code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import sys import turtle def A__ ( lowerCamelCase , lowerCamelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCamelCase , get_mid(lowerCamelCase , lowerCamelCase ) , get_mid(lowerCamelCase , lowerCamelCase ) , depth - 1 ) triangle(lowerCamelCase , get_mid(lowerCamelCase , lowerCamelCase ) , get_mid(lowerCamelCase , lowerCamelCase ) , depth - 1 ) triangle(lowerCamelCase , get_mid(lowerCamelCase , lowerCamelCase ) , get_mid(lowerCamelCase , lowerCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) lowerCamelCase_ : int = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") lowerCamelCase_ : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
670
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = ReformerTokenizer __UpperCamelCase : List[Any] = ReformerTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : List[str] = False __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : List[str] ): super().setUp() UpperCamelCase_: List[Any] = ReformerTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[Any] = """<s>""" UpperCamelCase_: Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(snake_case_ ) , 1000 ) def lowerCAmelCase__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase__ ( self : Optional[int] ): if not self.test_rust_tokenizer: return UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Any = self.get_rust_tokenizer() UpperCamelCase_: List[str] = """I was born in 92000, and this is falsé.""" UpperCamelCase_: int = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: Dict = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Dict = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: List[str] = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: Union[str, Any] = tokenizer.encode(snake_case_ ) UpperCamelCase_: str = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Any=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: str = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # Simple input UpperCamelCase_: Dict = """This is a simple input""" UpperCamelCase_: Optional[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] UpperCamelCase_: Dict = ("""This is a simple input""", """This is a pair""") UpperCamelCase_: List[str] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) def lowerCAmelCase__ ( self : List[Any] ): pass def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = ReformerTokenizer(snake_case_ , keep_accents=snake_case_ ) UpperCamelCase_: int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [285, 46, 10, 170, 382] , ) UpperCamelCase_: Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase_: int = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase_: str = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase__ ( self : Tuple ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Dict = """Hello World!""" UpperCamelCase_: str = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCamelCase_: Union[str, Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @require_torch @slow def lowerCAmelCase__ ( self : List[str] ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCamelCase_: List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase_: Optional[int] = """ """.join(snake_case_ ) UpperCamelCase_: Tuple = self.big_tokenizer.encode_plus(snake_case_ , return_tensors="""pt""" ) UpperCamelCase_: Dict = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) UpperCamelCase_: int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCamelCase_: int = encoded_sequence["""input_ids"""].shape UpperCamelCase_: Optional[int] = ReformerModel(snake_case_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case_ ) model(**snake_case_ ) @slow def lowerCAmelCase__ ( self : str ): # fmt: off UpperCamelCase_: List[Any] = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCamelCase_: Optional[Any] = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=snake_case_ , sequences=snake_case_ , )
670
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = tempfile.mkdtemp() UpperCamelCase_: List[Any] = BlipImageProcessor() UpperCamelCase_: List[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase_: Dict = BlipaProcessor(snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def lowerCAmelCase__ ( self : str ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_: List[str] = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: str = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: int = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[str] = self.get_image_processor() UpperCamelCase_: List[Any] = self.get_tokenizer() UpperCamelCase_: Any = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[str] = self.prepare_image_inputs() UpperCamelCase_: Dict = image_processor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: Optional[int] = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: Optional[Any] = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Dict = """lower newer""" UpperCamelCase_: List[str] = processor(text=snake_case_ ) UpperCamelCase_: Union[str, Any] = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = self.get_image_processor() UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: List[str] = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[Any] = """lower newer""" UpperCamelCase_: List[str] = self.prepare_image_inputs() UpperCamelCase_: Dict = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[Any] = self.get_image_processor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: List[str] = processor.batch_decode(snake_case_ ) UpperCamelCase_: Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = self.get_image_processor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: str = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[Any] = """lower newer""" UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: Dict = processor(text=snake_case_ , images=snake_case_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
670
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def A__ ( lowerCamelCase ) -> Union[str, Any]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowerCamelCase ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def A__ ( lowerCamelCase ) -> List[str]: UpperCamelCase_: Optional[Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase_: int = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format UpperCamelCase_: Optional[Any] = PipelineDataFormat.from_str( format=lowerCamelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowerCamelCase , lowerCamelCase ) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Any , snake_case_ : Pipeline , snake_case_ : PipelineDataFormat ): UpperCamelCase_: Dict = nlp UpperCamelCase_: Optional[Any] = reader @staticmethod def lowerCAmelCase__ ( snake_case_ : ArgumentParser ): UpperCamelCase_: int = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=snake_case_ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=snake_case_ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=snake_case_ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=snake_case_ , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=snake_case_ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=snake_case_ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=snake_case_ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=snake_case_ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_, UpperCamelCase_: str = self._nlp, [] for entry in self._reader: UpperCamelCase_: Union[str, Any] = nlp(**snake_case_ ) if self._reader.is_multi_columns else nlp(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): outputs.append(snake_case_ ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase_: Optional[int] = self._reader.save_binary(snake_case_ ) logger.warning(f'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(snake_case_ )
670
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = BioGptTokenizer __UpperCamelCase : int = False def lowerCAmelCase__ ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase_: List[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase_: Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCamelCase_: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(snake_case_ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): UpperCamelCase_: Dict = """lower newer""" UpperCamelCase_: Optional[int] = """lower newer""" return input_text, output_text def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase_: Optional[int] = """lower""" UpperCamelCase_: Tuple = ["""low""", """er</w>"""] UpperCamelCase_: Union[str, Any] = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Any = tokens + ["""<unk>"""] UpperCamelCase_: Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) @slow def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCamelCase_: Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case_ ) UpperCamelCase_: List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case_ ) UpperCamelCase_: Any = tokenizer.build_inputs_with_special_tokens(snake_case_ ) UpperCamelCase_: Dict = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
670
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = MBartConfig __UpperCamelCase : List[str] = {} __UpperCamelCase : List[Any] = """gelu""" def __init__( self : List[str] , snake_case_ : Dict , snake_case_ : int=13 , snake_case_ : str=7 , snake_case_ : List[str]=True , snake_case_ : Any=False , snake_case_ : Any=99 , snake_case_ : Tuple=32 , snake_case_ : Dict=2 , snake_case_ : Optional[Any]=4 , snake_case_ : Any=37 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Tuple=20 , snake_case_ : Optional[int]=2 , snake_case_ : Union[str, Any]=1 , snake_case_ : Optional[int]=0 , ): UpperCamelCase_: Optional[int] = parent UpperCamelCase_: Union[str, Any] = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: Dict = is_training UpperCamelCase_: Optional[int] = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Dict = hidden_size UpperCamelCase_: int = num_hidden_layers UpperCamelCase_: Optional[Any] = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: Dict = attention_probs_dropout_prob UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: Union[str, Any] = eos_token_id UpperCamelCase_: Optional[int] = pad_token_id UpperCamelCase_: Optional[Any] = bos_token_id def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Any = prepare_mbart_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Tuple , snake_case_ : str ): UpperCamelCase_: List[Any] = TFMBartModel(config=snake_case_ ).get_decoder() UpperCamelCase_: Any = inputs_dict["""input_ids"""] UpperCamelCase_: List[str] = input_ids[:1, :] UpperCamelCase_: Tuple = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase_: Union[str, Any] = inputs_dict["""head_mask"""] UpperCamelCase_: Any = 1 # first forward pass UpperCamelCase_: List[str] = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple() UpperCamelCase_: Union[str, Any] = past_key_values[1] def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Any: if attention_mask is None: UpperCamelCase_: Tuple = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Optional[Any] = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : str = True __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[str] = False def lowerCAmelCase__ ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : str ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: List[str] = TFMBartModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = [ """ UN Chief Says There Is No Military Solution in Syria""", ] __UpperCamelCase : Any = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] __UpperCamelCase : Optional[int] = """facebook/mbart-large-en-ro""" @cached_property def lowerCAmelCase__ ( self : Union[str, Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self : Any , **snake_case_ : Union[str, Any] ): UpperCamelCase_: Optional[Any] = self.translate_src_text(**snake_case_ ) self.assertListEqual(self.expected_text , snake_case_ ) def lowerCAmelCase__ ( self : List[str] , **snake_case_ : Any ): UpperCamelCase_: str = self.tokenizer(self.src_text , **snake_case_ , return_tensors="""tf""" ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_: Dict = self.tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCAmelCase__ ( self : str ): self._assert_generated_batch_equal_expected()
670
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> list[float]: if radian_mode: return [magnitude * cos(lowerCamelCase ), magnitude * sin(lowerCamelCase )] return [magnitude * cos(radians(lowerCamelCase ) ), magnitude * sin(radians(lowerCamelCase ) )] def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 10**-1 ) -> bool: UpperCamelCase_: NDArray[floataa] = cross(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: float = sum(lowerCamelCase ) return abs(lowerCamelCase ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase_ : Union[str, Any] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowerCamelCase_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase_ : List[str] = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowerCamelCase_ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase_ : str = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowerCamelCase_ : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
670
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : Optional[Any] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : List[str] = logging.getLogger() def A__ ( ) -> List[Any]: UpperCamelCase_: str = argparse.ArgumentParser() parser.add_argument("""-f""" ) UpperCamelCase_: List[str] = parser.parse_args() return args.f def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: List[str] = {} UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , """all_results.json""" ) if os.path.exists(lowerCamelCase ): with open(lowerCamelCase , """r""" ) as f: UpperCamelCase_: int = json.load(lowerCamelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results def A__ ( ) -> Any: UpperCamelCase_: Tuple = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() lowerCamelCase_ : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls : List[str] ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU UpperCamelCase_: Dict = tempfile.mkdtemp() UpperCamelCase_: Union[str, Any] = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_: Any = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCAmelCase__ ( cls : Optional[Any] ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = self.get_auto_remove_tmp_dir() UpperCamelCase_: Optional[Any] = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase_: List[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCamelCase_: List[str] = get_results(snake_case_ ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: str = get_results(snake_case_ ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Dict ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase_: List[str] = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: str = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Union[str, Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Dict = self.get_auto_remove_tmp_dir() UpperCamelCase_: List[Any] = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[int] = get_results(snake_case_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[int] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: List[str] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Union[str, Any] = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """translation_no_trainer""" ) ) ) @slow def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case_ ) UpperCamelCase_: List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Optional[Any] = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: int = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: int = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase_: str = get_results(snake_case_ ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """image_classification_no_trainer""" ) ) )
670
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : List[str] = logging.get_logger(__name__) lowerCamelCase_ : str = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = """switch_transformers""" __UpperCamelCase : Dict = ["""past_key_values"""] __UpperCamelCase : List[Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=3_2128 , snake_case_ : List[str]=768 , snake_case_ : int=64 , snake_case_ : Optional[int]=2048 , snake_case_ : Dict=64 , snake_case_ : Dict=12 , snake_case_ : Optional[int]=3 , snake_case_ : str=12 , snake_case_ : Tuple=3 , snake_case_ : Optional[int]=12 , snake_case_ : Union[str, Any]=8 , snake_case_ : List[Any]=False , snake_case_ : List[str]=0.01 , snake_case_ : Tuple="float32" , snake_case_ : Union[str, Any]=False , snake_case_ : Union[str, Any]=32 , snake_case_ : Union[str, Any]=128 , snake_case_ : Any=0.1 , snake_case_ : int=1e-6 , snake_case_ : List[str]=0.001 , snake_case_ : List[str]=0.001 , snake_case_ : Union[str, Any]=1.0 , snake_case_ : str="relu" , snake_case_ : int=True , snake_case_ : Dict=False , snake_case_ : Optional[Any]=True , snake_case_ : Dict=0 , snake_case_ : Tuple=1 , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Any = d_model UpperCamelCase_: Any = d_kv UpperCamelCase_: Union[str, Any] = d_ff UpperCamelCase_: Optional[Any] = num_sparse_encoder_layers UpperCamelCase_: Tuple = num_layers UpperCamelCase_: List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase_: str = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCamelCase_: Any = self.num_layers // self.num_sparse_encoder_layers else: UpperCamelCase_: Dict = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCamelCase_: Tuple = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCamelCase_: Optional[int] = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Optional[int] = num_experts UpperCamelCase_: Union[str, Any] = expert_capacity UpperCamelCase_: Tuple = router_bias UpperCamelCase_: str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) UpperCamelCase_: Tuple = router_dtype UpperCamelCase_: Optional[int] = router_ignore_padding_tokens UpperCamelCase_: Optional[Any] = relative_attention_num_buckets UpperCamelCase_: List[Any] = relative_attention_max_distance UpperCamelCase_: List[Any] = dropout_rate UpperCamelCase_: Optional[int] = layer_norm_epsilon UpperCamelCase_: Any = initializer_factor UpperCamelCase_: Optional[int] = feed_forward_proj UpperCamelCase_: Tuple = use_cache UpperCamelCase_: Tuple = add_router_probs UpperCamelCase_: Union[str, Any] = router_z_loss_coef UpperCamelCase_: Tuple = router_aux_loss_coef UpperCamelCase_: Tuple = self.feed_forward_proj.split("""-""" ) UpperCamelCase_: str = act_info[-1] UpperCamelCase_: Dict = act_info[0] == """gated""" if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCamelCase_: Any = """gelu_new""" super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , )
670
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A__ ( lowerCamelCase ) -> tuple: return (data["data"], data["target"]) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> np.ndarray: UpperCamelCase_: str = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCamelCase , lowerCamelCase ) # Predict target for test data UpperCamelCase_: List[str] = xgb.predict(lowerCamelCase ) UpperCamelCase_: Optional[Any] = predictions.reshape(len(lowerCamelCase ) , 1 ) return predictions def A__ ( ) -> None: UpperCamelCase_: Union[str, Any] = fetch_california_housing() UpperCamelCase_, UpperCamelCase_: Optional[Any] = data_handling(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = train_test_split( lowerCamelCase , lowerCamelCase , test_size=0.25 , random_state=1 ) UpperCamelCase_: str = xgboost(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCamelCase , lowerCamelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCamelCase , lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
670
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase_ : Dict = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
def A__ ( lowerCamelCase ) -> list: def merge(lowerCamelCase , lowerCamelCase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCamelCase ) <= 1: return collection UpperCamelCase_: List[str] = len(lowerCamelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase_ : Any = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
670
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: # Load checkpoint UpperCamelCase_: List[Any] = torch.load(lowerCamelCase , map_location="""cpu""" ) UpperCamelCase_: Optional[int] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository UpperCamelCase_: List[str] = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase_: str = v else: UpperCamelCase_: Tuple = v UpperCamelCase_: Tuple = chkpt["""params"""] UpperCamelCase_: Any = {n: v for n, v in config.items() if not isinstance(lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase_: str = chkpt["""dico_word2id"""] UpperCamelCase_: str = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase_: Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase_: Optional[int] = pytorch_dump_folder_path + """/""" + CONFIG_NAME UpperCamelCase_: Any = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(lowerCamelCase , lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Tuple = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
670
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Dict = """linear""" __UpperCamelCase : List[Any] = """cosine""" __UpperCamelCase : int = """cosine_with_restarts""" __UpperCamelCase : List[str] = """polynomial""" __UpperCamelCase : Any = """constant""" __UpperCamelCase : List[str] = """constant_with_warmup""" __UpperCamelCase : str = """piecewise_constant""" def A__ ( lowerCamelCase , lowerCamelCase = -1 ) -> Any: return LambdaLR(lowerCamelCase , lambda lowerCamelCase : 1 , last_epoch=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = -1 ) -> Dict: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1.0 , lowerCamelCase ) ) return 1.0 return LambdaLR(lowerCamelCase , lowerCamelCase , last_epoch=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = -1 ) -> Optional[int]: UpperCamelCase_: Dict = {} UpperCamelCase_: List[str] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: UpperCamelCase_, UpperCamelCase_: Tuple = rule_str.split(""":""" ) UpperCamelCase_: Dict = int(lowerCamelCase ) UpperCamelCase_: Dict = float(lowerCamelCase ) UpperCamelCase_: Any = value UpperCamelCase_: Optional[int] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase , lowerCamelCase ): def rule_func(lowerCamelCase ) -> float: UpperCamelCase_: Dict = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCamelCase_: Optional[Any] = create_rules_function(lowerCamelCase , lowerCamelCase ) return LambdaLR(lowerCamelCase , lowerCamelCase , last_epoch=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=-1 ) -> Optional[Any]: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.5 , lowerCamelCase = -1 ) -> Dict: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) UpperCamelCase_: Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = -1 ) -> Optional[Any]: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) UpperCamelCase_: Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=1E-7 , lowerCamelCase=1.0 , lowerCamelCase=-1 ) -> List[str]: UpperCamelCase_: List[Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCamelCase_: Optional[int] = lr_init - lr_end UpperCamelCase_: Optional[Any] = num_training_steps - num_warmup_steps UpperCamelCase_: Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps UpperCamelCase_: Optional[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 1.0 , lowerCamelCase = -1 , ) -> Optional[int]: UpperCamelCase_: List[Any] = SchedulerType(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase , last_epoch=lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase , step_rules=lowerCamelCase , last_epoch=lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase , num_warmup_steps=lowerCamelCase , last_epoch=lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase , num_warmup_steps=lowerCamelCase , num_training_steps=lowerCamelCase , num_cycles=lowerCamelCase , last_epoch=lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase , num_warmup_steps=lowerCamelCase , num_training_steps=lowerCamelCase , power=lowerCamelCase , last_epoch=lowerCamelCase , ) return schedule_func( lowerCamelCase , num_warmup_steps=lowerCamelCase , num_training_steps=lowerCamelCase , last_epoch=lowerCamelCase )
670
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A__ ( ) -> Union[str, Any]: UpperCamelCase_: List[str] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" UpperCamelCase_: Any = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert("""RGB""" ) return image def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: UpperCamelCase_: Any = dct.pop(lowerCamelCase ) UpperCamelCase_: Any = val def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase_: List[str] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase_: Optional[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase_: List[Any] = torch.cat((q_bias, torch.zeros_like(lowerCamelCase , requires_grad=lowerCamelCase ), v_bias) ) UpperCamelCase_: int = qkv_bias def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Optional[int] = 3_64 if """coco""" in model_name else 2_24 UpperCamelCase_: Optional[int] = BlipaVisionConfig(image_size=lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase_: Optional[Any] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase_: int = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "t5-xl" in model_name: UpperCamelCase_: Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase_: str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() UpperCamelCase_: Optional[Any] = BlipaConfig(vision_config=lowerCamelCase , text_config=lowerCamelCase ) return config, image_size @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ) -> str: UpperCamelCase_: List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) UpperCamelCase_: List[Any] = tokenizer("""\n""" , add_special_tokens=lowerCamelCase ).input_ids[0] UpperCamelCase_, UpperCamelCase_: List[str] = get_blipa_config(lowerCamelCase , eos_token_id=lowerCamelCase ) UpperCamelCase_: Any = BlipaForConditionalGeneration(lowerCamelCase ).eval() UpperCamelCase_: List[Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } UpperCamelCase_, UpperCamelCase_: List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) UpperCamelCase_: str = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Any = load_model_and_preprocess( name=lowerCamelCase , model_type=lowerCamelCase , is_eval=lowerCamelCase , device=lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys UpperCamelCase_: List[Any] = original_model.state_dict() UpperCamelCase_: Union[str, Any] = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase_: List[Any] = state_dict.pop(lowerCamelCase ) if key.startswith("""Qformer.bert""" ): UpperCamelCase_: Dict = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: UpperCamelCase_: int = key.replace("""self""" , """attention""" ) if "opt_proj" in key: UpperCamelCase_: int = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: UpperCamelCase_: Optional[int] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): UpperCamelCase_: Any = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): UpperCamelCase_: Dict = key.replace("""t5""" , """language""" ) UpperCamelCase_: Optional[int] = val # read in qv biases read_in_q_v_bias(lowerCamelCase , lowerCamelCase ) UpperCamelCase_, UpperCamelCase_: Dict = hf_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert len(lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase_: List[Any] = load_demo_image() UpperCamelCase_: Optional[int] = vis_processors["""eval"""](lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) UpperCamelCase_: Tuple = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) # create processor UpperCamelCase_: str = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=lowerCamelCase , image_std=lowerCamelCase ) UpperCamelCase_: Dict = BlipaProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCamelCase_: Optional[Any] = processor(images=lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) original_model.to(lowerCamelCase ) hf_model.to(lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase_: Any = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits UpperCamelCase_: Dict = hf_model(lowerCamelCase , lowerCamelCase ).logits else: UpperCamelCase_: List[str] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits UpperCamelCase_: Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) UpperCamelCase_: Union[str, Any] = hf_model(lowerCamelCase , lowerCamelCase , labels=lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase_: int = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase_: Dict = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowerCamelCase ) else: # cast to same type UpperCamelCase_: str = logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase ) , lowerCamelCase , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) UpperCamelCase_: Optional[Any] = """""" UpperCamelCase_: Union[str, Any] = tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) UpperCamelCase_: List[str] = original_model.generate({"""image""": original_pixel_values} ) UpperCamelCase_: Any = hf_model.generate( lowerCamelCase , lowerCamelCase , do_sample=lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , lowerCamelCase ) UpperCamelCase_: Any = input_ids.shape[1] UpperCamelCase_: Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCamelCase ) UpperCamelCase_: Any = [text.strip() for text in output_text] print("""HF generation:""" , lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() lowerCamelCase_ : Dict = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowerCamelCase_ : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Dict = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) UpperCamelCase_: List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def lowerCAmelCase__ ( self : Any ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: Optional[Any] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase__ ( self : Dict ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: Tuple = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase__ ( self : Tuple ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) UpperCamelCase_: Optional[int] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase_ : int = Accelerator() lowerCamelCase_ : Any = (accelerator.state.process_index + 2, 10) lowerCamelCase_ : Tuple = torch.randint(0, 10, shape).to(accelerator.device) lowerCamelCase_ : Optional[int] = """""" lowerCamelCase_ : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCamelCase_ : str = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCamelCase_ : List[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
670
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCamelCase_ : Tuple = logging.getLogger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Any = """token-classification""" def __init__( self : List[Any] , snake_case_ : int ): if type(snake_case_ ) == dict: UpperCamelCase_: List[str] = Namespace(**snake_case_ ) UpperCamelCase_: Any = import_module("""tasks""" ) try: UpperCamelCase_: List[Any] = getattr(snake_case_ , hparams.task_type ) UpperCamelCase_: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCamelCase_: Tuple = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase_: Tuple = CrossEntropyLoss().ignore_index super().__init__(snake_case_ , len(self.labels ) , self.mode ) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : str ): return self.model(**snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase_: Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase_: Union[str, Any] = self(**snake_case_ ) UpperCamelCase_: List[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase_: str = self._feature_file(snake_case_ ) if os.path.exists(snake_case_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , snake_case_ ) UpperCamelCase_: Optional[int] = torch.load(snake_case_ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) UpperCamelCase_: Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , snake_case_ ) UpperCamelCase_: Tuple = self.token_classification_task.convert_examples_to_features( snake_case_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=snake_case_ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , snake_case_ ) torch.save(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : int , snake_case_ : int , snake_case_ : bool = False ): UpperCamelCase_: int = self._feature_file(snake_case_ ) logger.info("""Loading features from cached file %s""" , snake_case_ ) UpperCamelCase_: Optional[int] = torch.load(snake_case_ ) UpperCamelCase_: Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase_: Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase_: str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase_: Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase_: List[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , batch_size=snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ): """Compute validation""" "" UpperCamelCase_: str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase_: Optional[Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase_: int = self(**snake_case_ ) UpperCamelCase_, UpperCamelCase_: Optional[int] = outputs[:2] UpperCamelCase_: Tuple = logits.detach().cpu().numpy() UpperCamelCase_: List[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): UpperCamelCase_: int = torch.stack([x["""val_loss"""] for x in outputs] ).mean() UpperCamelCase_: List[Any] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) UpperCamelCase_: List[Any] = np.argmax(snake_case_ , axis=2 ) UpperCamelCase_: List[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) UpperCamelCase_: List[Any] = dict(enumerate(self.labels ) ) UpperCamelCase_: Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase_: int = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase_: Dict = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(snake_case_ , snake_case_ ), """precision""": precision_score(snake_case_ , snake_case_ ), """recall""": recall_score(snake_case_ , snake_case_ ), """f1""": fa_score(snake_case_ , snake_case_ ), } UpperCamelCase_: List[str] = dict(results.items() ) UpperCamelCase_: List[str] = results return ret, preds_list, out_label_list def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[Any] ): # when stable UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Dict = self._eval_end(snake_case_ ) UpperCamelCase_: Tuple = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase__ ( self : Dict , snake_case_ : Union[str, Any] ): # updating to test_epoch_end instead of deprecated test_end UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Union[str, Any] = self._eval_end(snake_case_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase_: Dict = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase__ ( snake_case_ : List[Any] , snake_case_ : Optional[int] ): # Add NER specific options BaseTransformer.add_model_specific_args(snake_case_ , snake_case_ ) parser.add_argument( """--task_type""" , default="""NER""" , type=snake_case_ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=snake_case_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=snake_case_ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=snake_case_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": lowerCamelCase_ : List[str] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCamelCase_ : str = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCamelCase_ : Optional[int] = parser.parse_args() lowerCamelCase_ : List[Any] = NERTransformer(args) lowerCamelCase_ : Dict = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCamelCase_ : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) lowerCamelCase_ : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
670
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
1
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def A__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
670
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
1
import re def A__ ( lowerCamelCase ) -> list: return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: Any = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: try: UpperCamelCase_: int = split_input(lowerCamelCase ) if upper: UpperCamelCase_: Optional[int] = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCamelCase_: List[Any] = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def A__ ( lowerCamelCase ) -> str: return to_simple_case(lowerCamelCase ) def A__ ( lowerCamelCase ) -> str: try: UpperCamelCase_: Optional[int] = to_simple_case(lowerCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def A__ ( lowerCamelCase , lowerCamelCase ) -> str: return to_complex_case(lowerCamelCase , lowerCamelCase , """_""" ) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: return to_complex_case(lowerCamelCase , lowerCamelCase , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
670
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
1
from decimal import Decimal, getcontext from math import ceil, factorial def A__ ( lowerCamelCase ) -> str: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) UpperCamelCase_: Dict = precision UpperCamelCase_: List[Any] = ceil(precision / 14 ) UpperCamelCase_: List[Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Optional[Any] = 13_59_14_09 UpperCamelCase_: List[str] = Decimal(lowerCamelCase ) for k in range(1 , lowerCamelCase ): UpperCamelCase_: List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCamelCase ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase_ : Dict = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
670
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
670
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
1
lowerCamelCase_ : str = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCamelCase_ : int = frozenset(["""prompt""", """negative_prompt"""]) lowerCamelCase_ : Optional[int] = frozenset([]) lowerCamelCase_ : Dict = frozenset(["""image"""]) lowerCamelCase_ : Union[str, Any] = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase_ : Tuple = frozenset(["""image"""]) lowerCamelCase_ : str = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCamelCase_ : str = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowerCamelCase_ : int = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCamelCase_ : Any = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowerCamelCase_ : Any = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase_ : Optional[Any] = frozenset(["""image""", """mask_image"""]) lowerCamelCase_ : Dict = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase_ : Dict = frozenset(["""example_image""", """image""", """mask_image"""]) lowerCamelCase_ : Any = frozenset(["""class_labels"""]) lowerCamelCase_ : Tuple = frozenset(["""class_labels"""]) lowerCamelCase_ : List[Any] = frozenset(["""batch_size"""]) lowerCamelCase_ : List[Any] = frozenset([]) lowerCamelCase_ : Dict = frozenset(["""batch_size"""]) lowerCamelCase_ : Any = frozenset([]) lowerCamelCase_ : int = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCamelCase_ : Optional[Any] = frozenset(["""prompt""", """negative_prompt"""]) lowerCamelCase_ : Tuple = frozenset(["""input_tokens"""]) lowerCamelCase_ : Tuple = frozenset(["""input_tokens"""])
670
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase_ : Tuple = random.Random() def A__ ( lowerCamelCase , lowerCamelCase=1.0 , lowerCamelCase=None , lowerCamelCase=None ) -> Any: if rng is None: UpperCamelCase_: List[str] = global_rng UpperCamelCase_: str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Any=7 , snake_case_ : Optional[int]=400 , snake_case_ : Any=2000 , snake_case_ : Any=2048 , snake_case_ : List[Any]=128 , snake_case_ : Dict=1 , snake_case_ : str=512 , snake_case_ : Dict=30 , snake_case_ : Optional[int]=4_4100 , ): UpperCamelCase_: str = parent UpperCamelCase_: Tuple = batch_size UpperCamelCase_: Dict = min_seq_length UpperCamelCase_: Optional[int] = max_seq_length UpperCamelCase_: Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_: Union[str, Any] = spectrogram_length UpperCamelCase_: Dict = feature_size UpperCamelCase_: int = num_audio_channels UpperCamelCase_: int = hop_length UpperCamelCase_: Any = chunk_length UpperCamelCase_: Optional[Any] = sampling_rate def lowerCAmelCase__ ( self : int ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any]=False , snake_case_ : int=False ): def _flatten(snake_case_ : Union[str, Any] ): return list(itertools.chain(*snake_case_ ) ) if equal_length: UpperCamelCase_: Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_: Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_: Union[str, Any] = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = TvltFeatureExtractor def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , """spectrogram_length""" ) ) self.assertTrue(hasattr(snake_case_ , """feature_size""" ) ) self.assertTrue(hasattr(snake_case_ , """num_audio_channels""" ) ) self.assertTrue(hasattr(snake_case_ , """hop_length""" ) ) self.assertTrue(hasattr(snake_case_ , """chunk_length""" ) ) self.assertTrue(hasattr(snake_case_ , """sampling_rate""" ) ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: Optional[int] = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) UpperCamelCase_: Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case_ ) UpperCamelCase_: Any = feat_extract_first.to_dict() UpperCamelCase_: List[str] = feat_extract_second.to_dict() UpperCamelCase_: Any = dict_first.pop("""mel_filters""" ) UpperCamelCase_: Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: int = os.path.join(snake_case_ , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case_ ) UpperCamelCase_: Optional[Any] = self.feature_extraction_class.from_json_file(snake_case_ ) UpperCamelCase_: Any = feat_extract_first.to_dict() UpperCamelCase_: str = feat_extract_second.to_dict() UpperCamelCase_: Dict = dict_first.pop("""mel_filters""" ) UpperCamelCase_: Any = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : int ): # Initialize feature_extractor UpperCamelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_: Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_: List[str] = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase_: Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCamelCase_: Any = feature_extractor(snake_case_ , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCamelCase_: str = feature_extractor( snake_case_ , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCamelCase_: Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_: int = np.asarray(snake_case_ ) UpperCamelCase_: Optional[int] = feature_extractor(snake_case_ , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[Any] ): UpperCamelCase_: Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCamelCase_: Any = ds.sort("""id""" ).select(range(snake_case_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = self._load_datasamples(1 ) UpperCamelCase_: str = TvltFeatureExtractor() UpperCamelCase_: str = feature_extractor(snake_case_ , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) UpperCamelCase_: Dict = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1e-4 ) )
670
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : int = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : str = """trocr""" __UpperCamelCase : List[Any] = ["""past_key_values"""] __UpperCamelCase : int = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Union[str, Any] , snake_case_ : Tuple=5_0265 , snake_case_ : Dict=1024 , snake_case_ : str=12 , snake_case_ : int=16 , snake_case_ : Optional[Any]=4096 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[Any]=512 , snake_case_ : List[Any]=0.1 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : str=0.0 , snake_case_ : List[Any]=2 , snake_case_ : Optional[int]=0.02 , snake_case_ : Dict=0.0 , snake_case_ : List[str]=True , snake_case_ : Optional[int]=False , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : str=1 , snake_case_ : Tuple=0 , snake_case_ : Optional[Any]=2 , **snake_case_ : str , ): UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Any = d_model UpperCamelCase_: Union[str, Any] = decoder_layers UpperCamelCase_: str = decoder_attention_heads UpperCamelCase_: int = decoder_ffn_dim UpperCamelCase_: Union[str, Any] = activation_function UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: Tuple = dropout UpperCamelCase_: Union[str, Any] = attention_dropout UpperCamelCase_: Union[str, Any] = activation_dropout UpperCamelCase_: int = init_std UpperCamelCase_: List[str] = decoder_layerdrop UpperCamelCase_: int = use_cache UpperCamelCase_: Tuple = scale_embedding UpperCamelCase_: List[str] = use_learned_position_embeddings UpperCamelCase_: Dict = layernorm_embedding super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
670
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = MODEL_FOR_MASKED_LM_MAPPING __UpperCamelCase : List[Any] = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase__ ( self : List[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) UpperCamelCase_: Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case_ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) UpperCamelCase_: List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case_ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) UpperCamelCase_: Dict = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case_ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) UpperCamelCase_: Tuple = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case_ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) UpperCamelCase_: Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case_ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) UpperCamelCase_: int = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case_ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) UpperCamelCase_: Tuple = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: str = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() UpperCamelCase_: List[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case_ , snake_case_ ) @slow @require_torch def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(snake_case_ ) @slow @require_tf def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Any = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case_ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) UpperCamelCase_: int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case_ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) UpperCamelCase_: Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case_ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[int] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) UpperCamelCase_: Any = None UpperCamelCase_: List[str] = None self.run_pipeline_test(snake_case_ , [] ) @require_tf def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) UpperCamelCase_: Dict = None UpperCamelCase_: Optional[int] = None self.run_pipeline_test(snake_case_ , [] ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str , snake_case_ : Tuple ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) UpperCamelCase_: Optional[Any] = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ ) UpperCamelCase_: List[Any] = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Any , snake_case_ : List[str] ): UpperCamelCase_: str = fill_masker.tokenizer UpperCamelCase_: str = fill_masker.model UpperCamelCase_: Optional[int] = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( snake_case_ , [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ] , ) UpperCamelCase_: int = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( snake_case_ , [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ] , ) UpperCamelCase_: List[Any] = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( snake_case_ , [ [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ], [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ], ] , ) with self.assertRaises(snake_case_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case_ ): fill_masker("""This is""" ) self.run_test_top_k(snake_case_ , snake_case_ ) self.run_test_targets(snake_case_ , snake_case_ ) self.run_test_top_k_targets(snake_case_ , snake_case_ ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case_ , snake_case_ ) self.fill_mask_with_multiple_masks(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): UpperCamelCase_: Optional[int] = tokenizer.get_vocab() UpperCamelCase_: Optional[Any] = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_: Dict = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ , targets=snake_case_ ) UpperCamelCase_: str = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( snake_case_ , [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ] , ) UpperCamelCase_: Union[str, Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , snake_case_ ) UpperCamelCase_: List[str] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(snake_case_ ) ) # Call argument UpperCamelCase_: Union[str, Any] = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ ) UpperCamelCase_: Any = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case_ ) self.assertEqual( snake_case_ , [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ] , ) UpperCamelCase_: List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , snake_case_ ) UpperCamelCase_: Optional[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(snake_case_ ) ) # Score equivalence UpperCamelCase_: Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case_ ) UpperCamelCase_: str = [top_mask["""token_str"""] for top_mask in outputs] UpperCamelCase_: Tuple = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case_ ) == set(snake_case_ ): UpperCamelCase_: Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case_ ) UpperCamelCase_: Optional[int] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case_ ) , nested_simplify(snake_case_ ) ) # Raises with invalid with self.assertRaises(snake_case_ ): UpperCamelCase_: List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case_ ): UpperCamelCase_: Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(snake_case_ ): UpperCamelCase_: List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="""""" ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Tuple , snake_case_ : List[str] ): UpperCamelCase_: str = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ , top_k=2 ) UpperCamelCase_: List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( snake_case_ , [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ] , ) UpperCamelCase_: int = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ ) UpperCamelCase_: Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( snake_case_ , [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ] , ) self.assertEqual(nested_simplify(snake_case_ ) , nested_simplify(snake_case_ ) ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Union[str, Any] ): UpperCamelCase_: Optional[Any] = tokenizer.get_vocab() UpperCamelCase_: Optional[int] = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ ) # top_k=2, ntargets=3 UpperCamelCase_: Tuple = sorted(vocab.keys() )[:3] UpperCamelCase_: List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=snake_case_ ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_: int = [el["""token_str"""] for el in sorted(snake_case_ , key=lambda snake_case_ : x["score"] , reverse=snake_case_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case_ ).issubset(snake_case_ ): UpperCamelCase_: Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=snake_case_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case_ ) , nested_simplify(snake_case_ ) ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Tuple , snake_case_ : int ): UpperCamelCase_: Any = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ ) UpperCamelCase_: Dict = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_: Optional[Any] = sorted(vocab.keys() )[:3] UpperCamelCase_: Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_: Optional[int] = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=snake_case_ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case_ ) , 3 ) def lowerCAmelCase__ ( self : Any , snake_case_ : List[Any] , snake_case_ : Dict ): UpperCamelCase_: List[str] = FillMaskPipeline(model=snake_case_ , tokenizer=snake_case_ ) UpperCamelCase_: Union[str, Any] = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( snake_case_ , [ [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ], [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ], [ {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, {"""sequence""": ANY(snake_case_ ), """score""": ANY(snake_case_ ), """token""": ANY(snake_case_ ), """token_str""": ANY(snake_case_ )}, ], ] , )
670
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , *snake_case_ : Optional[Any] , **snake_case_ : List[str] ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
670
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
1
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: if height >= 1: move_tower(height - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) move_disk(lowerCamelCase , lowerCamelCase ) move_tower(height - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]: print("""moving disk from""" , lowerCamelCase , """to""" , lowerCamelCase ) def A__ ( ) -> str: UpperCamelCase_: List[str] = int(input("""Height of hanoi: """ ).strip() ) move_tower(lowerCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
670
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
1
lowerCamelCase_ : Optional[Any] = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } lowerCamelCase_ : Union[str, Any] = {value: key for key, value in encode_dict.items()} def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: List[Any] = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def A__ ( lowerCamelCase ) -> str: if set(lowerCamelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) UpperCamelCase_: str = """""" for word in coded.split(): while len(lowerCamelCase ) != 0: decoded += decode_dict[word[:5]] UpperCamelCase_: Optional[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
670
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
1
def A__ ( lowerCamelCase , lowerCamelCase ) -> List[Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A__ ( lowerCamelCase , lowerCamelCase=0 ) -> Optional[Any]: return sorted(lowerCamelCase , key=lambda lowerCamelCase : x[column] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=float("""inf""" ) ) -> Optional[int]: for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase ): UpperCamelCase_: Any = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCamelCase_: Any = current_dis return min_dis def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=float("""inf""" ) ) -> Tuple: for i in range(min(6 , points_counts - 1 ) , lowerCamelCase ): for j in range(max(0 , i - 6 ) , lowerCamelCase ): UpperCamelCase_: Optional[int] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCamelCase_: Dict = current_dis return min_dis def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: # base case if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase , lowerCamelCase ) # recursion UpperCamelCase_: int = points_counts // 2 UpperCamelCase_: Optional[Any] = closest_pair_of_points_sqr( lowerCamelCase , points_sorted_on_y[:mid] , lowerCamelCase ) UpperCamelCase_: str = closest_pair_of_points_sqr( lowerCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) UpperCamelCase_: Dict = min(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: List[str] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase ) UpperCamelCase_: Dict = dis_between_closest_in_strip( lowerCamelCase , len(lowerCamelCase ) , lowerCamelCase ) return min(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]: UpperCamelCase_: str = column_based_sort(lowerCamelCase , column=0 ) UpperCamelCase_: Tuple = column_based_sort(lowerCamelCase , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ : int = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
670
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase_ : List[str] = Mapping[str, np.ndarray] lowerCamelCase_ : int = Mapping[str, Any] # Is a nested dict. lowerCamelCase_ : Optional[Any] = 0.01 @dataclasses.dataclass(frozen=_A ) class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __UpperCamelCase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __UpperCamelCase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions __UpperCamelCase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files __UpperCamelCase : Optional[str] = None # Templates used to generate this protein (prediction-only) __UpperCamelCase : Optional[Sequence[str]] = None # Chain corresponding to each parent __UpperCamelCase : Optional[Sequence[int]] = None def A__ ( lowerCamelCase ) -> Protein: UpperCamelCase_: Optional[Any] = r"""(\[[A-Z]+\]\n)""" UpperCamelCase_: List[str] = [tag.strip() for tag in re.split(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) > 0] UpperCamelCase_: Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) UpperCamelCase_: List[str] = ["N", "CA", "C"] UpperCamelCase_: Dict = None UpperCamelCase_: int = None UpperCamelCase_: Union[str, Any] = None for g in groups: if "[PRIMARY]" == g[0]: UpperCamelCase_: int = g[1][0].strip() for i in range(len(lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: UpperCamelCase_: Any = """X""" # FIXME: strings are immutable UpperCamelCase_: Union[str, Any] = np.array( [residue_constants.restype_order.get(lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: UpperCamelCase_: List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(lowerCamelCase , g[1][axis].split() ) ) ) UpperCamelCase_: List[str] = np.array(lowerCamelCase ) UpperCamelCase_: List[Any] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowerCamelCase ): UpperCamelCase_: Tuple = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: UpperCamelCase_: Union[str, Any] = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) UpperCamelCase_: Any = np.zeros( ( len(lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowerCamelCase ): UpperCamelCase_: Tuple = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowerCamelCase , atom_mask=lowerCamelCase , aatype=lowerCamelCase , residue_index=np.arange(len(lowerCamelCase ) ) , b_factors=lowerCamelCase , ) def A__ ( lowerCamelCase , lowerCamelCase = 0 ) -> List[str]: UpperCamelCase_: List[str] = [] UpperCamelCase_: List[Any] = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) UpperCamelCase_: Union[str, Any] = prot.parents UpperCamelCase_: Union[str, Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: UpperCamelCase_: List[Any] = [p for i, p in zip(lowerCamelCase , lowerCamelCase ) if i == chain_id] if parents is None or len(lowerCamelCase ) == 0: UpperCamelCase_: List[Any] = ["""N/A"""] pdb_headers.append(F'''PARENT {" ".join(lowerCamelCase )}''' ) return pdb_headers def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: List[str] = [] UpperCamelCase_: Union[str, Any] = pdb_str.split("""\n""" ) UpperCamelCase_: Optional[int] = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) UpperCamelCase_: List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: UpperCamelCase_: Union[str, Any] = [] if prot.parents_chain_index is not None: UpperCamelCase_: Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowerCamelCase ) , [] ) parent_dict[str(lowerCamelCase )].append(lowerCamelCase ) UpperCamelCase_: Optional[int] = max([int(lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): UpperCamelCase_: List[str] = parent_dict.get(str(lowerCamelCase ) , ["""N/A"""] ) parents_per_chain.append(lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: UpperCamelCase_: Any = [["""N/A"""]] def make_parent_line(lowerCamelCase ) -> str: return F'''PARENT {" ".join(lowerCamelCase )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) UpperCamelCase_: Dict = 0 for i, l in enumerate(lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowerCamelCase ): UpperCamelCase_: int = parents_per_chain[chain_counter] else: UpperCamelCase_: str = ["""N/A"""] out_pdb_lines.append(make_parent_line(lowerCamelCase ) ) return "\n".join(lowerCamelCase ) def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: Optional[Any] = residue_constants.restypes + ["""X"""] def res_atoa(lowerCamelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) UpperCamelCase_: List[str] = residue_constants.atom_types UpperCamelCase_: List[str] = [] UpperCamelCase_: Dict = prot.atom_mask UpperCamelCase_: Dict = prot.aatype UpperCamelCase_: Union[str, Any] = prot.atom_positions UpperCamelCase_: List[Any] = prot.residue_index.astype(np.intaa ) UpperCamelCase_: int = prot.b_factors UpperCamelCase_: List[Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) UpperCamelCase_: Tuple = get_pdb_headers(lowerCamelCase ) if len(lowerCamelCase ) > 0: pdb_lines.extend(lowerCamelCase ) UpperCamelCase_: Optional[int] = aatype.shape[0] UpperCamelCase_: Any = 1 UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: Dict = string.ascii_uppercase UpperCamelCase_: Optional[int] = None # Add all atom sites. for i in range(lowerCamelCase ): UpperCamelCase_: List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue UpperCamelCase_: int = """ATOM""" UpperCamelCase_: Dict = atom_name if len(lowerCamelCase ) == 4 else F''' {atom_name}''' UpperCamelCase_: Union[str, Any] = """""" UpperCamelCase_: Optional[Any] = """""" UpperCamelCase_: Optional[int] = 1.00 UpperCamelCase_: List[str] = atom_name[0] # Protein supports only C, N, O, S, this works. UpperCamelCase_: Optional[int] = """""" UpperCamelCase_: Dict = """A""" if chain_index is not None: UpperCamelCase_: Optional[int] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! UpperCamelCase_: Optional[int] = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(lowerCamelCase ) atom_index += 1 UpperCamelCase_: Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: UpperCamelCase_: Union[str, Any] = True UpperCamelCase_: List[Any] = chain_index[i + 1] if should_terminate: # Close the chain. UpperCamelCase_: Tuple = """TER""" UpperCamelCase_: str = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowerCamelCase , lowerCamelCase ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(lowerCamelCase ) def A__ ( lowerCamelCase ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , ) -> Protein: return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=lowerCamelCase , remark=lowerCamelCase , parents=lowerCamelCase , parents_chain_index=lowerCamelCase , )
670
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: list[list[str]] = [[] for _ in range(lowerCamelCase )] UpperCamelCase_: Optional[Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(lowerCamelCase ) <= key: return input_string for position, character in enumerate(lowerCamelCase ): UpperCamelCase_: List[Any] = position % (lowest * 2) # puts it in bounds UpperCamelCase_: Dict = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCamelCase ) UpperCamelCase_: str = ["""""".join(lowerCamelCase ) for row in temp_grid] UpperCamelCase_: Dict = """""".join(lowerCamelCase ) return output_string def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: int = [] UpperCamelCase_: Dict = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string UpperCamelCase_: list[list[str]] = [[] for _ in range(lowerCamelCase )] # generates template for position in range(len(lowerCamelCase ) ): UpperCamelCase_: Optional[int] = position % (lowest * 2) # puts it in bounds UpperCamelCase_: Optional[int] = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) UpperCamelCase_: List[Any] = 0 for row in temp_grid: # fills in the characters UpperCamelCase_: Union[str, Any] = input_string[counter : counter + len(lowerCamelCase )] grid.append(list(lowerCamelCase ) ) counter += len(lowerCamelCase ) UpperCamelCase_: List[str] = """""" # reads as zigzag for position in range(len(lowerCamelCase ) ): UpperCamelCase_: List[str] = position % (lowest * 2) # puts it in bounds UpperCamelCase_: Any = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def A__ ( lowerCamelCase ) -> dict[int, str]: UpperCamelCase_: Optional[int] = {} for key_guess in range(1 , len(lowerCamelCase ) ): # tries every key UpperCamelCase_: Union[str, Any] = decrypt(lowerCamelCase , lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
670
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : int = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = """deformable_detr""" __UpperCamelCase : List[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : int , snake_case_ : int=True , snake_case_ : Dict=None , snake_case_ : Optional[int]=3 , snake_case_ : List[Any]=300 , snake_case_ : Tuple=1024 , snake_case_ : Tuple=6 , snake_case_ : Union[str, Any]=1024 , snake_case_ : List[Any]=8 , snake_case_ : Dict=6 , snake_case_ : int=1024 , snake_case_ : str=8 , snake_case_ : List[str]=0.0 , snake_case_ : int=True , snake_case_ : Any="relu" , snake_case_ : str=256 , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : str=1.0 , snake_case_ : Any=True , snake_case_ : str=False , snake_case_ : List[str]="sine" , snake_case_ : List[Any]="resnet50" , snake_case_ : int=True , snake_case_ : str=False , snake_case_ : Tuple=4 , snake_case_ : Optional[Any]=4 , snake_case_ : Tuple=4 , snake_case_ : Optional[int]=False , snake_case_ : Tuple=300 , snake_case_ : Optional[int]=False , snake_case_ : Dict=1 , snake_case_ : Optional[Any]=5 , snake_case_ : Union[str, Any]=2 , snake_case_ : Optional[int]=1 , snake_case_ : int=1 , snake_case_ : List[Any]=5 , snake_case_ : Optional[int]=2 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.25 , snake_case_ : Union[str, Any]=False , **snake_case_ : List[str] , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase_: str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Tuple = backbone_config.get("""model_type""" ) UpperCamelCase_: Dict = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_: List[Any] = config_class.from_dict(snake_case_ ) UpperCamelCase_: Optional[int] = use_timm_backbone UpperCamelCase_: Optional[Any] = backbone_config UpperCamelCase_: str = num_channels UpperCamelCase_: str = num_queries UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: str = d_model UpperCamelCase_: Union[str, Any] = encoder_ffn_dim UpperCamelCase_: int = encoder_layers UpperCamelCase_: Tuple = encoder_attention_heads UpperCamelCase_: List[str] = decoder_ffn_dim UpperCamelCase_: List[Any] = decoder_layers UpperCamelCase_: Dict = decoder_attention_heads UpperCamelCase_: Any = dropout UpperCamelCase_: List[Any] = attention_dropout UpperCamelCase_: str = activation_dropout UpperCamelCase_: List[Any] = activation_function UpperCamelCase_: Tuple = init_std UpperCamelCase_: Union[str, Any] = init_xavier_std UpperCamelCase_: Dict = encoder_layerdrop UpperCamelCase_: List[Any] = auxiliary_loss UpperCamelCase_: Optional[int] = position_embedding_type UpperCamelCase_: Dict = backbone UpperCamelCase_: Optional[int] = use_pretrained_backbone UpperCamelCase_: List[Any] = dilation # deformable attributes UpperCamelCase_: Optional[int] = num_feature_levels UpperCamelCase_: Dict = encoder_n_points UpperCamelCase_: str = decoder_n_points UpperCamelCase_: int = two_stage UpperCamelCase_: List[Any] = two_stage_num_proposals UpperCamelCase_: str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase_: List[Any] = class_cost UpperCamelCase_: List[Any] = bbox_cost UpperCamelCase_: List[Any] = giou_cost # Loss coefficients UpperCamelCase_: List[str] = mask_loss_coefficient UpperCamelCase_: Union[str, Any] = dice_loss_coefficient UpperCamelCase_: int = bbox_loss_coefficient UpperCamelCase_: str = giou_loss_coefficient UpperCamelCase_: Any = eos_coefficient UpperCamelCase_: int = focal_alpha UpperCamelCase_: str = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : int ): return self.encoder_attention_heads @property def lowerCAmelCase__ ( self : List[str] ): return self.d_model def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase_: List[Any] = self.backbone_config.to_dict() UpperCamelCase_: List[str] = self.__class__.model_type return output
670
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
1
lowerCamelCase_ : Union[str, Any] = """Alexander Joslin""" import operator as op from .stack import Stack def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: List[str] = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCamelCase_: Stack[int] = Stack() UpperCamelCase_: Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase ) elif i == ")": # RULE 4 UpperCamelCase_: Any = operator_stack.peek() operator_stack.pop() UpperCamelCase_: Dict = operand_stack.peek() operand_stack.pop() UpperCamelCase_: Any = operand_stack.peek() operand_stack.pop() UpperCamelCase_: Optional[int] = operators[opr](lowerCamelCase , lowerCamelCase ) operand_stack.push(lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase_ : str = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
670
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
1
def A__ ( lowerCamelCase ) -> list: UpperCamelCase_: int = len(lowerCamelCase ) for i in range(1 , lowerCamelCase ): UpperCamelCase_: str = collection[i] UpperCamelCase_: str = 0 UpperCamelCase_: str = i - 1 while low <= high: UpperCamelCase_: Tuple = (low + high) // 2 if val < collection[mid]: UpperCamelCase_: Union[str, Any] = mid - 1 else: UpperCamelCase_: Optional[Any] = mid + 1 for j in range(lowerCamelCase , lowerCamelCase , -1 ): UpperCamelCase_: int = collection[j - 1] UpperCamelCase_: Optional[int] = val return collection if __name__ == "__main__": lowerCamelCase_ : Tuple = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase_ : str = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
def A__ ( lowerCamelCase ) -> list[int]: UpperCamelCase_: List[Any] = [0 for i in range(len(lowerCamelCase ) )] # initialize interval's left pointer and right pointer UpperCamelCase_, UpperCamelCase_: str = 0, 0 for i in range(1 , len(lowerCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase_: Optional[int] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) UpperCamelCase_: Dict = min_edge while go_next(lowerCamelCase , lowerCamelCase , lowerCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase_, UpperCamelCase_: List[Any] = i, i + z_result[i] - 1 return z_result def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> bool: return i + z_result[i] < len(lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def A__ ( lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: List[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase_: Dict = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(lowerCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
670
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowerCamelCase_ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) lowerCamelCase_ : List[str] = """sshleifer/student_marian_en_ro_6_1""" lowerCamelCase_ : Union[str, Any] = """sshleifer/tiny-mbart""" @require_torch class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] , snake_case_ : Any=False , snake_case_ : Any=None , snake_case_ : Optional[Any]=True , snake_case_ : Dict=True , snake_case_ : str=True , snake_case_ : Optional[int]=True , ): UpperCamelCase_: Dict = self.run_trainer( eval_steps=1 , max_len=12 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) UpperCamelCase_: str = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history if not do_eval: return UpperCamelCase_: Optional[Any] = [log for log in logs if """eval_loss""" in log.keys()] UpperCamelCase_: List[str] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCamelCase_: Any = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase__ ( self : str ): self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase__ ( self : Dict ): self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : str ): self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : List[Any] ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : Any ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : str ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : Optional[Any] ): self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def lowerCAmelCase__ ( self : List[Any] ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Optional[Any] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCamelCase_: Optional[Any] = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } UpperCamelCase_: Dict = experiments[experiment_id] UpperCamelCase_: Any = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} UpperCamelCase_: str = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data["""extra_args_str"""] ) UpperCamelCase_: Tuple = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data["""n_matches"""] ) @slow def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=snake_case_ , learning_rate=3e-4 , num_train_epochs=10 , distributed=snake_case_ , ) # Check metrics UpperCamelCase_: Tuple = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history UpperCamelCase_: str = [log for log in logs if """eval_loss""" in log.keys()] UpperCamelCase_: int = eval_metrics[0] UpperCamelCase_: List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) # test if do_predict saves generations and metrics UpperCamelCase_: Optional[int] = os.listdir(snake_case_ ) UpperCamelCase_: Union[str, Any] = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase__ ( self : str ): from transformers.training_args import OptimizerNames def train_and_return_metrics(snake_case_ : str ) -> Tuple[int, float]: UpperCamelCase_: Optional[int] = """--skip_memory_metrics 0""" UpperCamelCase_: Any = self.run_trainer( max_len=128 , model_name=snake_case_ , learning_rate=3e-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics UpperCamelCase_: str = TrainerState.load_from_json(Path(snake_case_ , """trainer_state.json""" ) ).log_history UpperCamelCase_: Union[str, Any] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) UpperCamelCase_: Optional[int] = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) UpperCamelCase_: Union[str, Any] = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Union[str, Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCamelCase_: Tuple = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCamelCase_: List[str] = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCamelCase_: Tuple = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCamelCase_: List[str] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCamelCase_: Dict = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( snake_case_ , snake_case_ , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int , snake_case_ : str , snake_case_ : int , snake_case_ : float = 3e-3 , snake_case_ : str = "adafactor" , snake_case_ : bool = False , snake_case_ : str = None , snake_case_ : int = 0 , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : int = None , ): UpperCamelCase_: Union[str, Any] = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" UpperCamelCase_: List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(snake_case_ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(snake_case_ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() UpperCamelCase_: List[Any] = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(snake_case_ )} '''.split() UpperCamelCase_: int = """ --do_predict """.split() UpperCamelCase_: Dict = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCamelCase_: Optional[int] = get_gpu_count() UpperCamelCase_: Dict = get_torch_dist_unique_port() UpperCamelCase_: Union[str, Any] = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() UpperCamelCase_: Any = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: UpperCamelCase_: Union[str, Any] = ["""run_translation.py"""] + args with patch.object(snake_case_ , """argv""" , snake_case_ ): main() return output_dir
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : str = {"""vocab_file""": """vocab.txt"""} lowerCamelCase_ : List[Any] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } lowerCamelCase_ : Tuple = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } lowerCamelCase_ : List[Any] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[Any] = ConvBertTokenizer def __init__( self : Dict , snake_case_ : str=None , snake_case_ : int=None , snake_case_ : List[Any]=True , snake_case_ : List[Any]="[UNK]" , snake_case_ : List[Any]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : List[Any]="[CLS]" , snake_case_ : Any="[MASK]" , snake_case_ : Optional[int]=True , snake_case_ : Dict=None , **snake_case_ : Dict , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) UpperCamelCase_: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): UpperCamelCase_: int = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) UpperCamelCase_: List[str] = do_lower_case UpperCamelCase_: Any = strip_accents UpperCamelCase_: Any = tokenize_chinese_chars UpperCamelCase_: Tuple = normalizer_class(**snake_case_ ) UpperCamelCase_: Dict = do_lower_case def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Dict=None ): UpperCamelCase_: Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : List[str] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: Dict = [self.sep_token_id] UpperCamelCase_: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : Tuple , snake_case_ : str , snake_case_ : Optional[str] = None ): UpperCamelCase_: Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
670
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=5 ) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("""<mask>""" ) == 1 UpperCamelCase_: List[str] = torch.tensor(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ).unsqueeze(0 ) # Batch size 1 UpperCamelCase_: str = model(lowerCamelCase )[0] # The last hidden-state is the first element of the output tuple UpperCamelCase_: List[str] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCamelCase_: List[str] = logits[0, masked_index, :] UpperCamelCase_: Optional[int] = logits.softmax(dim=0 ) UpperCamelCase_, UpperCamelCase_: str = prob.topk(k=lowerCamelCase , dim=0 ) UpperCamelCase_: Optional[Any] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCamelCase ) )] ) UpperCamelCase_: Optional[int] = tokenizer.mask_token UpperCamelCase_: str = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): UpperCamelCase_: Union[str, Any] = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(lowerCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(lowerCamelCase ) , lowerCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCamelCase , lowerCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCamelCase_ : Optional[Any] = CamembertTokenizer.from_pretrained("""camembert-base""") lowerCamelCase_ : List[Any] = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() lowerCamelCase_ : Optional[int] = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
670
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase_ : List[str] = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 13_10_72, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, } def A__ ( lowerCamelCase , lowerCamelCase ) -> Any: return torch.atana(lowerCamelCase , lowerCamelCase ) / math.pi * 2 def A__ ( lowerCamelCase ) -> List[str]: UpperCamelCase_: int = torch.sin(t * math.pi / 2 ) ** 2 UpperCamelCase_: Optional[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase , lowerCamelCase ) class _UpperCamelCase ( _A ): '''simple docstring''' pass class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , snake_case_ : Any ): super().__init__() UpperCamelCase_: Dict = DiffusionAttnUnetaD(snake_case_ , n_attn_layers=4 ) UpperCamelCase_: List[str] = deepcopy(self.diffusion ) UpperCamelCase_: int = torch.quasirandom.SobolEngine(1 , scramble=snake_case_ ) def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: Union[str, Any] = MODELS_MAP[model_name]["""url"""] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCamelCase_ : str = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } lowerCamelCase_ : List[Any] = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } lowerCamelCase_ : Tuple = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } lowerCamelCase_ : List[Any] = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } lowerCamelCase_ : int = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } lowerCamelCase_ : Tuple = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def A__ ( lowerCamelCase ) -> str: if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A__ ( lowerCamelCase ) -> Dict: for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase ) and not isinstance(lowerCamelCase , lowerCamelCase ): return name.replace(lowerCamelCase , lowerCamelCase ) elif name.startswith(lowerCamelCase ): return [name.replace(lowerCamelCase , lowerCamelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def A__ ( lowerCamelCase , lowerCamelCase=13 ) -> Tuple: UpperCamelCase_: Optional[Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) UpperCamelCase_: str = 0 if string.startswith("""net.3.""" ): depth += 1 UpperCamelCase_: List[str] = string[6:] elif string.startswith("""net.""" ): UpperCamelCase_: int = string[4:] while string.startswith("""main.7.""" ): depth += 1 UpperCamelCase_: Dict = string[7:] if string.startswith("""main.""" ): UpperCamelCase_: str = string[5:] # mid block if string[:2].isdigit(): UpperCamelCase_: List[Any] = string[:2] UpperCamelCase_: Optional[int] = string[2:] else: UpperCamelCase_: Union[str, Any] = string[0] UpperCamelCase_: List[Any] = string[1:] if depth == max_depth: UpperCamelCase_: Tuple = MID_NUM_TO_LAYER[layer_num] UpperCamelCase_: Optional[int] = """mid_block""" elif depth > 0 and int(lowerCamelCase ) < 7: UpperCamelCase_: str = DOWN_NUM_TO_LAYER[layer_num] UpperCamelCase_: Tuple = F'''down_blocks.{depth}''' elif depth > 0 and int(lowerCamelCase ) > 7: UpperCamelCase_: Dict = UP_NUM_TO_LAYER[layer_num] UpperCamelCase_: List[Any] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: UpperCamelCase_: List[Any] = DEPTH_0_TO_LAYER[layer_num] UpperCamelCase_: int = F'''up_blocks.{max_depth - 1}''' if int(lowerCamelCase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) UpperCamelCase_: int = string_left[1:] if "resnets" in new_layer: UpperCamelCase_: int = convert_resconv_naming(lowerCamelCase ) elif "attentions" in new_layer: UpperCamelCase_: str = convert_attn_naming(lowerCamelCase ) UpperCamelCase_: List[Any] = new_string_left if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: int = prefix + """.""" + new_layer + """.""" + string_left else: UpperCamelCase_: Tuple = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Tuple = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue UpperCamelCase_: int = rename(lowerCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: int = transform_conv_attns(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: UpperCamelCase_: Dict = v return new_state_dict def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: if len(lowerCamelCase ) == 1: if len(v.shape ) == 3: # weight UpperCamelCase_: Any = v[:, :, 0] else: # bias UpperCamelCase_: Any = v else: # qkv matrices UpperCamelCase_: int = v.shape[0] UpperCamelCase_: Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCamelCase_: List[Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCamelCase_: List[str] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A__ ( lowerCamelCase ) -> Tuple: UpperCamelCase_: Union[str, Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCamelCase_: str = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' UpperCamelCase_: Any = download(lowerCamelCase ) UpperCamelCase_: List[Any] = MODELS_MAP[model_name]["""sample_rate"""] UpperCamelCase_: Union[str, Any] = MODELS_MAP[model_name]["""sample_size"""] UpperCamelCase_: Union[str, Any] = Object() UpperCamelCase_: str = sample_size UpperCamelCase_: Optional[int] = sample_rate UpperCamelCase_: int = 0 UpperCamelCase_: int = UNetaDModel(sample_size=lowerCamelCase , sample_rate=lowerCamelCase ) UpperCamelCase_: Tuple = diffusers_model.state_dict() UpperCamelCase_: Any = DiffusionUncond(lowerCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase )["""state_dict"""] ) UpperCamelCase_: Union[str, Any] = orig_model.diffusion_ema.eval() UpperCamelCase_: Dict = orig_model.state_dict() UpperCamelCase_: Union[str, Any] = rename_orig_weights(lowerCamelCase ) UpperCamelCase_: int = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCamelCase_: str = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("""kernel""" ) for k in list(lowerCamelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": UpperCamelCase_: Tuple = value.squeeze() UpperCamelCase_: Optional[int] = value diffusers_model.load_state_dict(lowerCamelCase ) UpperCamelCase_: str = 1_00 UpperCamelCase_: Optional[Any] = 33 UpperCamelCase_: List[str] = IPNDMScheduler(num_train_timesteps=lowerCamelCase ) UpperCamelCase_: Union[str, Any] = torch.manual_seed(lowerCamelCase ) UpperCamelCase_: List[str] = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase ).to(lowerCamelCase ) UpperCamelCase_: int = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase )[:-1] UpperCamelCase_: Dict = get_crash_schedule(lowerCamelCase ) UpperCamelCase_: List[str] = DanceDiffusionPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) UpperCamelCase_: str = torch.manual_seed(33 ) UpperCamelCase_: Any = pipe(num_inference_steps=lowerCamelCase , generator=lowerCamelCase ).audios UpperCamelCase_: str = sampling.iplms_sample(lowerCamelCase , lowerCamelCase , lowerCamelCase , {} ) UpperCamelCase_: int = generated.clamp(-1 , 1 ) UpperCamelCase_: str = (generated - audio).abs().sum() UpperCamelCase_: Dict = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , lowerCamelCase ) print("""Diff max""" , lowerCamelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCamelCase_ : Dict = parser.parse_args() main(args)
670
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
1
import math def A__ ( ) -> None: UpperCamelCase_: Optional[Any] = input("""Enter message: """ ) UpperCamelCase_: str = int(input(F'''Enter key [2-{len(lowerCamelCase ) - 1}]: ''' ) ) UpperCamelCase_: List[str] = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCamelCase_: Any = encrypt_message(lowerCamelCase , lowerCamelCase ) elif mode.lower().startswith("""d""" ): UpperCamelCase_: Dict = decrypt_message(lowerCamelCase , lowerCamelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Dict = [""""""] * key for col in range(lowerCamelCase ): UpperCamelCase_: List[str] = col while pointer < len(lowerCamelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Any = math.ceil(len(lowerCamelCase ) / key ) UpperCamelCase_: int = key UpperCamelCase_: Any = (num_cols * num_rows) - len(lowerCamelCase ) UpperCamelCase_: Dict = [""""""] * num_cols UpperCamelCase_: List[str] = 0 UpperCamelCase_: Dict = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCamelCase_: str = 0 row += 1 return "".join(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
670
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
1
def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: int = len(lowerCamelCase ) UpperCamelCase_: int = len(lowerCamelCase ) UpperCamelCase_: int = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCamelCase_: list = [] for char_count in range(lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
670
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
1
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while a != 0: UpperCamelCase_, UpperCamelCase_: Dict = b % a, a return b def A__ ( lowerCamelCase , lowerCamelCase ) -> int: if gcd(lowerCamelCase , lowerCamelCase ) != 1: UpperCamelCase_: str = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = 1, 0, a UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Dict = 0, 1, m while va != 0: UpperCamelCase_: List[str] = ua // va UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
670
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCamelCase_ : Optional[int] = data_utils.TransfoXLTokenizer lowerCamelCase_ : Tuple = data_utils.TransfoXLCorpus lowerCamelCase_ : List[Any] = data_utils lowerCamelCase_ : Optional[int] = data_utils def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCamelCase , """rb""" ) as fp: UpperCamelCase_: Optional[Any] = pickle.load(lowerCamelCase , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: List[str] = corpus.vocab.__dict__ torch.save(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: List[str] = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , lowerCamelCase ) UpperCamelCase_: Optional[Any] = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(lowerCamelCase , lowerCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: List[Any] = os.path.abspath(lowerCamelCase ) UpperCamelCase_: Any = os.path.abspath(lowerCamelCase ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: Optional[Any] = TransfoXLConfig() else: UpperCamelCase_: List[str] = TransfoXLConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Optional[Any] = TransfoXLLMHeadModel(lowerCamelCase ) UpperCamelCase_: int = load_tf_weights_in_transfo_xl(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model UpperCamelCase_: List[Any] = os.path.join(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'''Save PyTorch model to {os.path.abspath(lowerCamelCase )}''' ) torch.save(model.state_dict() , lowerCamelCase ) print(F'''Save configuration file to {os.path.abspath(lowerCamelCase )}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ : str = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
670
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
1
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
1
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: List[str] = Rectangle(height=0.25 , width=0.25 ) UpperCamelCase_: List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: str = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: Optional[Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[str] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Dict = Text("""CPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: str = [mem.copy() for i in range(4 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.move_to([-1, -1, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: str = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = Text("""Model""" , font_size=24 ) UpperCamelCase_: str = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.add(snake_case_ ) UpperCamelCase_: List[str] = [] UpperCamelCase_: Optional[int] = [] UpperCamelCase_: List[Any] = [] for i, rect in enumerate(snake_case_ ): rect.set_stroke(snake_case_ ) UpperCamelCase_: List[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=snake_case_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=snake_case_ , buff=0.0 ) self.add(snake_case_ ) model_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ , *snake_case_ ) UpperCamelCase_: Union[str, Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = Text("""Loaded Checkpoint""" , font_size=24 ) UpperCamelCase_: List[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: str = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Optional[int] = fill.copy().set_fill(snake_case_ , opacity=0.7 ) target.move_to(snake_case_ ) ckpt_arr.append(snake_case_ ) UpperCamelCase_: List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case_ , snake_case_ ) UpperCamelCase_: int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case_ ) UpperCamelCase_: List[str] = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) UpperCamelCase_: Any = [meta_mem.copy() for i in range(6 )] UpperCamelCase_: Union[str, Any] = [meta_mem.copy() for i in range(6 )] UpperCamelCase_: Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[str] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[str] = Text("""Disk""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(snake_case_ , run_time=3 ) , Write(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) ) UpperCamelCase_: Dict = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Any = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(FadeOut(snake_case_ ) ) UpperCamelCase_: Optional[int] = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) ) self.play( FadeOut(snake_case_ , snake_case_ , *snake_case_ , *snake_case_ ) , ) self.wait()
670
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCamelCase_ : Optional[Any] = threading.Lock() lowerCamelCase_ : Optional[logging.Handler] = None lowerCamelCase_ : Union[str, Any] = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } lowerCamelCase_ : List[str] = logging.WARNING lowerCamelCase_ : Optional[int] = True def A__ ( ) -> Any: UpperCamelCase_: Dict = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowerCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def A__ ( ) -> str: return __name__.split(""".""" )[0] def A__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def A__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCamelCase_: Any = logging.StreamHandler() # Set sys.stderr as stream. UpperCamelCase_: Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCamelCase_: Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCamelCase_: Any = False def A__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return UpperCamelCase_: List[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCamelCase_: int = None def A__ ( ) -> Optional[Any]: return log_levels def A__ ( lowerCamelCase = None ) -> logging.Logger: if name is None: UpperCamelCase_: str = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCamelCase ) def A__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A__ ( lowerCamelCase ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCamelCase ) def A__ ( ) -> Any: return set_verbosity(lowerCamelCase ) def A__ ( ) -> Optional[int]: return set_verbosity(lowerCamelCase ) def A__ ( ) -> Any: return set_verbosity(lowerCamelCase ) def A__ ( ) -> Dict: return set_verbosity(lowerCamelCase ) def A__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A__ ( lowerCamelCase ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCamelCase ) def A__ ( lowerCamelCase ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCamelCase ) def A__ ( ) -> None: _configure_library_root_logger() UpperCamelCase_: Any = False def A__ ( ) -> None: _configure_library_root_logger() UpperCamelCase_: List[str] = True def A__ ( ) -> None: UpperCamelCase_: List[str] = _get_library_root_logger().handlers for handler in handlers: UpperCamelCase_: Optional[int] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(lowerCamelCase ) def A__ ( ) -> None: UpperCamelCase_: int = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCamelCase ) def A__ ( self , *lowerCamelCase , **lowerCamelCase ) -> List[str]: UpperCamelCase_: List[str] = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , lowerCamelCase ) if no_advisory_warnings: return self.warning(*lowerCamelCase , **lowerCamelCase ) lowerCamelCase_ : Tuple = warning_advice @functools.lru_cache(lowerCamelCase ) def A__ ( self , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: self.warning(*lowerCamelCase , **lowerCamelCase ) lowerCamelCase_ : List[str] = warning_once class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : Union[str, Any] ): # pylint: disable=unused-argument UpperCamelCase_: Tuple = args[0] if args else None def __iter__( self : Tuple ): return iter(self._iterator ) def __getattr__( self : Tuple , snake_case_ : Optional[Any] ): def empty_fn(*snake_case_ : str , **snake_case_ : Optional[int] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): return self def __exit__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Optional[Any] ): return class _UpperCamelCase : '''simple docstring''' def __call__( self : Any , *snake_case_ : str , **snake_case_ : Dict ): if _tqdm_active: return tqdm_lib.tqdm(*snake_case_ , **snake_case_ ) else: return EmptyTqdm(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , *snake_case_ : Tuple , **snake_case_ : Dict ): UpperCamelCase_: Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : int ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase_ : List[str] = _tqdm_cls() def A__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def A__ ( ) -> List[Any]: global _tqdm_active UpperCamelCase_: Dict = True hf_hub_utils.enable_progress_bars() def A__ ( ) -> List[Any]: global _tqdm_active UpperCamelCase_: Tuple = False hf_hub_utils.disable_progress_bars()
670
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
1
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float: if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> float: if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> float: if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( lowerCamelCase , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
670
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_, UpperCamelCase_: Any = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase_: Optional[int] = """A painting of a squirrel eating a burger""" UpperCamelCase_: Union[str, Any] = jax.device_count() UpperCamelCase_: Tuple = num_samples * [prompt] UpperCamelCase_: List[str] = sd_pipe.prepare_inputs(snake_case_ ) UpperCamelCase_: List[str] = replicate(snake_case_ ) UpperCamelCase_: Any = shard(snake_case_ ) UpperCamelCase_: List[Any] = jax.random.PRNGKey(0 ) UpperCamelCase_: Dict = jax.random.split(snake_case_ , jax.device_count() ) UpperCamelCase_: Tuple = sd_pipe(snake_case_ , snake_case_ , snake_case_ , num_inference_steps=25 , jit=snake_case_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase_: List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: Optional[Any] = images[0, 253:256, 253:256, -1] UpperCamelCase_: List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: str = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = """stabilityai/stable-diffusion-2""" UpperCamelCase_, UpperCamelCase_: int = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) UpperCamelCase_, UpperCamelCase_: str = FlaxStableDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase_: List[str] = scheduler_params UpperCamelCase_: Union[str, Any] = """A painting of a squirrel eating a burger""" UpperCamelCase_: Optional[int] = jax.device_count() UpperCamelCase_: List[str] = num_samples * [prompt] UpperCamelCase_: Any = sd_pipe.prepare_inputs(snake_case_ ) UpperCamelCase_: str = replicate(snake_case_ ) UpperCamelCase_: List[str] = shard(snake_case_ ) UpperCamelCase_: List[Any] = jax.random.PRNGKey(0 ) UpperCamelCase_: List[Any] = jax.random.split(snake_case_ , jax.device_count() ) UpperCamelCase_: Tuple = sd_pipe(snake_case_ , snake_case_ , snake_case_ , num_inference_steps=25 , jit=snake_case_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase_: List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: int = images[0, 253:256, 253:256, -1] UpperCamelCase_: Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: Tuple = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
670
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : Dict = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) lowerCamelCase_ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def A__ ( lowerCamelCase ) -> str: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase_: int = model_type_to_module_name(lowerCamelCase ) UpperCamelCase_: int = importlib.import_module(F'''.{module_name}''' , """transformers.models""" ) try: return getattr(lowerCamelCase , lowerCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCamelCase , """__name__""" , lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase_: List[str] = importlib.import_module("""transformers""" ) if hasattr(lowerCamelCase , lowerCamelCase ): return getattr(lowerCamelCase , lowerCamelCase ) return None def A__ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , **lowerCamelCase , ) -> Tuple: UpperCamelCase_: Dict = get_file_from_repo( lowerCamelCase , lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , resume_download=lowerCamelCase , proxies=lowerCamelCase , use_auth_token=lowerCamelCase , revision=lowerCamelCase , local_files_only=lowerCamelCase , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(lowerCamelCase , encoding="""utf-8""" ) as reader: return json.load(lowerCamelCase ) class _UpperCamelCase : '''simple docstring''' def __init__( self : str ): raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def lowerCAmelCase__ ( cls : Dict , snake_case_ : Tuple , **snake_case_ : Optional[Any] ): UpperCamelCase_: List[str] = kwargs.pop("""config""" , snake_case_ ) UpperCamelCase_: List[Any] = kwargs.pop("""trust_remote_code""" , snake_case_ ) UpperCamelCase_: Optional[int] = True UpperCamelCase_, UpperCamelCase_: str = ImageProcessingMixin.get_image_processor_dict(snake_case_ , **snake_case_ ) UpperCamelCase_: Any = config_dict.get("""image_processor_type""" , snake_case_ ) UpperCamelCase_: str = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase_: List[str] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase_: List[Any] = config_dict.pop("""feature_extractor_type""" , snake_case_ ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) UpperCamelCase_: List[str] = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase_: int = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] UpperCamelCase_: Any = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Any = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.image_processor_type`` UpperCamelCase_: Any = getattr(snake_case_ , """image_processor_type""" , snake_case_ ) if hasattr(snake_case_ , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase_: Tuple = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: UpperCamelCase_: Dict = image_processor_class_from_name(snake_case_ ) UpperCamelCase_: str = image_processor_auto_map is not None UpperCamelCase_: int = image_processor_class is not None or type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase_: Tuple = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: UpperCamelCase_: Tuple = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) UpperCamelCase_: int = kwargs.pop("""code_revision""" , snake_case_ ) if os.path.isdir(snake_case_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case_ , **snake_case_ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase_: Dict = IMAGE_PROCESSOR_MAPPING[type(snake_case_ )] return image_processor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(snake_case_ , snake_case_ )
670
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : Tuple = """ViltImageProcessor""" __UpperCamelCase : Any = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] , snake_case_ : str=None , snake_case_ : Optional[int]=None , **snake_case_ : str ): UpperCamelCase_: List[str] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case_ , ) UpperCamelCase_: List[str] = kwargs.pop("""feature_extractor""" ) UpperCamelCase_: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case_ , snake_case_ ) UpperCamelCase_: int = self.image_processor def __call__( self : Tuple , snake_case_ : List[str] , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : int , ): UpperCamelCase_: Any = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask UpperCamelCase_: Any = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def lowerCAmelCase__ ( self : Optional[Any] , *snake_case_ : Dict , **snake_case_ : Tuple ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: int = self.tokenizer.model_input_names UpperCamelCase_: Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self : List[Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , snake_case_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : int ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , snake_case_ , ) return self.image_processor
670
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( lowerCamelCase ) -> Union[str, Any]: # getting number of pixels in the image UpperCamelCase_, UpperCamelCase_: Tuple = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): UpperCamelCase_: int = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image lowerCamelCase_ : Optional[Any] = imread("""image_data/lena.jpg""", 1) # convert to its negative lowerCamelCase_ : Optional[Any] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
670
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : Any = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCamelCase_ : Any = { """b0""": { """hidden_dim""": 12_80, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_24, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 12_80, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_40, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 14_08, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_60, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 15_36, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_00, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 17_92, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_80, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 20_48, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_56, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 23_04, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_28, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 25_60, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_00, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def A__ ( lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: Dict = EfficientNetConfig() UpperCamelCase_: Optional[Any] = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCamelCase_: Optional[int] = CONFIG_MAP[model_name]["""width_coef"""] UpperCamelCase_: str = CONFIG_MAP[model_name]["""depth_coef"""] UpperCamelCase_: int = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase_: Optional[int] = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCamelCase_: Optional[Any] = CONFIG_MAP[model_name]["""dw_padding"""] UpperCamelCase_: int = """huggingface/label-files""" UpperCamelCase_: Union[str, Any] = """imagenet-1k-id2label.json""" UpperCamelCase_: Optional[int] = 10_00 UpperCamelCase_: List[Any] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_: str = {int(lowerCamelCase ): v for k, v in idalabel.items()} UpperCamelCase_: str = idalabel UpperCamelCase_: Tuple = {v: k for k, v in idalabel.items()} return config def A__ ( ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_: Any = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im def A__ ( lowerCamelCase ) -> Tuple: UpperCamelCase_: Dict = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase_: int = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowerCamelCase , ) return preprocessor def A__ ( lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: Tuple = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCamelCase_: List[str] = sorted(set(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) UpperCamelCase_: Any = {b: str(lowerCamelCase ) for b, i in zip(lowerCamelCase , range(lowerCamelCase ) )} UpperCamelCase_: List[str] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCamelCase_: List[Any] = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCamelCase_: int = {} for item in rename_keys: if item[0] in original_param_names: UpperCamelCase_: Optional[Any] = """efficientnet.""" + item[1] UpperCamelCase_: List[str] = """classifier.weight""" UpperCamelCase_: Dict = """classifier.bias""" return key_mapping def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: for key, value in tf_params.items(): if "normalization" in key: continue UpperCamelCase_: Dict = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCamelCase_: List[Any] = torch.from_numpy(lowerCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCamelCase_: int = torch.from_numpy(lowerCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCamelCase_: str = torch.from_numpy(np.transpose(lowerCamelCase ) ) else: UpperCamelCase_: int = torch.from_numpy(lowerCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase ) @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: UpperCamelCase_: Optional[int] = model_classes[model_name]( include_top=lowerCamelCase , weights="""imagenet""" , input_tensor=lowerCamelCase , input_shape=lowerCamelCase , pooling=lowerCamelCase , classes=10_00 , classifier_activation="""softmax""" , ) UpperCamelCase_: Tuple = original_model.trainable_variables UpperCamelCase_: str = original_model.non_trainable_variables UpperCamelCase_: List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCamelCase_: Any = param.numpy() UpperCamelCase_: Union[str, Any] = list(tf_params.keys() ) # Load HuggingFace model UpperCamelCase_: List[Any] = get_efficientnet_config(lowerCamelCase ) UpperCamelCase_: Optional[int] = EfficientNetForImageClassification(lowerCamelCase ).eval() UpperCamelCase_: List[str] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCamelCase_: List[Any] = rename_keys(lowerCamelCase ) replace_params(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Initialize preprocessor and preprocess input image UpperCamelCase_: List[str] = convert_image_processor(lowerCamelCase ) UpperCamelCase_: Dict = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCamelCase_: Tuple = hf_model(**lowerCamelCase ) UpperCamelCase_: List[str] = outputs.logits.detach().numpy() # Original model inference UpperCamelCase_: Any = False UpperCamelCase_: Union[str, Any] = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase_: Tuple = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCamelCase_: List[Any] = image.img_to_array(lowerCamelCase ) UpperCamelCase_: int = np.expand_dims(lowerCamelCase , axis=0 ) UpperCamelCase_: List[Any] = original_model.predict(lowerCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase ): os.mkdir(lowerCamelCase ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase ) preprocessor.save_pretrained(lowerCamelCase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) UpperCamelCase_: int = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCamelCase ) hf_model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCamelCase_ : int = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
670
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase_ : List[str] = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , *snake_case_ : Dict , **snake_case_ : Dict ): warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
670
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : int = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = """sew-d""" def __init__( self : Optional[Any] , snake_case_ : Tuple=32 , snake_case_ : Optional[int]=768 , snake_case_ : List[str]=12 , snake_case_ : List[Any]=12 , snake_case_ : Union[str, Any]=3072 , snake_case_ : int=2 , snake_case_ : Tuple=512 , snake_case_ : int=256 , snake_case_ : Optional[Any]=True , snake_case_ : Optional[int]=True , snake_case_ : str=("p2c", "c2p") , snake_case_ : Optional[Any]="layer_norm" , snake_case_ : Dict="gelu_python" , snake_case_ : str=0.1 , snake_case_ : str=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : int=0.0 , snake_case_ : List[Any]=0.1 , snake_case_ : int=0.02 , snake_case_ : int=1e-7 , snake_case_ : Tuple=1e-5 , snake_case_ : Optional[int]="group" , snake_case_ : Any="gelu" , snake_case_ : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case_ : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_ : Union[str, Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_ : Optional[Any]=False , snake_case_ : List[str]=128 , snake_case_ : Optional[int]=16 , snake_case_ : List[str]=True , snake_case_ : Optional[int]=0.05 , snake_case_ : Optional[Any]=10 , snake_case_ : str=2 , snake_case_ : Tuple=0.0 , snake_case_ : Optional[Any]=10 , snake_case_ : Dict=0 , snake_case_ : Union[str, Any]="mean" , snake_case_ : Tuple=False , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=256 , snake_case_ : Optional[int]=0 , snake_case_ : Optional[Any]=1 , snake_case_ : Any=2 , **snake_case_ : Tuple , ): super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: Optional[int] = feat_extract_norm UpperCamelCase_: int = feat_extract_activation UpperCamelCase_: Union[str, Any] = list(snake_case_ ) UpperCamelCase_: int = list(snake_case_ ) UpperCamelCase_: Optional[int] = list(snake_case_ ) UpperCamelCase_: Dict = conv_bias UpperCamelCase_: Optional[int] = num_conv_pos_embeddings UpperCamelCase_: Any = num_conv_pos_embedding_groups UpperCamelCase_: Union[str, Any] = len(self.conv_dim ) UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: int = squeeze_factor UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: Union[str, Any] = position_buckets UpperCamelCase_: Any = share_att_key UpperCamelCase_: Optional[int] = relative_attention UpperCamelCase_: Optional[int] = norm_rel_ebd UpperCamelCase_: List[Any] = list(snake_case_ ) UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: str = num_attention_heads UpperCamelCase_: str = hidden_dropout UpperCamelCase_: List[Any] = attention_dropout UpperCamelCase_: Any = activation_dropout UpperCamelCase_: Union[str, Any] = feat_proj_dropout UpperCamelCase_: str = final_dropout UpperCamelCase_: Dict = layer_norm_eps UpperCamelCase_: List[str] = feature_layer_norm_eps UpperCamelCase_: str = initializer_range UpperCamelCase_: Optional[int] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase_: int = apply_spec_augment UpperCamelCase_: str = mask_time_prob UpperCamelCase_: Optional[Any] = mask_time_length UpperCamelCase_: Tuple = mask_time_min_masks UpperCamelCase_: Optional[int] = mask_feature_prob UpperCamelCase_: Dict = mask_feature_length UpperCamelCase_: List[Any] = mask_feature_min_masks # ctc loss UpperCamelCase_: int = ctc_loss_reduction UpperCamelCase_: List[str] = ctc_zero_infinity # sequence classification UpperCamelCase_: Optional[int] = use_weighted_layer_sum UpperCamelCase_: Dict = classifier_proj_size @property def lowerCAmelCase__ ( self : Optional[Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
def A__ ( lowerCamelCase ) -> list: UpperCamelCase_: Union[str, Any] = int(lowerCamelCase ) if n_element < 1: UpperCamelCase_: Dict = ValueError("""a should be a positive number""" ) raise my_error UpperCamelCase_: int = [1] UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Union[str, Any] = (0, 0, 0) UpperCamelCase_: Tuple = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCamelCase_ : Union[str, Any] = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
670
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
1
import os from math import logaa def A__ ( lowerCamelCase = "base_exp.txt" ) -> int: UpperCamelCase_: float = 0 UpperCamelCase_: str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase ) , lowerCamelCase ) ) ): UpperCamelCase_, UpperCamelCase_: Union[str, Any] = list(map(lowerCamelCase , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase ) > largest: UpperCamelCase_: Dict = x * logaa(lowerCamelCase ) UpperCamelCase_: Tuple = i + 1 return result if __name__ == "__main__": print(solution())
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ : Optional[Any] = 16 lowerCamelCase_ : int = 32 def A__ ( lowerCamelCase , lowerCamelCase = 16 ) -> List[str]: UpperCamelCase_: Dict = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase_: Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_: List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_: Optional[int] = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_: Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_: Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_: List[Any] = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_: Any = 8 else: UpperCamelCase_: Optional[Any] = None return tokenizer.pad( lowerCamelCase , padding="""longest""" , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase_: Any = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase , drop_last=lowerCamelCase ) UpperCamelCase_: List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: # Initialize accelerator UpperCamelCase_: List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_: List[Any] = config["""lr"""] UpperCamelCase_: List[Any] = int(config["""num_epochs"""] ) UpperCamelCase_: Optional[Any] = int(config["""seed"""] ) UpperCamelCase_: List[Any] = int(config["""batch_size"""] ) UpperCamelCase_: Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCamelCase_: Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase_: Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase_: str = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_: Tuple = get_dataloaders(lowerCamelCase , lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_: Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_: Dict = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase_: List[Any] = AdamW(params=model.parameters() , lr=lowerCamelCase ) # Instantiate scheduler UpperCamelCase_: Any = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase_: str = model(**lowerCamelCase ) UpperCamelCase_: Union[str, Any] = outputs.loss UpperCamelCase_: Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_: Dict = model(**lowerCamelCase ) UpperCamelCase_: Optional[int] = outputs.logits.argmax(dim=-1 ) UpperCamelCase_, UpperCamelCase_: Any = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) UpperCamelCase_: Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase ) def A__ ( ) -> Union[str, Any]: UpperCamelCase_: int = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase , default=lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase_: Optional[Any] = parser.parse_args() UpperCamelCase_: Tuple = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
670
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A__ ( lowerCamelCase , lowerCamelCase=10 ) -> List[str]: UpperCamelCase_: Dict = [] for _ in range(lowerCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A__ ( lowerCamelCase , lowerCamelCase=10 ) -> Optional[int]: UpperCamelCase_: Tuple = [] for step in range(lowerCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , """schedule.bin""" ) torch.save(scheduler.state_dict() , lowerCamelCase ) UpperCamelCase_: int = torch.load(lowerCamelCase ) scheduler.load_state_dict(lowerCamelCase ) return lrs @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[int] ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) UpperCamelCase_: int = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase_: int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase_: Union[str, Any] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): UpperCamelCase_: List[Any] = criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) UpperCamelCase_: Tuple = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase_: Union[str, Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase_: List[Any] = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case_ , weight_decay=0.0 , relative_step=snake_case_ , scale_parameter=snake_case_ , warmup_init=snake_case_ , ) for _ in range(1000 ): UpperCamelCase_: Tuple = criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase : Union[str, Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase : Any = 10 def lowerCAmelCase__ ( self : str , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict=None ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ , msg=snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: str = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCamelCase_: List[str] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): UpperCamelCase_, UpperCamelCase_: Optional[int] = data UpperCamelCase_: int = scheduler_func(self.optimizer , **snake_case_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCamelCase_: Any = unwrap_schedule(snake_case_ , self.num_steps ) self.assertListAlmostEqual( snake_case_ , snake_case_ , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) UpperCamelCase_: Optional[int] = scheduler_func(self.optimizer , **snake_case_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case_ ) # wrap to test picklability of the schedule UpperCamelCase_: Union[str, Any] = unwrap_and_save_reload_schedule(snake_case_ , self.num_steps ) self.assertListEqual(snake_case_ , snake_case_ , msg=f'''failed for {scheduler_func} in save and reload''' ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : Optional[int] ): UpperCamelCase_: List[str] = fn def __call__( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : Any ): return self.fn(*snake_case_ , **snake_case_ ) @classmethod def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Optional[int] ): UpperCamelCase_: Any = list(map(self , scheduler.lr_lambdas ) )
670
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def A__ ( lowerCamelCase="" ) -> str: UpperCamelCase_: List[str] = tempfile.mkdtemp() return os.path.join(lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCamelCase_: List[Any] = AgentAudio(snake_case_ ) UpperCamelCase_: str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case_ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase_, UpperCamelCase_: Optional[Any] = sf.read(snake_case_ ) self.assertTrue(torch.allclose(snake_case_ , torch.tensor(snake_case_ ) , atol=1e-4 ) ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCamelCase_: Optional[Any] = get_new_path(suffix=""".wav""" ) sf.write(snake_case_ , snake_case_ , 1_6000 ) UpperCamelCase_: Optional[Any] = AgentAudio(snake_case_ ) self.assertTrue(torch.allclose(snake_case_ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case_ ) @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = torch.randint(0 , 256 , (64, 64, 3) ) UpperCamelCase_: Tuple = AgentImage(snake_case_ ) UpperCamelCase_: Dict = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case_ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case_ ) ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Any = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" UpperCamelCase_: Dict = Image.open(snake_case_ ) UpperCamelCase_: List[str] = AgentImage(snake_case_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case_ ) ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[int] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" UpperCamelCase_: List[Any] = Image.open(snake_case_ ) UpperCamelCase_: int = AgentImage(snake_case_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case_ ) ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Optional[Any] = """Hey!""" UpperCamelCase_: int = AgentText(snake_case_ ) self.assertEqual(snake_case_ , agent_type.to_string() ) self.assertEqual(snake_case_ , agent_type.to_raw() ) self.assertEqual(snake_case_ , snake_case_ )
670
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = DanceDiffusionPipeline __UpperCamelCase : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __UpperCamelCase : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = False def lowerCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=snake_case_ , use_timestep_embedding=snake_case_ , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_: Optional[int] = IPNDMScheduler() UpperCamelCase_: Optional[Any] = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] , snake_case_ : int=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: List[Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: List[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Tuple = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Any = self.get_dummy_components() UpperCamelCase_: Optional[Any] = DanceDiffusionPipeline(**snake_case_ ) UpperCamelCase_: str = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: Union[str, Any] = pipe(**snake_case_ ) UpperCamelCase_: Optional[int] = output.audios UpperCamelCase_: str = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_: Tuple = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Any ): return super().test_save_load_local() @skip_mps def lowerCAmelCase__ ( self : Any ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCAmelCase__ ( self : str ): return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase__ ( self : str ): return super().test_attention_slicing_forward_pass() def lowerCAmelCase__ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = torch_device UpperCamelCase_: Tuple = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[Any] = torch.manual_seed(0 ) UpperCamelCase_: int = pipe(generator=snake_case_ , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_: Optional[int] = output.audios UpperCamelCase_: Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_: List[Any] = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = torch_device UpperCamelCase_: Union[str, Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[int] = torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = pipe(generator=snake_case_ , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_: Optional[Any] = output.audios UpperCamelCase_: Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_: List[Any] = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
670
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Optional[int] = logging.getLogger() def A__ ( lowerCamelCase ) -> Tuple: UpperCamelCase_: Any = {} UpperCamelCase_: Dict = os.path.join(lowerCamelCase , """all_results.json""" ) if os.path.exists(lowerCamelCase ): with open(lowerCamelCase , """r""" ) as f: UpperCamelCase_: Any = json.load(lowerCamelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results lowerCamelCase_ : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : Dict ): import xla_spawn UpperCamelCase_: List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase_: List[str] = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(snake_case_ , """argv""" , snake_case_ ): UpperCamelCase_: Tuple = time() xla_spawn.main() UpperCamelCase_: Dict = time() UpperCamelCase_: List[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowerCAmelCase__ ( self : Tuple ): import xla_spawn UpperCamelCase_: str = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(snake_case_ , """argv""" , snake_case_ ): xla_spawn.main()
670
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A__ ( lowerCamelCase ) -> Dict[str, torch.Tensor]: UpperCamelCase_: str = [] UpperCamelCase_: Optional[int] = [] UpperCamelCase_: List[str] = [] for rt in rc.restypes: UpperCamelCase_: Any = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCamelCase_: Any = {name: i for i, name in enumerate(lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCamelCase_: Dict = torch.tensor( lowerCamelCase , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase_: Union[str, Any] = torch.tensor( lowerCamelCase , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase_: List[Any] = torch.tensor( lowerCamelCase , dtype=torch.floataa , device=protein["""aatype"""].device , ) UpperCamelCase_: int = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCamelCase_: Union[str, Any] = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase_: Union[str, Any] = restype_atomaa_mask[protein_aatype] UpperCamelCase_: str = residx_atomaa_mask UpperCamelCase_: List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCamelCase_: Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase_: Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCamelCase_: int = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCamelCase_: Union[str, Any] = rc.restype_atoa[restype_letter] UpperCamelCase_: str = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCamelCase_: str = rc.atom_order[atom_name] UpperCamelCase_: Optional[Any] = 1 UpperCamelCase_: Tuple = restype_atomaa_mask[protein_aatype] UpperCamelCase_: List[str] = residx_atomaa_mask return protein def A__ ( lowerCamelCase ) -> Dict[str, np.ndarray]: UpperCamelCase_: Optional[Any] = tree_map(lambda lowerCamelCase : torch.tensor(lowerCamelCase , device=batch["""aatype"""].device ) , lowerCamelCase , np.ndarray ) UpperCamelCase_: Dict = tensor_tree_map(lambda lowerCamelCase : np.array(lowerCamelCase ) , make_atomaa_masks(lowerCamelCase ) ) return out
670
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : List[str] = logging.getLogger() def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: int = """\n""".join(lowerCamelCase ) Path(lowerCamelCase ).open("""w""" ).writelines(lowerCamelCase ) lowerCamelCase_ : Tuple = """patrickvonplaten/t5-tiny-random""" lowerCamelCase_ : str = """sshleifer/bart-tiny-random""" lowerCamelCase_ : List[Any] = """sshleifer/tiny-mbart""" lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" UpperCamelCase_: Optional[int] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCamelCase_: Any = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(snake_case_ , snake_case_ ) UpperCamelCase_: Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) UpperCamelCase_: Tuple = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCamelCase_: List[str] = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_generate() assert Path(snake_case_ ).exists() # os.remove(Path(output_file_name)) def lowerCAmelCase__ ( self : List[str] ): self.run_eval_tester(snake_case_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : List[Any] ): self.run_eval_tester(snake_case_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[int] ): UpperCamelCase_: Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" UpperCamelCase_: Any = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCamelCase_: Tuple = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } UpperCamelCase_: List[Any] = Path(self.get_auto_remove_tmp_dir() ) UpperCamelCase_: Dict = str(tmp_dir / """scores.json""" ) UpperCamelCase_: Any = str(tmp_dir / """val.target""" ) _dump_articles(snake_case_ , text["""en"""] ) _dump_articles(snake_case_ , text["""de"""] ) UpperCamelCase_: List[Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCamelCase_: Tuple = f''' run_eval_search.py {model} {str(snake_case_ )} {str(snake_case_ )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(snake_case_ , """argv""" , snake_case_ ): with CaptureStdout() as cs: run_search() UpperCamelCase_: Optional[int] = [""" num_beams | length_penalty""", model, """Best score args"""] UpperCamelCase_: Union[str, Any] = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(snake_case_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case_ ).exists() os.remove(Path(snake_case_ ) )
670
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCamelCase_ : Any = logging.get_logger(__name__) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: UpperCamelCase_: Any = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase , config=lowerCamelCase ) UpperCamelCase_: Dict = downstream_dict["""projector.weight"""] UpperCamelCase_: List[str] = downstream_dict["""projector.bias"""] UpperCamelCase_: Dict = downstream_dict["""model.post_net.linear.weight"""] UpperCamelCase_: Optional[Any] = downstream_dict["""model.post_net.linear.bias"""] return model def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: UpperCamelCase_: List[str] = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase , config=lowerCamelCase ) UpperCamelCase_: Any = downstream_dict["""model.linear.weight"""] UpperCamelCase_: Tuple = downstream_dict["""model.linear.bias"""] return model def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: Optional[int] = UniSpeechSatForXVector.from_pretrained(lowerCamelCase , config=lowerCamelCase ) UpperCamelCase_: Union[str, Any] = downstream_dict["""connector.weight"""] UpperCamelCase_: Tuple = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCamelCase_: int = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] UpperCamelCase_: List[str] = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] UpperCamelCase_: str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] UpperCamelCase_: Tuple = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] UpperCamelCase_: List[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] UpperCamelCase_: int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] UpperCamelCase_: Dict = downstream_dict["""objective.W"""] return model @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: UpperCamelCase_: Optional[Any] = torch.load(lowerCamelCase , map_location="""cpu""" ) UpperCamelCase_: Any = checkpoint["""Downstream"""] UpperCamelCase_: str = UniSpeechSatConfig.from_pretrained(lowerCamelCase ) UpperCamelCase_: Any = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase , return_attention_mask=lowerCamelCase , do_normalize=lowerCamelCase ) UpperCamelCase_: Dict = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): UpperCamelCase_: Optional[int] = convert_classification(lowerCamelCase , lowerCamelCase , lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): UpperCamelCase_: Dict = convert_diarization(lowerCamelCase , lowerCamelCase , lowerCamelCase ) elif arch.endswith("""ForXVector""" ): UpperCamelCase_: List[Any] = convert_xvector(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: UpperCamelCase_: str = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") lowerCamelCase_ : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
670
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A__ ( lowerCamelCase ) -> List[str]: return 1.0 / (1.0 + np.exp(-_outputs )) def A__ ( lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: List[str] = np.max(_outputs , axis=-1 , keepdims=lowerCamelCase ) UpperCamelCase_: Tuple = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCamelCase ) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Tuple = """sigmoid""" __UpperCamelCase : Optional[Any] = """softmax""" __UpperCamelCase : Any = """none""" @add_end_docstrings( _A , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Dict = False __UpperCamelCase : List[str] = ClassificationFunction.NONE def __init__( self : Optional[int] , **snake_case_ : Optional[int] ): super().__init__(**snake_case_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[int]=None , snake_case_ : int=None , snake_case_ : Dict="" , **snake_case_ : List[str] ): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" UpperCamelCase_: Any = tokenizer_kwargs UpperCamelCase_: str = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: UpperCamelCase_: Optional[Any] = self.model.config.return_all_scores if isinstance(snake_case_ , snake_case_ ) or top_k is None: UpperCamelCase_: Any = top_k UpperCamelCase_: Optional[int] = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , snake_case_ , ) if return_all_scores: UpperCamelCase_: Tuple = None else: UpperCamelCase_: Union[str, Any] = 1 if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: UpperCamelCase_: Any = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Tuple , *snake_case_ : Any , **snake_case_ : Dict ): UpperCamelCase_: str = super().__call__(*snake_case_ , **snake_case_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. UpperCamelCase_: List[Any] = """top_k""" not in kwargs if isinstance(args[0] , snake_case_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[int] , **snake_case_ : int ): UpperCamelCase_: List[str] = self.framework if isinstance(snake_case_ , snake_case_ ): return self.tokenizer(**snake_case_ , return_tensors=snake_case_ , **snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) == 1 and isinstance(inputs[0] , snake_case_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case_ , **snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : Union[str, Any] ): return self.model(**snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : str , snake_case_ : List[str]=None , snake_case_ : Any=1 , snake_case_ : Optional[int]=True ): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: UpperCamelCase_: Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: UpperCamelCase_: Optional[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: UpperCamelCase_: Union[str, Any] = self.model.config.function_to_apply else: UpperCamelCase_: List[str] = ClassificationFunction.NONE UpperCamelCase_: Any = model_outputs["""logits"""][0] UpperCamelCase_: List[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: UpperCamelCase_: Dict = sigmoid(snake_case_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: UpperCamelCase_: Union[str, Any] = softmax(snake_case_ ) elif function_to_apply == ClassificationFunction.NONE: UpperCamelCase_: List[Any] = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} UpperCamelCase_: str = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(snake_case_ ) ] if not _legacy: dict_scores.sort(key=lambda snake_case_ : x["score"] , reverse=snake_case_ ) if top_k is not None: UpperCamelCase_: Optional[Any] = dict_scores[:top_k] return dict_scores
670
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
670
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : NestedDataStructureLike[PathLike] , snake_case_ : Optional[NamedSplit] = None , snake_case_ : Optional[Features] = None , snake_case_ : str = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[str] = None , snake_case_ : Optional[int] = None , **snake_case_ : Optional[Any] , ): super().__init__( snake_case_ , split=snake_case_ , features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , streaming=snake_case_ , num_proc=snake_case_ , **snake_case_ , ) UpperCamelCase_: Optional[int] = field UpperCamelCase_: int = path_or_paths if isinstance(snake_case_ , snake_case_ ) else {self.split: path_or_paths} UpperCamelCase_: int = Json( cache_dir=snake_case_ , data_files=snake_case_ , features=snake_case_ , field=snake_case_ , **snake_case_ , ) def lowerCAmelCase__ ( self : Optional[Any] ): # Build iterable dataset if self.streaming: UpperCamelCase_: List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase_: Any = None UpperCamelCase_: int = None UpperCamelCase_: Tuple = None UpperCamelCase_: str = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , num_proc=self.num_proc , ) UpperCamelCase_: Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : Dataset , snake_case_ : Union[PathLike, BinaryIO] , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , **snake_case_ : Tuple , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCamelCase_: Any = dataset UpperCamelCase_: int = path_or_buf UpperCamelCase_: str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase_: List[Any] = num_proc UpperCamelCase_: List[Any] = """utf-8""" UpperCamelCase_: Optional[Any] = to_json_kwargs def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = self.to_json_kwargs.pop("""path_or_buf""" , snake_case_ ) UpperCamelCase_: Tuple = self.to_json_kwargs.pop("""orient""" , """records""" ) UpperCamelCase_: Any = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) UpperCamelCase_: Optional[int] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) UpperCamelCase_: Any = self.to_json_kwargs.pop("""compression""" , snake_case_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=snake_case_ ) as buffer: UpperCamelCase_: Tuple = self._write(file_obj=snake_case_ , orient=snake_case_ , lines=snake_case_ , index=snake_case_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""" ) UpperCamelCase_: List[Any] = self._write( file_obj=self.path_or_buf , orient=snake_case_ , lines=snake_case_ , index=snake_case_ , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Dict , snake_case_ : List[str] ): UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = args UpperCamelCase_: Union[str, Any] = query_table( table=self.dataset.data , key=slice(snake_case_ , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCamelCase_: int = batch.to_pandas().to_json( path_or_buf=snake_case_ , orient=snake_case_ , lines=snake_case_ , index=snake_case_ , **snake_case_ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : Dict , snake_case_ : BinaryIO , snake_case_ : int , snake_case_ : Tuple , snake_case_ : int , **snake_case_ : str , ): UpperCamelCase_: List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): UpperCamelCase_: Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(snake_case_ ) else: UpperCamelCase_, UpperCamelCase_: int = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , snake_case_ , snake_case_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(snake_case_ ) return written
670
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase_ : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 1_60_00 ) -> Dict: UpperCamelCase_: Optional[Any] = int(round(sample_rate * max_length ) ) if len(lowerCamelCase ) <= sample_length: return wav UpperCamelCase_: List[str] = randint(0 , len(lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """A file containing the training audio paths and labels."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) __UpperCamelCase : str = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) __UpperCamelCase : str = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) __UpperCamelCase : str = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) __UpperCamelCase : str = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __UpperCamelCase : float = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Name or path of preprocessor config."""} ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __UpperCamelCase : Optional[bool] = field( default=_A , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , snake_case_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: int = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase_: Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase_: Union[str, Any] = DatasetDict() UpperCamelCase_: Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--label_column_name` to the correct text column - one of """ F'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase_: Optional[Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase_: Any = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase_: Dict = feature_extractor.model_input_names[0] def train_transforms(lowerCamelCase ): UpperCamelCase_: List[Any] = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase_: Any = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = feature_extractor(lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase_: Tuple = {model_input_name: inputs.get(lowerCamelCase )} UpperCamelCase_: Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCamelCase ): UpperCamelCase_: Any = [audio["""array"""] for audio in batch[data_args.audio_column_name]] UpperCamelCase_: List[Any] = feature_extractor(lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase_: Union[str, Any] = {model_input_name: inputs.get(lowerCamelCase )} UpperCamelCase_: Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase_: List[str] = raw_datasets["""train"""].features[data_args.label_column_name].names UpperCamelCase_, UpperCamelCase_: Any = {}, {} for i, label in enumerate(lowerCamelCase ): UpperCamelCase_: Optional[Any] = str(lowerCamelCase ) UpperCamelCase_: List[str] = label # Load the accuracy metric from the datasets package UpperCamelCase_: Optional[int] = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase ): UpperCamelCase_: str = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCamelCase , references=eval_pred.label_ids ) UpperCamelCase_: Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase ) , labelaid=lowerCamelCase , idalabel=lowerCamelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Dict = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase_: List[Any] = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCamelCase , output_all_columns=lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase_: List[str] = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCamelCase , output_all_columns=lowerCamelCase ) # Initialize our trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowerCamelCase , tokenizer=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: Dict = last_checkpoint UpperCamelCase_: Union[str, Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase_: Tuple = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) if __name__ == "__main__": main()
670
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = MvpTokenizer __UpperCamelCase : Union[str, Any] = MvpTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = filter_roberta_detectors def lowerCAmelCase__ ( self : Tuple ): super().setUp() UpperCamelCase_: Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCamelCase_: Optional[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase_: int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase_: Tuple = {"""unk_token""": """<unk>"""} UpperCamelCase_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : Optional[int] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Optional[int] ): return "lower newer", "lower newer" @cached_property def lowerCAmelCase__ ( self : Optional[int] ): return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCAmelCase__ ( self : Dict ): return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Tuple = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Optional[int] = tokenizer(snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase_: List[str] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) # Test that special tokens are reset @require_torch def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Any = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case_ ) self.assertIn("""attention_mask""" , snake_case_ ) self.assertNotIn("""labels""" , snake_case_ ) self.assertNotIn("""decoder_attention_mask""" , snake_case_ ) @require_torch def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Union[str, Any] = tokenizer(text_target=snake_case_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCAmelCase__ ( self : Union[str, Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: str = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = ["""A long paragraph for summarization."""] UpperCamelCase_: List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Tuple = tokenizer(snake_case_ , text_target=snake_case_ , return_tensors="""pt""" ) UpperCamelCase_: int = inputs["""input_ids"""] UpperCamelCase_: Union[str, Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase__ ( self : Optional[int] ): pass def lowerCAmelCase__ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Dict = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) UpperCamelCase_: Tuple = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) UpperCamelCase_: List[str] = """A, <mask> AllenNLP sentence.""" UpperCamelCase_: str = tokenizer_r.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) UpperCamelCase_: Dict = tokenizer_p.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCamelCase_: List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCamelCase_: int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
670
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCamelCase_ : Dict = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls : str ): UpperCamelCase_: Any = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def lowerCAmelCase__ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase_: Dict = FlaxBertModel(snake_case_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCamelCase_: Dict = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ , repo_id="""test-model-flax""" , push_to_hub=snake_case_ , use_auth_token=self._token ) UpperCamelCase_: Tuple = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase_: int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase_: Dict = FlaxBertModel(snake_case_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCamelCase_: Any = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase_: List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=snake_case_ , use_auth_token=self._token ) UpperCamelCase_: str = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = True UpperCamelCase_: Optional[Any] = flatten_dict(modela.params ) UpperCamelCase_: int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase_: Union[str, Any] = False return models_are_equal @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase_: int = FlaxBertModel(snake_case_ ) UpperCamelCase_: Any = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) ) with self.assertRaises(snake_case_ ): UpperCamelCase_: List[Any] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: Any = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase_: Tuple = FlaxBertModel(snake_case_ ) UpperCamelCase_: Tuple = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) , max_shard_size="""10KB""" ) with self.assertRaises(snake_case_ ): UpperCamelCase_: Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: List[str] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = """bert""" UpperCamelCase_: Optional[int] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(snake_case_ ): UpperCamelCase_: int = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: List[str] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = """bert""" UpperCamelCase_: str = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(snake_case_ ): UpperCamelCase_: Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: int = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ )
670
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
670
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Dict = logging.get_logger(__name__) def A__ ( lowerCamelCase , lowerCamelCase=False ) -> List[str]: UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): UpperCamelCase_: int = """segformer.encoder.""" + key if key.startswith("""backbone""" ): UpperCamelCase_: str = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase_: List[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] UpperCamelCase_: Any = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: UpperCamelCase_: List[Any] = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase_: Optional[Any] = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] UpperCamelCase_: Dict = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: UpperCamelCase_: Tuple = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: UpperCamelCase_: List[Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase_: List[str] = key[key.find("""block""" ) + len("""block""" )] UpperCamelCase_: Optional[Any] = key.replace(F'''block{idx}''' , F'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: UpperCamelCase_: int = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: UpperCamelCase_: int = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: UpperCamelCase_: List[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: UpperCamelCase_: Dict = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: UpperCamelCase_: Any = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: UpperCamelCase_: Any = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: UpperCamelCase_: str = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) UpperCamelCase_: Tuple = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase_: List[str] = key[key.find("""linear_c""" ) + len("""linear_c""" )] UpperCamelCase_: Any = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(lowerCamelCase )-1}''' ) if key.startswith("""head""" ): UpperCamelCase_: Union[str, Any] = key.replace("""head""" , """classifier""" ) UpperCamelCase_: Optional[int] = value return new_state_dict def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase_: Any = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCamelCase_: Optional[int] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCamelCase_: Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase_: int = kv_bias[: config.hidden_sizes[i]] UpperCamelCase_: str = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase_: Any = kv_bias[ config.hidden_sizes[i] : ] def A__ ( ) -> Tuple: UpperCamelCase_: Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_: Tuple = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: UpperCamelCase_: Tuple = SegformerConfig() UpperCamelCase_: Optional[int] = False # set attributes based on model_name UpperCamelCase_: List[str] = """huggingface/label-files""" if "segformer" in model_name: UpperCamelCase_: int = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: UpperCamelCase_: Optional[Any] = 1_50 UpperCamelCase_: str = """ade20k-id2label.json""" UpperCamelCase_: Any = (1, 1_50, 1_28, 1_28) elif "city" in model_name: UpperCamelCase_: Union[str, Any] = 19 UpperCamelCase_: int = """cityscapes-id2label.json""" UpperCamelCase_: int = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: UpperCamelCase_: int = True UpperCamelCase_: Union[str, Any] = model_name[4:6] UpperCamelCase_: Optional[int] = 10_00 UpperCamelCase_: Tuple = """imagenet-1k-id2label.json""" UpperCamelCase_: List[str] = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes UpperCamelCase_: List[Any] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_: List[str] = {int(lowerCamelCase ): v for k, v in idalabel.items()} UpperCamelCase_: Union[str, Any] = idalabel UpperCamelCase_: List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCamelCase_: Any = [64, 1_28, 3_20, 5_12] UpperCamelCase_: List[str] = 2_56 elif size == "b2": UpperCamelCase_: Union[str, Any] = [64, 1_28, 3_20, 5_12] UpperCamelCase_: int = 7_68 UpperCamelCase_: Any = [3, 4, 6, 3] elif size == "b3": UpperCamelCase_: Tuple = [64, 1_28, 3_20, 5_12] UpperCamelCase_: Union[str, Any] = 7_68 UpperCamelCase_: Union[str, Any] = [3, 4, 18, 3] elif size == "b4": UpperCamelCase_: Optional[Any] = [64, 1_28, 3_20, 5_12] UpperCamelCase_: Union[str, Any] = 7_68 UpperCamelCase_: Union[str, Any] = [3, 8, 27, 3] elif size == "b5": UpperCamelCase_: str = [64, 1_28, 3_20, 5_12] UpperCamelCase_: str = 7_68 UpperCamelCase_: Union[str, Any] = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) UpperCamelCase_: str = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) # prepare image UpperCamelCase_: int = prepare_img() UpperCamelCase_: Optional[Any] = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: UpperCamelCase_: Tuple = torch.load(lowerCamelCase , map_location=torch.device("""cpu""" ) ) else: UpperCamelCase_: str = torch.load(lowerCamelCase , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys UpperCamelCase_: List[Any] = rename_keys(lowerCamelCase , encoder_only=lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: UpperCamelCase_: Optional[int] = False UpperCamelCase_: Optional[Any] = SegformerForImageClassification(lowerCamelCase ) else: UpperCamelCase_: Tuple = SegformerForSemanticSegmentation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass UpperCamelCase_: Any = model(lowerCamelCase ) UpperCamelCase_: Any = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCamelCase_: Dict = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCamelCase_: Union[str, Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCamelCase_: str = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCamelCase_: Optional[Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCamelCase_: List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCamelCase_: Optional[int] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCamelCase_: Optional[Any] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCamelCase_: int = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCamelCase_: Dict = torch.tensor( [ [ [-1.1_3_7_2E0_1, -1.2_7_8_7E0_1, -1.3_4_7_7E0_1], [-1.2_5_3_6E0_1, -1.4_1_9_4E0_1, -1.4_4_0_9E0_1], [-1.3_2_1_7E0_1, -1.4_8_8_8E0_1, -1.5_3_2_7E0_1], ], [ [-1.4_7_9_1E0_1, -1.7_1_2_2E0_1, -1.8_2_7_7E0_1], [-1.7_1_6_3E0_1, -1.9_1_9_2E0_1, -1.9_5_3_3E0_1], [-1.7_8_9_7E0_1, -1.9_9_9_1E0_1, -2.0_3_1_5E0_1], ], [ [7.6_7_2_3E-0_1, 4.1_9_2_1E-0_1, -7.7_8_7_8E-0_2], [4.7_7_7_2E-0_1, 9.5_5_5_7E-0_3, -2.8_0_8_2E-0_1], [3.6_0_3_2E-0_1, -2.4_8_2_6E-0_1, -5.1_1_6_8E-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCamelCase_: List[Any] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCamelCase_: Any = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCamelCase_: Any = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCamelCase_: Optional[Any] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCamelCase_: Optional[Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCamelCase_: Any = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: UpperCamelCase_: Optional[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
670
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
1
from typing import List from .keymap import KEYMAP, get_character def A__ ( lowerCamelCase ) -> Optional[Any]: def decorator(lowerCamelCase ): UpperCamelCase_: List[Any] = getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def A__ ( *lowerCamelCase ) -> List[Any]: def decorator(lowerCamelCase ): UpperCamelCase_: Any = getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class _UpperCamelCase ( _A ): '''simple docstring''' def __new__( cls : int , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Union[str, Any] ): UpperCamelCase_: Tuple = super().__new__(cls , snake_case_ , snake_case_ , snake_case_ ) if not hasattr(snake_case_ , """key_handler""" ): setattr(snake_case_ , """key_handler""" , {} ) setattr(snake_case_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): UpperCamelCase_: str = getattr(snake_case_ , """handle_key""" , [] ) for key in handled_keys: UpperCamelCase_: Any = value return new_cls @staticmethod def lowerCAmelCase__ ( cls : int ): UpperCamelCase_: Union[str, Any] = get_character() if char != KEYMAP["undefined"]: UpperCamelCase_: Any = ord(snake_case_ ) UpperCamelCase_: List[str] = cls.key_handler.get(snake_case_ ) if handler: UpperCamelCase_: List[Any] = char return handler(cls ) else: return None def A__ ( cls ) -> List[Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
670
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = """encoder-decoder""" __UpperCamelCase : Dict = True def __init__( self : Tuple , **snake_case_ : Tuple ): super().__init__(**snake_case_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCamelCase_: List[Any] = kwargs.pop("""encoder""" ) UpperCamelCase_: Union[str, Any] = encoder_config.pop("""model_type""" ) UpperCamelCase_: Optional[int] = kwargs.pop("""decoder""" ) UpperCamelCase_: str = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig UpperCamelCase_: List[Any] = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: List[Any] = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: Dict = True @classmethod def lowerCAmelCase__ ( cls : Any , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , **snake_case_ : Optional[Any] ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase_: List[str] = True UpperCamelCase_: str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: int = copy.deepcopy(self.__dict__ ) UpperCamelCase_: Optional[Any] = self.encoder.to_dict() UpperCamelCase_: Optional[int] = self.decoder.to_dict() UpperCamelCase_: List[str] = self.__class__.model_type return output
670
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
1
import math import random def A__ ( lowerCamelCase , lowerCamelCase = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase_ : Any = 0.02 def A__ ( lowerCamelCase , lowerCamelCase ) -> float: UpperCamelCase_: Tuple = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(lowerCamelCase ): # Forward propagation UpperCamelCase_: Optional[int] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase_: Optional[int] = (expected / 1_00) - layer_a # Error delta UpperCamelCase_: Any = layer_1_error * sigmoid_function(lowerCamelCase , lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Dict = int(input("""Expected value: """)) lowerCamelCase_ : str = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : str = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCamelCase_ : str = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def A__ ( lowerCamelCase ) -> Optional[int]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCamelCase_: Union[str, Any] = list(s_dict.keys() ) for key in keys: UpperCamelCase_: int = r""".*/layers_(\d+)""" UpperCamelCase_: Any = key if re.match(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: Tuple = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , lowerCamelCase ) UpperCamelCase_: Dict = r"""(encoder|decoder)\/""" if re.match(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: Any = re.match(lowerCamelCase , lowerCamelCase ).groups() if groups[0] == "encoder": UpperCamelCase_: Union[str, Any] = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , lowerCamelCase ) UpperCamelCase_: Dict = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , lowerCamelCase ) elif groups[0] == "decoder": UpperCamelCase_: Optional[int] = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , lowerCamelCase ) UpperCamelCase_: Optional[Any] = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , lowerCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCamelCase_: Any = new_key.replace(lowerCamelCase , lowerCamelCase ) print(F'''{key} -> {new_key}''' ) UpperCamelCase_: List[Any] = s_dict.pop(lowerCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCamelCase_: Optional[int] = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCamelCase_: Any = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCamelCase_: Optional[int] = s_dict[key].shape[0] UpperCamelCase_: Optional[int] = s_dict[key] for idx in range(lowerCamelCase ): UpperCamelCase_: Any = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(lowerCamelCase ) return s_dict lowerCamelCase_ : Union[str, Any] = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: # Convert a google style config to the hugging face fromat import regex as re with open(lowerCamelCase , """r""" ) as f: UpperCamelCase_: Union[str, Any] = f.read() UpperCamelCase_: Optional[Any] = re.findall(r"""(.*) = ([0-9.]*)""" , lowerCamelCase ) UpperCamelCase_: Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCamelCase_: Dict = float(lowerCamelCase ) if """.""" in value else int(lowerCamelCase ) UpperCamelCase_: Any = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , lowerCamelCase )[0] UpperCamelCase_: Tuple = str(activation[1] ) UpperCamelCase_: Any = num_experts UpperCamelCase_: List[str] = SwitchTransformersConfig(**lowerCamelCase ) return config def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase="./" , lowerCamelCase=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) UpperCamelCase_: Optional[int] = checkpoints.load_tax_checkpoint(lowerCamelCase ) if gin_file is not None: UpperCamelCase_: List[Any] = convert_gin_to_config(lowerCamelCase , lowerCamelCase ) else: UpperCamelCase_: Optional[int] = SwitchTransformersConfig.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[str] = SwitchTransformersForConditionalGeneration(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = flax_params["""target"""] UpperCamelCase_: int = flatten_dict(lowerCamelCase , sep="""/""" ) UpperCamelCase_: Tuple = rename_keys(lowerCamelCase ) UpperCamelCase_: Optional[Any] = unflatten_dict(lowerCamelCase , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCamelCase , lowerCamelCase ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCamelCase_ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
670
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
1
import argparse import os import re lowerCamelCase_ : int = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase_ : str = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings lowerCamelCase_ : Optional[Any] = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def A__ ( lowerCamelCase , lowerCamelCase = False ) -> List[str]: with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase_: int = f.read() UpperCamelCase_: Union[str, Any] = content.split("""\n""" ) UpperCamelCase_: Tuple = [] UpperCamelCase_: List[str] = 0 while line_idx < len(lowerCamelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCamelCase_: Union[str, Any] = len(re.search(r"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCamelCase_: Tuple = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCamelCase_: Optional[Any] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCamelCase_: Tuple = sorted(lowerCamelCase , key=lambda lowerCamelCase : _re_identifier.search(lowerCamelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowerCamelCase ) ) elif "\n".join(lowerCamelCase ) != content: return True def A__ ( lowerCamelCase = False ) -> Union[str, Any]: UpperCamelCase_: Optional[int] = [os.path.join(lowerCamelCase , lowerCamelCase ) for f in os.listdir(lowerCamelCase ) if f.endswith(""".py""" )] UpperCamelCase_: Dict = [sort_auto_mapping(lowerCamelCase , overwrite=lowerCamelCase ) for fname in fnames] if not overwrite and any(lowerCamelCase ): UpperCamelCase_: Any = [f for f, d in zip(lowerCamelCase , lowerCamelCase ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {", ".join(lowerCamelCase )}. Run `make style` to fix''' """ this.""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCamelCase_ : str = parser.parse_args() sort_all_auto_mappings(not args.check_only)
670
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : int = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""LayoutLMv2FeatureExtractor"""] lowerCamelCase_ : Any = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
1
import re import string import numpy as np import datasets lowerCamelCase_ : Optional[int] = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ lowerCamelCase_ : Optional[Any] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ lowerCamelCase_ : int = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=None , snake_case_ : int=False , snake_case_ : Dict=False , snake_case_ : List[str]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase_: int = np.array([re.sub(snake_case_ , """""" , snake_case_ ) for x in predictions] ) UpperCamelCase_: Tuple = np.array([re.sub(snake_case_ , """""" , snake_case_ ) for x in references] ) else: UpperCamelCase_: int = np.asarray(snake_case_ ) UpperCamelCase_: Optional[Any] = np.asarray(snake_case_ ) if ignore_case: UpperCamelCase_: List[str] = np.char.lower(snake_case_ ) UpperCamelCase_: Optional[Any] = np.char.lower(snake_case_ ) if ignore_punctuation: UpperCamelCase_: Tuple = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase_: List[str] = np.char.translate(snake_case_ , table=snake_case_ ) UpperCamelCase_: List[str] = np.char.translate(snake_case_ , table=snake_case_ ) if ignore_numbers: UpperCamelCase_: str = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase_: List[str] = np.char.translate(snake_case_ , table=snake_case_ ) UpperCamelCase_: int = np.char.translate(snake_case_ , table=snake_case_ ) UpperCamelCase_: Dict = predictions == references return {"exact_match": np.mean(snake_case_ ) * 100}
670
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Union[str, Any] = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""LayoutLMv3FeatureExtractor"""] lowerCamelCase_ : List[Any] = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = ViTImageProcessor if is_vision_available() else None @property def lowerCAmelCase__ ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = (3, 32, 128) UpperCamelCase_: Optional[Any] = tempfile.mkdtemp() # fmt: off UpperCamelCase_: Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCamelCase_: Optional[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase_: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) UpperCamelCase_: List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } UpperCamelCase_: Any = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : List[Any] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : str ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: int = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) UpperCamelCase_: Any = Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) return image_input def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Any = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: List[str] = self.get_image_processor() UpperCamelCase_: List[str] = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Optional[Any] = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: Optional[int] = image_processor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: Union[str, Any] = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: str = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Dict = """test""" UpperCamelCase_: Dict = processor(text=snake_case_ ) UpperCamelCase_: Any = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[Any] = self.get_image_processor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: int = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Tuple = """test""" UpperCamelCase_: int = self.prepare_image_inputs() UpperCamelCase_: str = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = self.get_image_processor() UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: Any = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Union[str, Any] = processor.char_decode(snake_case_ ) UpperCamelCase_: int = tokenizer.batch_decode(snake_case_ ) UpperCamelCase_: int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Dict = self.get_tokenizer() UpperCamelCase_: Dict = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[Any] = None UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: List[str] = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Any = torch.randn(1 , 27 , 38 ) UpperCamelCase_: int = torch.randn(1 , 27 , 5_0257 ) UpperCamelCase_: Optional[int] = torch.randn(1 , 27 , 3_0522 ) UpperCamelCase_: List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
670
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A__ ( lowerCamelCase ) -> int: if isinstance(lowerCamelCase , torch.Tensor ): return image elif isinstance(lowerCamelCase , PIL.Image.Image ): UpperCamelCase_: Optional[int] = [image] UpperCamelCase_: List[str] = [trans(img.convert("""RGB""" ) ) for img in image] UpperCamelCase_: Dict = torch.stack(lowerCamelCase ) return image class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Dict , snake_case_ : Dict , snake_case_ : Dict ): super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_: Union[str, Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[str] ): if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : List[str] ): # get the original timestep using init_timestep UpperCamelCase_: Dict = min(int(num_inference_steps * strength ) , snake_case_ ) UpperCamelCase_: Optional[int] = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_: Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any]=None ): if not isinstance(snake_case_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case_ )}''' ) UpperCamelCase_: List[str] = image.to(device=snake_case_ , dtype=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(snake_case_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_: Optional[int] = init_latents.shape UpperCamelCase_: Optional[int] = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) # get latents print("""add noise to latents at timestep""" , snake_case_ ) UpperCamelCase_: Optional[int] = self.scheduler.add_noise(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase_: Tuple = init_latents return latents @torch.no_grad() def __call__( self : str , snake_case_ : Union[torch.FloatTensor, PIL.Image.Image] = None , snake_case_ : float = 0.8 , snake_case_ : int = 1 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : float = 0.0 , snake_case_ : int = 50 , snake_case_ : Optional[bool] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): self.check_inputs(snake_case_ ) # 2. Preprocess image UpperCamelCase_: Any = preprocess(snake_case_ ) # 3. set timesteps self.scheduler.set_timesteps(snake_case_ , device=self.device ) UpperCamelCase_, UpperCamelCase_: List[str] = self.get_timesteps(snake_case_ , snake_case_ , self.device ) UpperCamelCase_: List[str] = timesteps[:1].repeat(snake_case_ ) # 4. Prepare latent variables UpperCamelCase_: Tuple = self.prepare_latents(snake_case_ , snake_case_ , snake_case_ , self.unet.dtype , self.device , snake_case_ ) UpperCamelCase_: List[Any] = latents # 5. Denoising loop for t in self.progress_bar(snake_case_ ): # 1. predict noise model_output UpperCamelCase_: List[str] = self.unet(snake_case_ , snake_case_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_: Dict = self.scheduler.step( snake_case_ , snake_case_ , snake_case_ , eta=snake_case_ , use_clipped_model_output=snake_case_ , generator=snake_case_ , ).prev_sample UpperCamelCase_: Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_: List[str] = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=snake_case_ )
670
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Tuple = """roc_bert""" def __init__( self : Tuple , snake_case_ : Any=3_0522 , snake_case_ : int=768 , snake_case_ : List[Any]=12 , snake_case_ : Dict=12 , snake_case_ : Optional[int]=3072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Tuple=512 , snake_case_ : str=2 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : Optional[int]=1e-12 , snake_case_ : List[str]=True , snake_case_ : Any=0 , snake_case_ : int="absolute" , snake_case_ : int=None , snake_case_ : Optional[int]=True , snake_case_ : Union[str, Any]=True , snake_case_ : List[str]=768 , snake_case_ : int=910 , snake_case_ : Dict=512 , snake_case_ : List[str]=2_4858 , snake_case_ : str=True , **snake_case_ : Any , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = hidden_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Optional[Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Dict = hidden_act UpperCamelCase_: Optional[Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: Optional[int] = type_vocab_size UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: Dict = enable_pronunciation UpperCamelCase_: Dict = enable_shape UpperCamelCase_: int = pronunciation_embed_dim UpperCamelCase_: Dict = pronunciation_vocab_size UpperCamelCase_: Union[str, Any] = shape_embed_dim UpperCamelCase_: List[Any] = shape_vocab_size UpperCamelCase_: int = concat_input UpperCamelCase_: List[str] = position_embedding_type UpperCamelCase_: Optional[Any] = classifier_dropout super().__init__(pad_token_id=snake_case_ , **snake_case_ )
670
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase_ : Dict = get_logger(__name__) class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[Any] = """dummy_data""" __UpperCamelCase : List[Any] = """datasets""" __UpperCamelCase : Optional[Any] = False def __init__( self : Dict , snake_case_ : str , snake_case_ : str , snake_case_ : Union[Version, str] , snake_case_ : Optional[str] = None , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[List[Callable]] = None , ): UpperCamelCase_: Tuple = 0 UpperCamelCase_: int = dataset_name UpperCamelCase_: Optional[int] = cache_dir UpperCamelCase_: Optional[Any] = use_local_dummy_data UpperCamelCase_: List[str] = config # download_callbacks take a single url as input UpperCamelCase_: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root UpperCamelCase_: Optional[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general UpperCamelCase_: Optional[Any] = str(snake_case_ ) # to be downloaded UpperCamelCase_: Any = None UpperCamelCase_: Tuple = None @property def lowerCAmelCase__ ( self : Tuple ): if self._dummy_file is None: UpperCamelCase_: int = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self : List[Any] ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self : str ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) UpperCamelCase_: Optional[Any] = cached_path( snake_case_ , cache_dir=self.cache_dir , extract_compressed_file=snake_case_ , force_extract=snake_case_ ) return os.path.join(snake_case_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self : Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): if self._bucket_url is None: UpperCamelCase_: Union[str, Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self : int ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self : Any , snake_case_ : Optional[int] , *snake_case_ : Tuple ): if self.load_existing_dummy_data: # dummy data is downloaded and tested UpperCamelCase_: List[str] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned UpperCamelCase_: Dict = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case_ , snake_case_ ): return self.create_dummy_data_dict(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , (list, tuple) ): return self.create_dummy_data_list(snake_case_ , snake_case_ ) else: return self.create_dummy_data_single(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : int , *snake_case_ : List[str] ): return self.download_and_extract(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : List[Any] ): return self.download_and_extract(snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : Tuple , *snake_case_ : Dict , **snake_case_ : int ): return path def lowerCAmelCase__ ( self : Optional[Any] ): return {} def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Any , snake_case_ : Optional[int] ): UpperCamelCase_: List[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case_ , snake_case_ ): for single_url in single_urls: download_callback(snake_case_ ) else: UpperCamelCase_: List[str] = single_urls download_callback(snake_case_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Dict = [os.path.join(snake_case_ , urllib.parse.quote_plus(Path(snake_case_ ).name ) ) for x in single_urls] else: UpperCamelCase_: Tuple = single_urls UpperCamelCase_: str = os.path.join(snake_case_ , urllib.parse.quote_plus(Path(snake_case_ ).name ) ) UpperCamelCase_: List[Any] = value # make sure that values are unique if all(isinstance(snake_case_ , snake_case_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique UpperCamelCase_: str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self : int , snake_case_ : List[Any] , snake_case_ : Dict ): UpperCamelCase_: List[str] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one UpperCamelCase_: Dict = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , snake_case_ ) ) for url in data_url ) UpperCamelCase_: int = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): UpperCamelCase_: List[str] = [data_url[0]] * len(snake_case_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCamelCase_: List[str] = os.path.join(snake_case_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(snake_case_ ) return dummy_data_list def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict , snake_case_ : List[Any] ): for download_callback in self.download_callbacks: download_callback(snake_case_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCamelCase_: Optional[Any] = os.path.join(snake_case_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(snake_case_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self : Optional[Any] ): pass def lowerCAmelCase__ ( self : Optional[int] ): pass def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any] ): def _iter_archive_members(snake_case_ : Optional[Any] ): # this preserves the order of the members inside the ZIP archive UpperCamelCase_: Union[str, Any] = Path(self.dummy_file ).parent UpperCamelCase_: Union[str, Any] = path.relative_to(snake_case_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: UpperCamelCase_: Union[str, Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case_ ) UpperCamelCase_: Optional[int] = Path(snake_case_ ) UpperCamelCase_: int = _iter_archive_members(snake_case_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(snake_case_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self : Any , snake_case_ : Union[str, Any] ): if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: List[Any] = [paths] for path in paths: if os.path.isfile(snake_case_ ): if os.path.basename(snake_case_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case_ ): if os.path.basename(snake_case_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(snake_case_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(snake_case_ , snake_case_ )
670
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""image_processor"""] __UpperCamelCase : Any = """SamImageProcessor""" def __init__( self : Tuple , snake_case_ : Dict ): super().__init__(snake_case_ ) UpperCamelCase_: int = self.image_processor UpperCamelCase_: Optional[Any] = -10 UpperCamelCase_: Optional[Any] = self.image_processor.size["""longest_edge"""] def __call__( self : Optional[int] , snake_case_ : Union[str, Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : List[str]=None , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : List[str] , ): UpperCamelCase_: Any = self.image_processor( snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # pop arguments that are not used in the foward but used nevertheless UpperCamelCase_: Optional[Any] = encoding_image_processor["""original_sizes"""] if hasattr(snake_case_ , """numpy""" ): # Checks if Torch or TF tensor UpperCamelCase_: Optional[int] = original_sizes.numpy() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = self._check_and_preprocess_points( input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , ) UpperCamelCase_: Any = self._normalize_and_convert( snake_case_ , snake_case_ , input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , return_tensors=snake_case_ , ) return encoding_image_processor def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Optional[Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Dict="pt" , ): if input_points is not None: if len(snake_case_ ) != len(snake_case_ ): UpperCamelCase_: int = [ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] ) for point in input_points ] else: UpperCamelCase_: Dict = [ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ ) for point, original_size in zip(snake_case_ , snake_case_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: UpperCamelCase_, UpperCamelCase_: Union[str, Any] = self._pad_points_and_labels(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = np.array(snake_case_ ) if input_labels is not None: UpperCamelCase_: Tuple = np.array(snake_case_ ) if input_boxes is not None: if len(snake_case_ ) != len(snake_case_ ): UpperCamelCase_: int = [ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] , is_bounding_box=snake_case_ ) for box in input_boxes ] else: UpperCamelCase_: Dict = [ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ , is_bounding_box=snake_case_ ) for box, original_size in zip(snake_case_ , snake_case_ ) ] UpperCamelCase_: Tuple = np.array(snake_case_ ) if input_boxes is not None: if return_tensors == "pt": UpperCamelCase_: List[Any] = torch.from_numpy(snake_case_ ) # boxes batch size of 1 by default UpperCamelCase_: Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": UpperCamelCase_: Dict = tf.convert_to_tensor(snake_case_ ) # boxes batch size of 1 by default UpperCamelCase_: str = tf.expand_dims(snake_case_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": UpperCamelCase_: Optional[int] = torch.from_numpy(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: Union[str, Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": UpperCamelCase_: str = tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: Optional[Any] = tf.expand_dims(snake_case_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": UpperCamelCase_: Union[str, Any] = torch.from_numpy(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: str = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": UpperCamelCase_: List[Any] = tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: Optional[Any] = tf.expand_dims(snake_case_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCAmelCase__ ( self : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Tuple = max([point.shape[0] for point in input_points] ) UpperCamelCase_: int = [] for i, point in enumerate(snake_case_ ): if point.shape[0] != expected_nb_points: UpperCamelCase_: Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) UpperCamelCase_: int = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(snake_case_ ) UpperCamelCase_: List[Any] = processed_input_points return input_points, input_labels def lowerCAmelCase__ ( self : int , snake_case_ : int , snake_case_ : np.ndarray , snake_case_ : List[Any] , snake_case_ : Optional[int]=False ): UpperCamelCase_, UpperCamelCase_: Dict = original_size UpperCamelCase_, UpperCamelCase_: str = self.image_processor._get_preprocess_shape(snake_case_ , longest_edge=snake_case_ ) UpperCamelCase_: Tuple = deepcopy(snake_case_ ).astype(snake_case_ ) if is_bounding_box: UpperCamelCase_: Optional[Any] = coords.reshape(-1 , 2 , 2 ) UpperCamelCase_: List[str] = coords[..., 0] * (new_w / old_w) UpperCamelCase_: int = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCamelCase_: List[Any] = coords.reshape(-1 , 4 ) return coords def lowerCAmelCase__ ( self : int , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple=None , snake_case_ : Union[str, Any]=None , ): if input_points is not None: if hasattr(snake_case_ , """numpy""" ): # Checks for TF or Torch tensor UpperCamelCase_: str = input_points.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_points[0] , snake_case_ ): raise ValueError("""Input points must be a list of list of floating points.""" ) UpperCamelCase_: Tuple = [np.array(snake_case_ ) for input_point in input_points] else: UpperCamelCase_: int = None if input_labels is not None: if hasattr(snake_case_ , """numpy""" ): UpperCamelCase_: Any = input_labels.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_labels[0] , snake_case_ ): raise ValueError("""Input labels must be a list of list integers.""" ) UpperCamelCase_: Optional[Any] = [np.array(snake_case_ ) for label in input_labels] else: UpperCamelCase_: Optional[Any] = None if input_boxes is not None: if hasattr(snake_case_ , """numpy""" ): UpperCamelCase_: Union[str, Any] = input_boxes.numpy().tolist() if ( not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_boxes[0] , snake_case_ ) or not isinstance(input_boxes[0][0] , snake_case_ ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) UpperCamelCase_: List[Any] = [np.array(snake_case_ ).astype(np.floataa ) for box in input_boxes] else: UpperCamelCase_: Optional[Any] = None return input_points, input_labels, input_boxes @property def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = self.image_processor.model_input_names return list(dict.fromkeys(snake_case_ ) ) def lowerCAmelCase__ ( self : Optional[int] , *snake_case_ : Tuple , **snake_case_ : Tuple ): return self.image_processor.post_process_masks(*snake_case_ , **snake_case_ )
670
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : int = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class _UpperCamelCase ( _A , _A ): '''simple docstring''' __UpperCamelCase : Tuple = """dinat""" __UpperCamelCase : Optional[int] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , snake_case_ : Tuple=4 , snake_case_ : Optional[Any]=3 , snake_case_ : Tuple=64 , snake_case_ : List[Any]=[3, 4, 6, 5] , snake_case_ : int=[2, 4, 8, 16] , snake_case_ : str=7 , snake_case_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , snake_case_ : List[Any]=3.0 , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=0.0 , snake_case_ : str=0.0 , snake_case_ : Optional[Any]=0.1 , snake_case_ : str="gelu" , snake_case_ : Optional[int]=0.02 , snake_case_ : List[str]=1e-5 , snake_case_ : str=0.0 , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , **snake_case_ : Any , ): super().__init__(**snake_case_ ) UpperCamelCase_: int = patch_size UpperCamelCase_: Union[str, Any] = num_channels UpperCamelCase_: Dict = embed_dim UpperCamelCase_: List[str] = depths UpperCamelCase_: int = len(snake_case_ ) UpperCamelCase_: Optional[Any] = num_heads UpperCamelCase_: Optional[int] = kernel_size UpperCamelCase_: Union[str, Any] = dilations UpperCamelCase_: List[str] = mlp_ratio UpperCamelCase_: List[str] = qkv_bias UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: Any = drop_path_rate UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Any = layer_norm_eps UpperCamelCase_: List[str] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase_: List[str] = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) UpperCamelCase_: Any = layer_scale_init_value UpperCamelCase_: str = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )] UpperCamelCase_, UpperCamelCase_: List[str] = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
670
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : str , *snake_case_ : Dict , snake_case_ : List[str]=None , snake_case_ : Tuple=None , **snake_case_ : Union[str, Any] ): super().__init__(*snake_case_ , **snake_case_ ) UpperCamelCase_: Optional[Any] = eval_examples UpperCamelCase_: Tuple = post_process_function def lowerCAmelCase__ ( self : List[str] , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=None , snake_case_ : int=None , snake_case_ : str = "eval" ): UpperCamelCase_: int = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase_: int = self.get_eval_dataloader(snake_case_ ) UpperCamelCase_: str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase_: Optional[Any] = self.compute_metrics UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase_: int = time.time() try: UpperCamelCase_: Optional[int] = eval_loop( snake_case_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case_ , metric_key_prefix=snake_case_ , ) finally: UpperCamelCase_: Tuple = compute_metrics UpperCamelCase_: Tuple = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case_ , snake_case_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCamelCase_: str = self.post_process_function(snake_case_ , snake_case_ , output.predictions ) UpperCamelCase_: List[str] = self.compute_metrics(snake_case_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCamelCase_: List[Any] = metrics.pop(snake_case_ ) metrics.update(output.metrics ) else: UpperCamelCase_: int = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase_: Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case_ ) return metrics def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple=None , snake_case_ : str = "test" ): UpperCamelCase_: List[str] = self.get_test_dataloader(snake_case_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase_: List[str] = self.compute_metrics UpperCamelCase_: str = None UpperCamelCase_: Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase_: Any = time.time() try: UpperCamelCase_: int = eval_loop( snake_case_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case_ , metric_key_prefix=snake_case_ , ) finally: UpperCamelCase_: Optional[int] = compute_metrics UpperCamelCase_: Dict = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case_ , snake_case_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase_: Any = self.post_process_function(snake_case_ , snake_case_ , output.predictions , """predict""" ) UpperCamelCase_: Union[str, Any] = self.compute_metrics(snake_case_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCamelCase_: List[str] = metrics.pop(snake_case_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case_ )
670
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[Any] = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : Tuple = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCamelCase_ : Tuple = """__DUMMY_TRANSFORMERS_USER__""" lowerCamelCase_ : List[Any] = """Dummy User""" lowerCamelCase_ : Optional[int] = """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""" lowerCamelCase_ : int = """https://hub-ci.huggingface.co""" lowerCamelCase_ : Optional[Any] = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCamelCase_ : Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCamelCase_ : str = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def A__ ( lowerCamelCase ) -> int: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> List[Any]: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , lowerCamelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> List[Any]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase , lowerCamelCase ) -> Dict: HfFolder.save_token(lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def A__ ( ) -> Any: return HfApi(endpoint=lowerCamelCase ) @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: Optional[int] = HfFolder.get_token() HfFolder.save_token(lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> Dict: def _cleanup_repo(lowerCamelCase ): hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def A__ ( lowerCamelCase ) -> int: @contextmanager def _temporary_repo(lowerCamelCase ): try: yield repo_id finally: cleanup_repo(lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: str = F'''repo_txt_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: Dict = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: UpperCamelCase_: Optional[Any] = F'''repo_zipped_txt_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: Tuple = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: UpperCamelCase_: Any = F'''repo_zipped_img_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: return hf_private_dataset_repo_zipped_img_data_
670
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1