmelCase ) _snake_case : int = add_sub_symbol(lowerCAmelCase , lowerCAmelCase ) _snake_case : int = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase ): if token[:2] == "##": _snake_case : List[Any] = token[2:] # save chinese tokens' pos if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ): ref_id.append(lowerCAmelCase ) ref_ids.append(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) return ref_ids def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> Dict: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: _snake_case : List[str] = f.readlines() _snake_case : str = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _snake_case : str = LTP(args.ltp ) # faster in GPU device _snake_case : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _snake_case : Optional[Any] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _snake_case : str = [json.dumps(lowerCAmelCase ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") lowerCAmelCase_ = parser.parse_args() main(args)
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase_ = 3 def lowerCamelCase_ ( lowerCAmelCase: int )-> int: print('Generating primitive root of p' ) while True: _snake_case : int = random.randrange(3 , lowerCAmelCase ) if pow(lowerCAmelCase , 2 , lowerCAmelCase ) == 1: continue if pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) == 1: continue return g def lowerCamelCase_ ( lowerCAmelCase: int )-> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _snake_case : Optional[int] = rabin_miller.generate_large_prime(lowerCAmelCase ) # select large prime number. _snake_case : Tuple = primitive_root(lowerCAmelCase ) # one primitive root on modulo p. _snake_case : List[str] = random.randrange(3 , lowerCAmelCase ) # private_key -> have to be greater than 2 for safety. _snake_case : Any = cryptomath.find_mod_inverse(pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) _snake_case : int = (key_size, e_a, e_a, p) _snake_case : Tuple = (key_size, d) return public_key, private_key def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: int )-> None: if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _snake_case : Tuple = generate_key(lowerCAmelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def lowerCamelCase_ ( )-> None: print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =["""torch""", """transformers""", """onnx"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : Optional[int] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =["""torch""", """transformers""", """onnx"""] def __init__( self : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : Tuple , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : str , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : str =["""torch""", """transformers""", """onnx"""] def __init__( self : Union[str, Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =["""torch""", """transformers""", """onnx"""] def __init__( self : Tuple , *UpperCamelCase : str , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Tuple , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""torch""", """transformers""", """onnx"""] def __init__( self : str , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple =["""torch""", """transformers""", """onnx"""] def __init__( self : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : int , UpperCamelCase : str=7 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : int=10 , UpperCamelCase : Dict=18 , UpperCamelCase : Any=30 , UpperCamelCase : Optional[Any]=4_00 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , UpperCamelCase : Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase : str=None , ): '''simple docstring''' _snake_case : Optional[int] = size if size is not None else {'shortest_edge': 18} _snake_case : Optional[int] = crop_size if crop_size is not None else {'height': 18, 'width': 18} _snake_case : Tuple = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : Optional[int] = num_frames _snake_case : Union[str, Any] = image_size _snake_case : List[str] = min_resolution _snake_case : int = max_resolution _snake_case : Optional[int] = do_resize _snake_case : Dict = size _snake_case : List[str] = do_normalize _snake_case : List[Any] = image_mean _snake_case : int = image_std _snake_case : List[Any] = crop_size def UpperCamelCase_ ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : List[str] =VivitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = VivitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _snake_case : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for video in video_inputs: self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _snake_case : Optional[int] = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : Union[str, Any] = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for video in video_inputs: self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _snake_case : Any = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : int = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for video in video_inputs: self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _snake_case : Tuple = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : Dict = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
def lowerCamelCase_ ( lowerCAmelCase: str )-> list: if n_term == "": return [] _snake_case : list = [] for temp in range(int(lowerCAmelCase ) ): series.append(F"""1/{temp + 1}""" if series else '1' ) return series if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase_ = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def lowerCamelCase_ ( lowerCAmelCase: str = "mumbai" )-> Generator[tuple[str, str], None, None]: _snake_case : List[Any] = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): _snake_case : Optional[int] = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() _snake_case : int = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
def lowerCamelCase_ ( lowerCAmelCase: int = 1_00 )-> int: _snake_case : str = n * (n + 1) * (2 * n + 1) / 6 _snake_case : int = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , **lowerCAmelCase: Tuple )-> str: _snake_case : List[str] = AutoConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
from __future__ import annotations lowerCAmelCase_ = """Muhammad Umer Farooq""" lowerCAmelCase_ = """MIT""" lowerCAmelCase_ = """1.0.0""" lowerCAmelCase_ = """Muhammad Umer Farooq""" lowerCAmelCase_ = """[email protected]""" lowerCAmelCase_ = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' super().__init__() _snake_case : list[str] = [] _snake_case : Optional[int] = domain def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : list[tuple[str, str | None]] ): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _snake_case : Tuple = parse.urljoin(self.domain , UpperCamelCase ) self.urls.append(UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: str )-> str: return ".".join(get_sub_domain_name(lowerCAmelCase ).split('.' )[-2:] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> str: return parse.urlparse(lowerCAmelCase ).netloc def lowerCamelCase_ ( lowerCAmelCase: str = "https://github.com" )-> list[str]: _snake_case : List[Any] = get_domain_name(lowerCAmelCase ) # Initialize the parser _snake_case : Any = Parser(lowerCAmelCase ) try: # Open URL _snake_case : Union[str, Any] = requests.get(lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _snake_case : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _snake_case : List[Any] = requests.get(lowerCAmelCase ) # Get the valid email. _snake_case : List[Any] = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = emails_from_url("""https://github.com""") print(F"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
import math import flax.linen as nn import jax.numpy as jnp def lowerCamelCase_ ( lowerCAmelCase: jnp.ndarray , lowerCAmelCase: int , lowerCAmelCase: float = 1 , lowerCAmelCase: float = 1 , lowerCAmelCase: float = 1.0E4 , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1.0 , )-> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" _snake_case : Dict = float(embedding_dim // 2 ) _snake_case : Any = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _snake_case : List[Any] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) _snake_case : List[str] = jnp.expand_dims(lowerCAmelCase , 1 ) * jnp.expand_dims(lowerCAmelCase , 0 ) # scale embeddings _snake_case : Dict = scale * emb if flip_sin_to_cos: _snake_case : Optional[int] = jnp.concatenate([jnp.cos(lowerCAmelCase ), jnp.sin(lowerCAmelCase )] , axis=1 ) else: _snake_case : Any = jnp.concatenate([jnp.sin(lowerCAmelCase ), jnp.cos(lowerCAmelCase )] , axis=1 ) _snake_case : Optional[int] = jnp.reshape(lowerCAmelCase , [jnp.shape(lowerCAmelCase )[0], embedding_dim] ) return signal class _lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ : int =32 a_ : jnp.dtype =jnp.floataa @nn.compact def __call__( self : int , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(UpperCamelCase ) _snake_case : Optional[int] = nn.silu(UpperCamelCase ) _snake_case : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(UpperCamelCase ) return temb class _lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ : int =32 a_ : bool =False a_ : float =1 @nn.compact def __call__( self : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' return get_sinusoidal_embeddings( UpperCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Image , lowerCAmelCase: float )-> Image: def brightness(lowerCAmelCase: int ) -> float: return 1_28 + level + (c - 1_28) if not -2_55.0 <= level <= 2_55.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowerCAmelCase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
700
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> int: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: int )-> str: from transformers.testing_utils import pytest_terminal_summary_main _snake_case : List[Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase , id=lowerCAmelCase )
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase_ = False @skip_mps class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =StableDiffusionAttendAndExcitePipeline a_ : Optional[Any] =False a_ : Union[str, Any] =TEXT_TO_IMAGE_PARAMS a_ : Dict =TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) a_ : Tuple =TEXT_TO_IMAGE_IMAGE_PARAMS a_ : List[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , ) _snake_case : str = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0 ) _snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _snake_case : Any = CLIPTextModel(UpperCamelCase ) _snake_case : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case : int = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : List[Any]=0 ): '''simple docstring''' if str(UpperCamelCase ).startswith('mps' ): _snake_case : Any = torch.manual_seed(UpperCamelCase ) else: _snake_case : List[str] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Union[str, Any] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Tuple = self.get_dummy_inputs(UpperCamelCase ) _snake_case : Optional[Any] = pipe(**UpperCamelCase ).images _snake_case : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) _snake_case : List[str] = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) _snake_case : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase , 1e-3 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls : Optional[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = torch.manual_seed(51 ) _snake_case : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case : List[Any] = 'a painting of an elephant with glasses' _snake_case : Tuple = [5, 7] _snake_case : int = pipe( prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] _snake_case : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
lowerCAmelCase_ = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] =1 @register_to_config def __init__( self : Dict , UpperCamelCase : int=20_00 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : List[str]=20 , UpperCamelCase : Dict=1e-3 ): '''simple docstring''' _snake_case : str = None _snake_case : int = None _snake_case : int = None def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' _snake_case : Optional[Any] = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase , device=UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _snake_case : Optional[Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _snake_case : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _snake_case : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _snake_case : Optional[Any] = std.unsqueeze(-1 ) _snake_case : Dict = -score / std # compute _snake_case : Dict = -1.0 / len(self.timesteps ) _snake_case : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _snake_case : Dict = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _snake_case : List[str] = beta_t.unsqueeze(-1 ) _snake_case : List[Any] = -0.5 * beta_t * x _snake_case : Union[str, Any] = torch.sqrt(UpperCamelCase ) _snake_case : List[str] = drift - diffusion**2 * score _snake_case : int = x + drift * dt # add noise _snake_case : Any = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase , device=x.device , dtype=x.dtype ) _snake_case : Tuple = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
705
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : int a_ : TreeNode | None =None a_ : TreeNode | None =None lowerCAmelCase_ = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase_ ( lowerCAmelCase: TreeNode | None )-> int: if root is None: return 0 # Validation def count_nodes(lowerCAmelCase: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase ) != count_coins(lowerCAmelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowerCAmelCase: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _snake_case : Optional[Any] = get_distrib(node.left ) _snake_case : int = get_distrib(node.right ) _snake_case : Optional[int] = 1 - left_distrib_excess _snake_case : List[str] = 1 - right_distrib_excess _snake_case : List[str] = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase ) + abs(lowerCAmelCase ) ) _snake_case : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase , lowerCAmelCase ) return get_distrib(lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
706
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCAmelCase_ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCAmelCase_ = 0 for log in Path().glob("""*.log"""): lowerCAmelCase_ = 0 with open(log, """r""") as f: for line in f: lowerCAmelCase_ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCAmelCase_ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCAmelCase_ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase_ = [] log.unlink() lowerCAmelCase_ = """""" lowerCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase_ = [] lowerCAmelCase_ = {} for test in failed_tests: lowerCAmelCase_ = test[0].split("""::""") lowerCAmelCase_ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase_ = [test[0] for test in failed_table] lowerCAmelCase_ = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase_ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCAmelCase_ = """Too many failed tests, please see the full report in the Action results.""" lowerCAmelCase_ = len(err) + 10 lowerCAmelCase_ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCAmelCase_ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCAmelCase_ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCAmelCase_ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase_ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCAmelCase_ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase_ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase_ = row[0] else: lowerCAmelCase_ = """""" lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' return f"""gaussian_noise_s={seed}_shape={'_'.join([str(UpperCamelCase ) for s in shape] )}.npy""" def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Optional[int]=(4, 4, 64, 64) , UpperCamelCase : List[str]=False ): '''simple docstring''' _snake_case : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa _snake_case : Tuple = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase , UpperCamelCase ) ) , dtype=UpperCamelCase ) return image def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Tuple=False , UpperCamelCase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa _snake_case : Optional[Any] = 'bf16' if fpaa else None _snake_case : Tuple = FlaxUNetaDConditionModel.from_pretrained( UpperCamelCase , subfolder='unet' , dtype=UpperCamelCase , revision=UpperCamelCase ) return model, params def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int=0 , UpperCamelCase : List[str]=(4, 77, 7_68) , UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' _snake_case : Dict = jnp.bfloataa if fpaa else jnp.floataa _snake_case : Dict = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase , UpperCamelCase ) ) , dtype=UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [17, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 10_00, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=UpperCamelCase ) _snake_case : List[str] = self.get_latents(UpperCamelCase , fpaa=UpperCamelCase ) _snake_case : Optional[int] = self.get_encoder_hidden_states(UpperCamelCase , fpaa=UpperCamelCase ) _snake_case : Optional[int] = model.apply( {'params': params} , UpperCamelCase , jnp.array(UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase , ).sample assert sample.shape == latents.shape _snake_case : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case : Optional[int] = jnp.array(UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCamelCase , UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [17, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 10_00, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=UpperCamelCase ) _snake_case : str = self.get_latents(UpperCamelCase , shape=(4, 4, 96, 96) , fpaa=UpperCamelCase ) _snake_case : Dict = self.get_encoder_hidden_states(UpperCamelCase , shape=(4, 77, 10_24) , fpaa=UpperCamelCase ) _snake_case : List[str] = model.apply( {'params': params} , UpperCamelCase , jnp.array(UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase , ).sample assert sample.shape == latents.shape _snake_case : Tuple = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case : Tuple = jnp.array(UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCamelCase , UpperCamelCase , atol=1e-2 )
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} lowerCAmelCase_ = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } lowerCAmelCase_ = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] )-> Tuple: with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: _snake_case : Optional[Any] = json.loads(f.read() ) _snake_case : List[Any] = collections.OrderedDict() _snake_case : Optional[int] = collections.OrderedDict() _snake_case : Tuple = collections.OrderedDict() with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: _snake_case : Tuple = f.readlines() _snake_case : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCAmelCase ): _snake_case : List[str] = b _snake_case : int = idx for wd in b: _snake_case : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =VOCAB_FILES_NAMES a_ : List[Any] =PRETRAINED_VOCAB_FILES_MAP a_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Dict =["""input_ids""", """attention_mask"""] def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : int="<|endoftext|>" , UpperCamelCase : List[Any]="<|endoftext|>" , UpperCamelCase : Optional[Any]="<|startoftext|>" , UpperCamelCase : Tuple="<|endoftext|>" , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( unk_token=UpperCamelCase , pad_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , do_clean_text=UpperCamelCase , **UpperCamelCase , ) if not os.path.isfile(UpperCamelCase ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(UpperCamelCase ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) _snake_case : Dict = do_clean_text _snake_case : str = load_vocab_and_emoji(UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return len(self.raw_vocab ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] ): '''simple docstring''' return self.subword_tokenizer.tokenize(UpperCamelCase , clean=self.do_clean_text ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' return self.vocab.get(UpperCamelCase , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = ''.join(UpperCamelCase ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : "Conversation" ): '''simple docstring''' _snake_case : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: _snake_case : str = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Tuple = 0 if os.path.isdir(UpperCamelCase ): _snake_case : Tuple = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Any = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: _snake_case : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Dict = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(UpperCamelCase , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) _snake_case : int = token_index writer.write(','.join(UpperCamelCase ) + '\n' ) index += 1 with open(UpperCamelCase , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , UpperCamelCase ) return vocab_file, emoji_file class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = vocab # same as swe _snake_case : Any = ids_to_tokens # same as bpe _snake_case : Any = emoji _snake_case : Tuple = np.max([len(UpperCamelCase ) for w in self.vocab.keys()] ) _snake_case : Dict = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) _snake_case : Optional[int] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) _snake_case : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) _snake_case : Optional[int] = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : List[Any] = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : str = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) _snake_case : List[str] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _snake_case : Any = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _snake_case : Optional[int] = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.ids_to_tokens ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[str] = self.content_repattera.sub('<URL>' , UpperCamelCase ) _snake_case : int = self.content_repattera.sub('<EMAIL>' , UpperCamelCase ) _snake_case : Optional[int] = self.content_repattera.sub('<TEL>' , UpperCamelCase ) _snake_case : Tuple = self.content_repattera.sub('<DATE>' , UpperCamelCase ) _snake_case : Union[str, Any] = self.content_repattera.sub('<DATE>' , UpperCamelCase ) _snake_case : Optional[int] = self.content_repattera.sub('<PRICE>' , UpperCamelCase ) _snake_case : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _snake_case : Tuple = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def UpperCamelCase_ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=False ): '''simple docstring''' _snake_case : Optional[int] = text.replace(' ' , '<SP>' ) _snake_case : Tuple = text.replace(' ' , '<SP>' ) _snake_case : Optional[Any] = text.replace('\r\n' , '<BR>' ) _snake_case : int = text.replace('\n' , '<BR>' ) _snake_case : Union[str, Any] = text.replace('\r' , '<BR>' ) _snake_case : List[Any] = text.replace('\t' , '<TAB>' ) _snake_case : Union[str, Any] = text.replace('—' , 'ー' ) _snake_case : List[Any] = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: _snake_case : Optional[int] = text.replace(UpperCamelCase , UpperCamelCase ) if clean: _snake_case : List[str] = self.clean_text(UpperCamelCase ) def check_simbol(UpperCamelCase : Dict ): _snake_case : Any = x.encode() if len(UpperCamelCase ) == 1 and len(UpperCamelCase ) == 2: _snake_case : Any = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(UpperCamelCase : Optional[Any] ): _snake_case : Optional[int] = x.encode() if len(UpperCamelCase ) == 1 and len(UpperCamelCase ) == 3: _snake_case : List[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False _snake_case : List[str] = 0 _snake_case : Dict = [] while pos < len(UpperCamelCase ): _snake_case : List[str] = min(len(UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _snake_case : Union[str, Any] = [] # (token_id, token, pos) for e in range(UpperCamelCase , UpperCamelCase , -1 ): _snake_case : Dict = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase ) > 2: _snake_case : Dict = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase ) > 0: # the smallest token_id is adopted _snake_case : Any = sorted(UpperCamelCase , key=lambda UpperCamelCase : x[0] )[0] result.append(UpperCamelCase ) _snake_case : Optional[Any] = e else: _snake_case : List[str] = pos + 1 _snake_case : List[Any] = text[pos:end] if check_simbol(UpperCamelCase ): result.append('<KIGOU>' ) elif checkuae(UpperCamelCase ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) _snake_case : Optional[int] = end return result def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : int="\n" ): '''simple docstring''' _snake_case : str = [] _snake_case : str = [] _snake_case : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase ) > 0: words.append(bytearray(UpperCamelCase ).decode('utf-8' , errors='replace' ) ) _snake_case : int = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(UpperCamelCase ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(UpperCamelCase ) if len(UpperCamelCase ) > 0: words.append(bytearray(UpperCamelCase ).decode('utf-8' , errors='replace' ) ) _snake_case : List[Any] = ''.join(UpperCamelCase ) return text
709
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase_ = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: int=None , lowerCAmelCase: List[str]=None , lowerCAmelCase: str=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Dict=None , )-> Dict: if attention_mask is None: _snake_case : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case : Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int=13 , UpperCamelCase : List[Any]=7 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : int=4 , UpperCamelCase : List[str]=4 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : List[Any]=32 , UpperCamelCase : str=2 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : str=0 , UpperCamelCase : List[str]=0.02 , ): '''simple docstring''' _snake_case : List[str] = parent _snake_case : Optional[int] = batch_size _snake_case : List[str] = seq_length _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : Any = vocab_size _snake_case : Dict = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : List[str] = eos_token_id _snake_case : int = pad_token_id _snake_case : Dict = bos_token_id _snake_case : Tuple = initializer_range def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case : Any = shift_tokens_right(UpperCamelCase , 1 , 2 ) _snake_case : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase , ) _snake_case : Optional[int] = prepare_blenderbot_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : List[str] = 20 _snake_case : Optional[Any] = model_class_name(UpperCamelCase ) _snake_case : List[Any] = model.encode(inputs_dict['input_ids'] ) _snake_case : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _snake_case : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) _snake_case : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) _snake_case : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _snake_case : Dict = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) _snake_case : str = model.decode(UpperCamelCase , UpperCamelCase ) _snake_case : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def UpperCamelCase_ ( self : Any , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = 20 _snake_case : Optional[Any] = model_class_name(UpperCamelCase ) _snake_case : Optional[Any] = model.encode(inputs_dict['input_ids'] ) _snake_case : Union[str, Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _snake_case : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case : List[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) _snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : int = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) _snake_case : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _snake_case : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) _snake_case : Optional[Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) _snake_case : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =99 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case : int = input_ids.shape[0] _snake_case : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = self._get_config_and_data() _snake_case : int = FlaxBlenderbotForConditionalGeneration(UpperCamelCase ) _snake_case : Optional[Any] = lm_model(input_ids=UpperCamelCase ) _snake_case : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case : Dict = FlaxBlenderbotForConditionalGeneration(UpperCamelCase ) _snake_case : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case : str = lm_model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) _snake_case : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Tuple = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case : Dict = shift_tokens_right(UpperCamelCase , 1 , 2 ) _snake_case : Union[str, Any] = np.equal(UpperCamelCase , 1 ).astype(np.floataa ).sum() _snake_case : Dict = np.equal(UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple =True a_ : Optional[int] =( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) a_ : List[Any] =(FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Tuple = FlaxBlenderbotModelTester(self ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : Dict = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : str , UpperCamelCase : Dict=None , **UpperCamelCase : Union[str, Any] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest('JIT Enabled' ): _snake_case : int = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _snake_case : List[str] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : Optional[int] = model_class(UpperCamelCase ) _snake_case : Optional[int] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _snake_case : Optional[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest('JIT Enabled' ): _snake_case : List[str] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _snake_case : int = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _snake_case : Union[str, Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case : List[Any] = np.ones((1, 1) ) * model.config.eos_token_id _snake_case : Tuple = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} _snake_case : List[Any] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} _snake_case : List[str] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=UpperCamelCase ) _snake_case : Optional[int] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) _snake_case : Dict = ['Sam'] _snake_case : Union[str, Any] = tokenizer(UpperCamelCase , return_tensors='jax' ) _snake_case : Any = model.generate(**UpperCamelCase , **UpperCamelCase ) _snake_case : Optional[Any] = 'Sam is a great name. It means "sun" in Gaelic.' _snake_case : Tuple = tokenizer.batch_decode(UpperCamelCase , **UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
from __future__ import annotations import math def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: int )-> float: _snake_case : Tuple = u for i in range(1 , lowerCAmelCase ): _snake_case : Optional[int] = temp * (u - i) return temp def lowerCamelCase_ ( )-> None: _snake_case : Optional[Any] = int(input('enter the numbers of values: ' ) ) _snake_case : list[list[float]] = [] for _ in range(lowerCAmelCase ): y.append([] ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): y[i].append(lowerCAmelCase ) _snake_case : int = 0 print('enter the values of parameters in a list: ' ) _snake_case : Tuple = list(map(lowerCAmelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(lowerCAmelCase ): _snake_case : Dict = float(input() ) _snake_case : Tuple = int(input('enter the value to interpolate: ' ) ) _snake_case : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase ): for j in range(n - i ): _snake_case : Tuple = y[j + 1][i - 1] - y[j][i - 1] _snake_case : Union[str, Any] = y[0][0] for i in range(1 , lowerCAmelCase ): summ += (ucal(lowerCAmelCase , lowerCAmelCase ) * y[0][i]) / math.factorial(lowerCAmelCase ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
711
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] ="""roberta-prelayernorm""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any]=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : List[Any]=12 , UpperCamelCase : List[str]=30_72 , UpperCamelCase : Union[str, Any]="gelu" , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : int=2 , UpperCamelCase : int=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Dict=0 , UpperCamelCase : int=2 , UpperCamelCase : Optional[Any]="absolute" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Union[str, Any] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : Any = initializer_range _snake_case : str = layer_norm_eps _snake_case : List[str] = position_embedding_type _snake_case : List[Any] = use_cache _snake_case : Union[str, Any] = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
712
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( UpperCamelCase : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self : int ): '''simple docstring''' raise NotImplementedError()
713
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
0
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
714
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any ="""pegasus""" a_ : List[Any] =["""past_key_values"""] a_ : Any ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Tuple , UpperCamelCase : Optional[int]=5_02_65 , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=40_96 , UpperCamelCase : Tuple=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=40_96 , UpperCamelCase : Tuple=16 , UpperCamelCase : str=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : List[Any]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict="gelu" , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Dict=0.02 , UpperCamelCase : str=0 , UpperCamelCase : Any=False , UpperCamelCase : List[str]=0 , UpperCamelCase : Optional[int]=1 , UpperCamelCase : int=1 , **UpperCamelCase : str , ): '''simple docstring''' _snake_case : int = vocab_size _snake_case : Optional[int] = max_position_embeddings _snake_case : Dict = d_model _snake_case : List[str] = encoder_ffn_dim _snake_case : int = encoder_layers _snake_case : Optional[Any] = encoder_attention_heads _snake_case : Optional[Any] = decoder_ffn_dim _snake_case : Optional[Any] = decoder_layers _snake_case : List[str] = decoder_attention_heads _snake_case : str = dropout _snake_case : Union[str, Any] = attention_dropout _snake_case : List[str] = activation_dropout _snake_case : Optional[Any] = activation_function _snake_case : Dict = init_std _snake_case : str = encoder_layerdrop _snake_case : Optional[int] = decoder_layerdrop _snake_case : Optional[int] = use_cache _snake_case : Union[str, Any] = encoder_layers _snake_case : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return self.d_model
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCAmelCase_ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCAmelCase_ = """main""" # Default branch name lowerCAmelCase_ = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) lowerCAmelCase_ = """aaaaaaa""" # This commit does not exist, so we should 404. lowerCAmelCase_ = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes lowerCAmelCase_ = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def lowerCamelCase_ ( )-> int: print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def lowerCamelCase_ ( )-> Optional[int]: print('Bonjour!' ) yield print('Au revoir!' ) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] ): '''simple docstring''' with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str ): '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['start_positions', 'end_positions'] ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) @require_tf def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['start_positions', 'end_positions'] ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) @require_flax def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase ) , [] ) self.assertEqual(find_labels(UpperCamelCase ) , [] ) self.assertEqual(find_labels(UpperCamelCase ) , [] ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase ) , [] )
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""trocr""" a_ : List[Any] =["""past_key_values"""] a_ : Any ={ """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Union[str, Any] , UpperCamelCase : Dict=5_02_65 , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : Dict=16 , UpperCamelCase : int=40_96 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : int=0.1 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Any=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : int=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : Optional[int]=2 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' _snake_case : Tuple = vocab_size _snake_case : Optional[int] = d_model _snake_case : Dict = decoder_layers _snake_case : Union[str, Any] = decoder_attention_heads _snake_case : Optional[Any] = decoder_ffn_dim _snake_case : Optional[int] = activation_function _snake_case : List[Any] = max_position_embeddings _snake_case : Optional[Any] = dropout _snake_case : Any = attention_dropout _snake_case : Optional[int] = activation_dropout _snake_case : Union[str, Any] = init_std _snake_case : Optional[Any] = decoder_layerdrop _snake_case : Any = use_cache _snake_case : Optional[int] = scale_embedding _snake_case : int = use_learned_position_embeddings _snake_case : List[Any] = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , **UpperCamelCase , )
717
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] =(UniPCMultistepScheduler,) a_ : Tuple =(("""num_inference_steps""", 25),) def UpperCamelCase_ ( self : int , **UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' _snake_case : Tuple = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**UpperCamelCase ) return config def UpperCamelCase_ ( self : Tuple , UpperCamelCase : str=0 , **UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' _snake_case : Tuple = dict(self.forward_default_kwargs ) _snake_case : Optional[int] = kwargs.pop('num_inference_steps' , UpperCamelCase ) _snake_case : str = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**UpperCamelCase ) _snake_case : List[Any] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _snake_case : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _snake_case : Optional[Any] = scheduler_class.from_pretrained(UpperCamelCase ) new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _snake_case : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Optional[int] = sample, sample for t in range(UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _snake_case : int = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample _snake_case : List[Any] = new_scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : Any , UpperCamelCase : int=0 , **UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop('num_inference_steps' , UpperCamelCase ) _snake_case : int = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : List[Any] = self.get_scheduler_config() _snake_case : List[str] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _snake_case : List[str] = scheduler_class.from_pretrained(UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _snake_case : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Dict = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample _snake_case : Tuple = new_scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if scheduler is None: _snake_case : List[Any] = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config(**UpperCamelCase ) _snake_case : Optional[int] = scheduler_class(**UpperCamelCase ) _snake_case : int = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**UpperCamelCase ) _snake_case : Any = scheduler_class(**UpperCamelCase ) _snake_case : List[Any] = 10 _snake_case : Optional[int] = self.dummy_model() _snake_case : List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(UpperCamelCase , UpperCamelCase ) _snake_case : Optional[int] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample return sample def UpperCamelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' _snake_case : List[str] = dict(self.forward_default_kwargs ) _snake_case : Optional[int] = kwargs.pop('num_inference_steps' , UpperCamelCase ) for scheduler_class in self.scheduler_classes: _snake_case : str = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**UpperCamelCase ) _snake_case : Union[str, Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase , 'set_timesteps' ): scheduler.set_timesteps(UpperCamelCase ) elif num_inference_steps is not None and not hasattr(UpperCamelCase , 'set_timesteps' ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case : int = dummy_past_residuals[: scheduler.config.solver_order] _snake_case : Union[str, Any] = scheduler.timesteps[5] _snake_case : str = scheduler.timesteps[6] _snake_case : Any = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample _snake_case : Any = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _snake_case : str = UniPCMultistepScheduler(**self.get_scheduler_config() ) _snake_case : Optional[int] = self.full_loop(scheduler=UpperCamelCase ) _snake_case : Tuple = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 _snake_case : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case : int = self.full_loop(scheduler=UpperCamelCase ) _snake_case : List[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCamelCase_ ( self : List[str] ) -> str: '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase , prediction_type=UpperCamelCase , sample_max_value=UpperCamelCase , solver_order=UpperCamelCase , solver_type=UpperCamelCase , ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase ) def UpperCamelCase_ ( self : Dict ) -> Any: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase , solver_type=UpperCamelCase , prediction_type=UpperCamelCase , ) _snake_case : Optional[int] = self.full_loop( solver_order=UpperCamelCase , solver_type=UpperCamelCase , prediction_type=UpperCamelCase , ) assert not torch.isnan(UpperCamelCase ).any(), "Samples have nan numbers" def UpperCamelCase_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(lower_order_final=UpperCamelCase ) self.check_over_configs(lower_order_final=UpperCamelCase ) def UpperCamelCase_ ( self : int ) -> Tuple: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=UpperCamelCase , time_step=0 ) def UpperCamelCase_ ( self : Dict ) -> int: '''simple docstring''' _snake_case : Dict = self.full_loop() _snake_case : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCamelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' _snake_case : str = self.full_loop(prediction_type='v_prediction' ) _snake_case : Dict = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def UpperCamelCase_ ( self : str ) -> List[Any]: '''simple docstring''' _snake_case : Tuple = self.scheduler_classes[0] _snake_case : int = self.get_scheduler_config(thresholding=UpperCamelCase , dynamic_thresholding_ratio=0 ) _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = 10 _snake_case : int = self.dummy_model() _snake_case : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Dict = model(UpperCamelCase , UpperCamelCase ) _snake_case : int = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase_ ( self : int , **UpperCamelCase : List[str] ) -> Any: '''simple docstring''' for scheduler_class in self.scheduler_classes: _snake_case : str = self.get_scheduler_config(**UpperCamelCase ) _snake_case : Dict = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("""T""") lowerCAmelCase_ = TypeVar("""U""") class _lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : T | None , UpperCamelCase : U | None ): '''simple docstring''' _snake_case : Optional[Any] = key _snake_case : List[Any] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self : Union[str, Any] ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : str ): '''simple docstring''' _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) _snake_case : List[str] = self.rear, self.head def __repr__( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = ['DoubleLinkedList'] _snake_case : Dict = self.head while node.next is not None: rep.append(str(UpperCamelCase ) ) _snake_case : Dict = node.next rep.append(str(self.rear ) ) return ",\n ".join(UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' _snake_case : str = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Tuple = node _snake_case : int = previous _snake_case : int = node _snake_case : int = self.rear def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None _snake_case : str = node.next _snake_case : List[str] = node.prev _snake_case : Union[str, Any] = None _snake_case : Optional[int] = None return node class _lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' a_ : dict[Callable[[T], U], LRUCache[T, U]] ={} def __init__( self : List[Any] , UpperCamelCase : int ): '''simple docstring''' _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Dict = capacity _snake_case : Tuple = 0 _snake_case : Optional[Any] = 0 _snake_case : Optional[Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Dict ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : List[str] , UpperCamelCase : T ): '''simple docstring''' return key in self.cache def UpperCamelCase_ ( self : Any , UpperCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Dict = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(UpperCamelCase ) return node.val self.miss += 1 return None def UpperCamelCase_ ( self : int , UpperCamelCase : T , UpperCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(UpperCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Any = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : str , UpperCamelCase : int = 1_28 ): '''simple docstring''' def cache_decorator_inner(UpperCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*UpperCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Union[str, Any] = LRUCache(UpperCamelCase ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Any = func(*UpperCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , UpperCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(UpperCamelCase , 'cache_info' , UpperCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCAmelCase_ = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ lowerCAmelCase_ = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ lowerCAmelCase_ = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = 0.0 for i, j in zip(UpperCamelCase , UpperCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase , UpperCamelCase ) else 0.0 _snake_case : Dict = n_correct / len(UpperCamelCase ) return { "accuracy": accuracy, }
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : int = 16 , UpperCamelCase : int = 88 , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : int = 32 , UpperCamelCase : Optional[int] = None , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "geglu" , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : Dict = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase , attention_head_dim=UpperCamelCase , in_channels=UpperCamelCase , num_layers=UpperCamelCase , dropout=UpperCamelCase , norm_num_groups=UpperCamelCase , cross_attention_dim=UpperCamelCase , attention_bias=UpperCamelCase , sample_size=UpperCamelCase , num_vector_embeds=UpperCamelCase , activation_fn=UpperCamelCase , num_embeds_ada_norm=UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _snake_case : int = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _snake_case : Optional[int] = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _snake_case : Optional[Any] = [1, 0] def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : int=None , UpperCamelCase : str=None , UpperCamelCase : int=None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : str = hidden_states _snake_case : Tuple = [] _snake_case : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _snake_case : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _snake_case : str = self.transformer_index_for_condition[i] _snake_case : int = self.transformers[transformer_index]( UpperCamelCase , encoder_hidden_states=UpperCamelCase , timestep=UpperCamelCase , cross_attention_kwargs=UpperCamelCase , return_dict=UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _snake_case : str = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _snake_case : Optional[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase )
721
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ : Union[str, Any] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : Tuple = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = """nllb-moe""" __UpperCamelCase : Optional[Any] = ["""past_key_values"""] __UpperCamelCase : Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , snake_case_ : int=12_8112 , snake_case_ : Optional[int]=1024 , snake_case_ : Union[str, Any]=12 , snake_case_ : Any=4096 , snake_case_ : Any=16 , snake_case_ : List[str]=12 , snake_case_ : int=4096 , snake_case_ : List[Any]=16 , snake_case_ : Tuple=0.05 , snake_case_ : Dict=0.05 , snake_case_ : Optional[int]=True , snake_case_ : List[str]=True , snake_case_ : Tuple="relu" , snake_case_ : Optional[Any]=1024 , snake_case_ : List[str]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Any=0.0 , snake_case_ : List[str]=0.02 , snake_case_ : Tuple=2 , snake_case_ : Tuple=True , snake_case_ : str=False , snake_case_ : Any="float32" , snake_case_ : int=False , snake_case_ : Optional[Any]=128 , snake_case_ : List[str]=64 , snake_case_ : Union[str, Any]=4 , snake_case_ : List[str]=4 , snake_case_ : Any=0.001 , snake_case_ : List[str]=0.001 , snake_case_ : Optional[int]="all" , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=False , snake_case_ : Tuple=1.0 , snake_case_ : List[Any]=0.2 , snake_case_ : Optional[Any]=1 , snake_case_ : Optional[Any]=0 , snake_case_ : List[Any]=2 , snake_case_ : Any=False , **snake_case_ : Tuple , ): UpperCamelCase_: Any = vocab_size UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: List[Any] = d_model UpperCamelCase_: Tuple = encoder_ffn_dim UpperCamelCase_: Tuple = encoder_layers UpperCamelCase_: Union[str, Any] = encoder_attention_heads UpperCamelCase_: Optional[int] = decoder_ffn_dim UpperCamelCase_: Dict = decoder_layers UpperCamelCase_: int = decoder_attention_heads UpperCamelCase_: Any = dropout UpperCamelCase_: Any = attention_dropout UpperCamelCase_: List[Any] = activation_dropout UpperCamelCase_: str = activation_function UpperCamelCase_: str = init_std UpperCamelCase_: Optional[int] = encoder_layerdrop UpperCamelCase_: Optional[int] = decoder_layerdrop UpperCamelCase_: Dict = use_cache UpperCamelCase_: List[Any] = encoder_layers UpperCamelCase_: List[str] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_: List[Any] = router_z_loss_coef UpperCamelCase_: int = router_aux_loss_coef UpperCamelCase_: Optional[Any] = decoder_sparse_step UpperCamelCase_: int = encoder_sparse_step UpperCamelCase_: Any = num_experts UpperCamelCase_: Any = expert_capacity UpperCamelCase_: int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) UpperCamelCase_: Tuple = router_dtype UpperCamelCase_: int = router_ignore_padding_tokens UpperCamelCase_: Optional[int] = batch_prioritized_routing UpperCamelCase_: Tuple = second_expert_policy UpperCamelCase_: Any = normalize_router_prob_before_dropping UpperCamelCase_: List[Any] = moe_eval_capacity_token_fraction UpperCamelCase_: Dict = moe_token_dropout UpperCamelCase_: Tuple = output_router_logits super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
670
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : str = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = """open-llama""" def __init__( self : str , snake_case_ : Optional[Any]=10_0000 , snake_case_ : List[str]=4096 , snake_case_ : Optional[Any]=1_1008 , snake_case_ : Union[str, Any]=32 , snake_case_ : Tuple=32 , snake_case_ : Dict="silu" , snake_case_ : Optional[int]=2048 , snake_case_ : List[str]=0.02 , snake_case_ : Optional[Any]=1e-6 , snake_case_ : Dict=True , snake_case_ : Union[str, Any]=0 , snake_case_ : Tuple=1 , snake_case_ : Tuple=2 , snake_case_ : Union[str, Any]=False , snake_case_ : Any=True , snake_case_ : List[str]=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : List[Any]=True , snake_case_ : str=True , snake_case_ : Any=None , **snake_case_ : Optional[int] , ): UpperCamelCase_: str = vocab_size UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: Union[str, Any] = hidden_size UpperCamelCase_: Union[str, Any] = intermediate_size UpperCamelCase_: Dict = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Any = hidden_act UpperCamelCase_: str = initializer_range UpperCamelCase_: Any = rms_norm_eps UpperCamelCase_: Any = use_cache UpperCamelCase_: Any = kwargs.pop( """use_memorry_efficient_attention""" , snake_case_ ) UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Tuple = attention_dropout_prob UpperCamelCase_: Dict = use_stable_embedding UpperCamelCase_: Tuple = shared_input_output_embedding UpperCamelCase_: str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , tie_word_embeddings=snake_case_ , **snake_case_ , ) def lowerCAmelCase__ ( self : List[Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) UpperCamelCase_: Any = self.rope_scaling.get("""type""" , snake_case_ ) UpperCamelCase_: int = self.rope_scaling.get("""factor""" , snake_case_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(snake_case_ , snake_case_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
670
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
1
import operator as op def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Optional[int] = [] UpperCamelCase_: Optional[int] = lambda lowerCamelCase , lowerCamelCase : int(x / y ) # noqa: E731 integer division operation UpperCamelCase_: Any = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) else: UpperCamelCase_: Optional[int] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) UpperCamelCase_: Optional[Any] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(lowerCamelCase ) , int(lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase_ : Dict = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
670
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: assert isinstance(lowerCamelCase , lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: UpperCamelCase_: List[str] = tmp_path / """cache""" UpperCamelCase_: Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase_: Optional[Any] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: Optional[Any] = tmp_path / """cache""" UpperCamelCase_: Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase_: List[Any] = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase_: str = ParquetDatasetReader(lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: str = tmp_path / """cache""" UpperCamelCase_: int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[Any] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , split=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: if issubclass(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: List[str] = parquet_path elif issubclass(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: Tuple = [parquet_path] UpperCamelCase_: Any = tmp_path / """cache""" UpperCamelCase_: Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[Any] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=("train",) ) -> Optional[Any]: assert isinstance(lowerCamelCase , lowerCamelCase ) for split in splits: UpperCamelCase_: Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: Optional[Any] = tmp_path / """cache""" UpperCamelCase_: Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase_: Any = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: UpperCamelCase_: str = tmp_path / """cache""" UpperCamelCase_: Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[int] = features.copy() if features else default_expected_features UpperCamelCase_: Dict = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase_: Dict = ParquetDatasetReader({"""train""": parquet_path} , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: if split: UpperCamelCase_: List[str] = {split: parquet_path} else: UpperCamelCase_: int = """train""" UpperCamelCase_: List[str] = {"""train""": parquet_path, """test""": parquet_path} UpperCamelCase_: Tuple = tmp_path / """cache""" UpperCamelCase_: Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[int] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: List[Any] = ParquetDatasetWriter(lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 UpperCamelCase_: List[str] = pq.ParquetFile(tmp_path / """foo.parquet""" ) UpperCamelCase_: Any = pf.read() assert dataset.data.table == output_table def A__ ( lowerCamelCase , lowerCamelCase ) -> Dict: UpperCamelCase_: Tuple = str(shared_datadir / """test_image_rgb.jpg""" ) UpperCamelCase_: List[str] = {"""image""": [image_path]} UpperCamelCase_: Tuple = Features({"""image""": Image()} ) UpperCamelCase_: Any = Dataset.from_dict(lowerCamelCase , features=lowerCamelCase ) UpperCamelCase_: str = ParquetDatasetWriter(lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 UpperCamelCase_: Optional[int] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase_: str = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: assert get_writer_batch_size(lowerCamelCase ) == expected
670
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
1
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Tuple = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Union[str, Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: Any = [mem.copy() for i in range(6 )] UpperCamelCase_: Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[str] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: Dict = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [mem.copy() for i in range(4 )] UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.move_to([-1, -1, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[Any] = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.add(snake_case_ ) UpperCamelCase_: str = [] for i, rect in enumerate(snake_case_ ): rect.set_stroke(snake_case_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCamelCase_: List[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=snake_case_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=snake_case_ , buff=0.0 ) self.add(snake_case_ ) cpu_targs.append(snake_case_ ) UpperCamelCase_: Optional[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: Optional[int] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""Loaded Checkpoint""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , aligned_edge=snake_case_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCamelCase_: List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: int = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCamelCase_: int = MarkupText( f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ ) , Write(snake_case_ ) ) self.play(Write(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) ) UpperCamelCase_: Any = [] UpperCamelCase_: List[str] = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: int = fill.copy().set_fill(snake_case_ , opacity=0.7 ) target.move_to(snake_case_ ) first_animations.append(GrowFromCenter(snake_case_ , run_time=1 ) ) UpperCamelCase_: int = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
1
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
1
from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): UpperCamelCase_: Optional[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase_: Dict = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case_ ) ) ] UpperCamelCase_: Optional[int] = defaultdict(snake_case_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase_: List[str] = (1 << len(snake_case_ )) - 1 def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Any ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase_: List[str] = self.count_ways_until(snake_case_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase_: Union[str, Any] = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Union[str, Any] ): # Store the list of persons for each task for i in range(len(snake_case_ ) ): for j in task_performed[i]: self.task[j].append(snake_case_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCamelCase_ : int = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCamelCase_ : Any = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
670
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : List[str] = """OwlViTImageProcessor""" __UpperCamelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[Any] , snake_case_ : Dict=None , snake_case_ : Any=None , **snake_case_ : Dict ): UpperCamelCase_: List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case_ , ) UpperCamelCase_: str = kwargs.pop("""feature_extractor""" ) UpperCamelCase_: str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : Optional[int] , snake_case_ : int=None , snake_case_ : Tuple=None , snake_case_ : Any=None , snake_case_ : Tuple="max_length" , snake_case_ : List[str]="np" , **snake_case_ : Optional[Any] ): if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(snake_case_ , snake_case_ ) or (isinstance(snake_case_ , snake_case_ ) and not isinstance(text[0] , snake_case_ )): UpperCamelCase_: Any = [self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors=snake_case_ , **snake_case_ )] elif isinstance(snake_case_ , snake_case_ ) and isinstance(text[0] , snake_case_ ): UpperCamelCase_: Union[str, Any] = [] # Maximum number of queries across batch UpperCamelCase_: Optional[Any] = max([len(snake_case_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(snake_case_ ) != max_num_queries: UpperCamelCase_: Union[str, Any] = t + [""" """] * (max_num_queries - len(snake_case_ )) UpperCamelCase_: Tuple = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) encodings.append(snake_case_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCamelCase_: List[str] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase_: Union[str, Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCamelCase_: Optional[Any] = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase_: Any = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCamelCase_: Any = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCamelCase_: int = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCamelCase_: Optional[int] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase_: Any = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCamelCase_: Any = BatchEncoding() UpperCamelCase_: str = input_ids UpperCamelCase_: Union[str, Any] = attention_mask if query_images is not None: UpperCamelCase_: Tuple = BatchEncoding() UpperCamelCase_: Dict = self.image_processor( snake_case_ , return_tensors=snake_case_ , **snake_case_ ).pixel_values UpperCamelCase_: Optional[int] = query_pixel_values if images is not None: UpperCamelCase_: List[Any] = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and images is not None: UpperCamelCase_: Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCamelCase_: Dict = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def lowerCAmelCase__ ( self : Dict , *snake_case_ : Any , **snake_case_ : Any ): return self.image_processor.post_process(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , *snake_case_ : List[Any] , **snake_case_ : Tuple ): return self.image_processor.post_process_object_detection(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ): return self.image_processor.post_process_image_guided_detection(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : List[str] , *snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : int ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : int ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , snake_case_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : List[str] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , snake_case_ , ) return self.image_processor
670
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def A__ ( lowerCamelCase , lowerCamelCase ) -> str | Literal[False]: UpperCamelCase_: Dict = list(lowerCamelCase ) UpperCamelCase_: int = list(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = 0 for i in range(len(lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 UpperCamelCase_: Optional[int] = """_""" if count > 1: return False else: return "".join(lowerCamelCase ) def A__ ( lowerCamelCase ) -> list[str]: UpperCamelCase_: List[str] = [] while True: UpperCamelCase_: Any = ["""$"""] * len(lowerCamelCase ) UpperCamelCase_: Dict = [] for i in range(len(lowerCamelCase ) ): for j in range(i + 1 , len(lowerCamelCase ) ): UpperCamelCase_: int = compare_string(binary[i] , binary[j] ) if k is False: UpperCamelCase_: List[str] = """*""" UpperCamelCase_: Any = """*""" temp.append("""X""" ) for i in range(len(lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCamelCase ) == 0: return pi UpperCamelCase_: List[Any] = list(set(lowerCamelCase ) ) def A__ ( lowerCamelCase , lowerCamelCase ) -> list[str]: UpperCamelCase_: List[str] = [] for minterm in minterms: UpperCamelCase_: Dict = """""" for _ in range(lowerCamelCase ): UpperCamelCase_: List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCamelCase ) return temp def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> bool: UpperCamelCase_: Dict = list(lowerCamelCase ) UpperCamelCase_: Dict = list(lowerCamelCase ) UpperCamelCase_: Dict = 0 for i in range(len(lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def A__ ( lowerCamelCase , lowerCamelCase ) -> list[str]: UpperCamelCase_: Tuple = [] UpperCamelCase_: int = [0] * len(lowerCamelCase ) for i in range(len(chart[0] ) ): UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: Dict = -1 for j in range(len(lowerCamelCase ) ): if chart[j][i] == 1: count += 1 UpperCamelCase_: List[Any] = j if count == 1: UpperCamelCase_: Optional[int] = 1 for i in range(len(lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCamelCase ) ): UpperCamelCase_: Union[str, Any] = 0 temp.append(prime_implicants[i] ) while True: UpperCamelCase_: Dict = 0 UpperCamelCase_: str = -1 UpperCamelCase_: Union[str, Any] = 0 for i in range(len(lowerCamelCase ) ): UpperCamelCase_: Optional[int] = chart[i].count(1 ) if count_n > max_n: UpperCamelCase_: List[str] = count_n UpperCamelCase_: Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCamelCase ) ): UpperCamelCase_: Any = 0 def A__ ( lowerCamelCase , lowerCamelCase ) -> list[list[int]]: UpperCamelCase_: Optional[int] = [[0 for x in range(len(lowerCamelCase ) )] for x in range(len(lowerCamelCase ) )] for i in range(len(lowerCamelCase ) ): UpperCamelCase_: List[str] = prime_implicants[i].count("""_""" ) for j in range(len(lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCamelCase ): UpperCamelCase_: Tuple = 1 return chart def A__ ( ) -> None: UpperCamelCase_: Any = int(input("""Enter the no. of variables\n""" ) ) UpperCamelCase_: int = [ float(lowerCamelCase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCamelCase_: Union[str, Any] = decimal_to_binary(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = check(lowerCamelCase ) print("""Prime Implicants are:""" ) print(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = prime_implicant_chart(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = selection(lowerCamelCase , lowerCamelCase ) print("""Essential Prime Implicants are:""" ) print(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
670
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
1
from math import pow, sqrt def A__ ( *lowerCamelCase ) -> bool: UpperCamelCase_: Tuple = len(lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def A__ ( lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
670
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
1