code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : List[str] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : Optional[Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[str] = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def lowerCAmelCase__ ( self : Any , snake_case_ : Any=False ): if class_cond: UpperCamelCase_: Optional[int] = self.dummy_cond_unet else: UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler UpperCamelCase_: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: Tuple = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self : Dict , snake_case_ : str , snake_case_ : str=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: List[Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: int = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Optional[Any] = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [22, 0], """generator""": generator, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: List[Any] = self.get_dummy_components() UpperCamelCase_: int = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Any = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[Any] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: Any = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: Tuple = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Optional[Any] = self.get_dummy_components(class_cond=snake_case_ ) UpperCamelCase_: str = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Optional[int] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Any = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: Tuple = 0 UpperCamelCase_: List[str] = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: str = self.get_dummy_components() UpperCamelCase_: Dict = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Dict = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[int] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: str = 1 UpperCamelCase_: int = None UpperCamelCase_: Optional[Any] = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Tuple = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: str = self.get_dummy_components(class_cond=snake_case_ ) UpperCamelCase_: Optional[int] = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Optional[int] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[Any] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: List[str] = 1 UpperCamelCase_: List[Any] = None UpperCamelCase_: Any = 0 UpperCamelCase_: Union[str, Any] = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Any = image[0, -3:, -3:, -1] UpperCamelCase_: Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Any=0 , snake_case_ : Tuple=False , snake_case_ : Optional[Any]="cpu" , snake_case_ : str=torch.floataa , snake_case_ : str=(1, 3, 64, 64) ): UpperCamelCase_: List[Any] = torch.manual_seed(snake_case_ ) UpperCamelCase_: Dict = { """num_inference_steps""": None, """timesteps""": [22, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: UpperCamelCase_: List[str] = self.get_fixed_latents(seed=snake_case_ , device=snake_case_ , dtype=snake_case_ , shape=snake_case_ ) UpperCamelCase_: Any = latents return inputs def lowerCAmelCase__ ( self : Any , snake_case_ : Optional[int]=0 , snake_case_ : Optional[int]="cpu" , snake_case_ : Any=torch.floataa , snake_case_ : List[Any]=(1, 3, 64, 64) ): if type(snake_case_ ) == str: UpperCamelCase_: Optional[Any] = torch.device(snake_case_ ) UpperCamelCase_: Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: List[str] = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) return latents def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: List[str] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[int] = self.get_inputs() UpperCamelCase_: List[str] = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: int = image[0, -3:, -3:, -1] UpperCamelCase_: str = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: Optional[int] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = self.get_inputs() UpperCamelCase_: Optional[int] = 1 UpperCamelCase_: str = None UpperCamelCase_: List[str] = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: int = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: List[Any] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Union[str, Any] = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): UpperCamelCase_: Optional[int] = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: List[str] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): UpperCamelCase_: Tuple = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[Any] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
670
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
1
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase ) -> list[list[int]]: UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: list[int] = [] UpperCamelCase_: int = 0 UpperCamelCase_: Any = sum(lowerCamelCase ) create_state_space_tree(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return result def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> None: if sum(lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(lowerCamelCase )) < max_sum: return if sum(lowerCamelCase ) == max_sum: result.append(lowerCamelCase ) return for index in range(lowerCamelCase , len(lowerCamelCase ) ): create_state_space_tree( lowerCamelCase , lowerCamelCase , index + 1 , [*path, nums[index]] , lowerCamelCase , remaining_nums_sum - nums[index] , ) lowerCamelCase_ : Tuple = [3, 34, 4, 12, 5, 2] lowerCamelCase_ : Optional[int] = 9 lowerCamelCase_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
670
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
1
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ["""flax"""] def __init__( self : Any , *snake_case_ : Union[str, Any] , **snake_case_ : Dict ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : int , **snake_case_ : int ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""flax"""] def __init__( self : Tuple , *snake_case_ : Any , **snake_case_ : Union[str, Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : str , **snake_case_ : str ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Any , *snake_case_ : Dict , **snake_case_ : Optional[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""flax"""] def __init__( self : int , *snake_case_ : int , **snake_case_ : Optional[int] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Dict , *snake_case_ : Any , **snake_case_ : List[str] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : str , *snake_case_ : List[Any] , **snake_case_ : int ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , *snake_case_ : str , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : List[str] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : int , *snake_case_ : List[str] , **snake_case_ : List[str] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , *snake_case_ : str , **snake_case_ : Dict ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , *snake_case_ : List[Any] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Tuple = ["""flax"""] def __init__( self : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : Tuple ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : int , **snake_case_ : Union[str, Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ["""flax"""] def __init__( self : List[Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Tuple , *snake_case_ : Union[str, Any] , **snake_case_ : str ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ["""flax"""] def __init__( self : Dict , *snake_case_ : int , **snake_case_ : List[Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Tuple , *snake_case_ : str , **snake_case_ : str ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""flax"""] def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : int ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Tuple , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Dict = ["""flax"""] def __init__( self : str , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : List[str] , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : List[Any] , *snake_case_ : str , **snake_case_ : Tuple ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : Union[str, Any] , *snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : List[Any] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , *snake_case_ : str , **snake_case_ : Any ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Any = ["""flax"""] def __init__( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : Optional[Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : int , **snake_case_ : int ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : List[str] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : str , **snake_case_ : int ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ): requires_backends(cls , ["""flax"""] )
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
def A__ ( lowerCamelCase ) -> float: return 10 - x * x def A__ ( lowerCamelCase , lowerCamelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0: raise ValueError("""Wrong space!""" ) UpperCamelCase_: List[Any] = a while (b - a) >= 0.01: # Find middle point UpperCamelCase_: Tuple = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0: UpperCamelCase_: Union[str, Any] = c else: UpperCamelCase_: List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
670
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import math import sys def A__ ( lowerCamelCase ) -> int: if number != int(lowerCamelCase ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 UpperCamelCase_: List[Any] = [-1] * (number + 1) UpperCamelCase_: Optional[Any] = 0 for i in range(1 , number + 1 ): UpperCamelCase_: int = sys.maxsize UpperCamelCase_: Union[str, Any] = int(math.sqrt(lowerCamelCase ) ) for j in range(1 , root + 1 ): UpperCamelCase_: Any = 1 + answers[i - (j**2)] UpperCamelCase_: int = min(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: List[Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
670
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , snake_case_ : str , snake_case_ : int=13 , snake_case_ : str=7 , snake_case_ : Any=True , snake_case_ : List[Any]=True , snake_case_ : str=True , snake_case_ : int=True , snake_case_ : Any=99 , snake_case_ : List[Any]=64 , snake_case_ : List[str]=32 , snake_case_ : Any=5 , snake_case_ : List[str]=4 , snake_case_ : List[Any]=37 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=512 , snake_case_ : Optional[Any]=16 , snake_case_ : str=2 , snake_case_ : str=0.02 , snake_case_ : List[str]=3 , snake_case_ : List[Any]=4 , snake_case_ : Optional[int]=None , ): UpperCamelCase_: Optional[Any] = parent UpperCamelCase_: str = batch_size UpperCamelCase_: Optional[Any] = seq_length UpperCamelCase_: str = is_training UpperCamelCase_: Any = use_input_mask UpperCamelCase_: int = use_token_type_ids UpperCamelCase_: Optional[int] = use_labels UpperCamelCase_: Optional[int] = vocab_size UpperCamelCase_: List[str] = hidden_size UpperCamelCase_: Union[str, Any] = embedding_size UpperCamelCase_: Any = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: Dict = hidden_act UpperCamelCase_: List[Any] = hidden_dropout_prob UpperCamelCase_: Optional[int] = attention_probs_dropout_prob UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[Any] = type_vocab_size UpperCamelCase_: List[Any] = type_sequence_label_size UpperCamelCase_: Dict = initializer_range UpperCamelCase_: int = num_labels UpperCamelCase_: Tuple = num_choices UpperCamelCase_: List[Any] = scope def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = None if self.use_input_mask: UpperCamelCase_: Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: int = None if self.use_token_type_ids: UpperCamelCase_: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_: Any = None UpperCamelCase_: Dict = None UpperCamelCase_: List[str] = None if self.use_labels: UpperCamelCase_: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: str = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Tuple ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Optional[Any] ): UpperCamelCase_: Optional[Any] = MegatronBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase_: Optional[int] = model(snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase_: Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Optional[Any] = MegatronBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[int] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[Any] ): UpperCamelCase_: List[str] = MegatronBertForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): UpperCamelCase_: Tuple = MegatronBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: int = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase__ ( self : str , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : List[str] ): UpperCamelCase_: List[Any] = MegatronBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : Optional[int] ): UpperCamelCase_: List[Any] = MegatronBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: List[str] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : Any , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: List[Any] = self.num_labels UpperCamelCase_: List[Any] = MegatronBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: int = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : str , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any ): UpperCamelCase_: Optional[Any] = self.num_labels UpperCamelCase_: Any = MegatronBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : str ): UpperCamelCase_: Tuple = self.num_choices UpperCamelCase_: Any = MegatronBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: int = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ): List[str] = config_and_inputs UpperCamelCase_: Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase : int = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : int = True # test_resize_embeddings = False __UpperCamelCase : str = False def lowerCAmelCase__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Any=False ): UpperCamelCase_: int = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): UpperCamelCase_: str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) UpperCamelCase_: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Dict = MegatronBertModelTester(self ) UpperCamelCase_: int = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case_ ) def A__ ( lowerCamelCase ) -> List[Any]: return torch.tensor( lowerCamelCase , dtype=torch.long , device=lowerCamelCase , ) lowerCamelCase_ : str = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: UpperCamelCase_: Optional[int] = os.path.join(os.environ["""MYDIR"""] , snake_case_ ) UpperCamelCase_: Tuple = MegatronBertModel.from_pretrained(snake_case_ ) model.to(snake_case_ ) model.half() UpperCamelCase_: Optional[int] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCamelCase_: Optional[int] = model(snake_case_ )[0] UpperCamelCase_: Tuple = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , snake_case_ ) UpperCamelCase_: Optional[int] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): UpperCamelCase_: Optional[Any] = output[0, ii, jj] UpperCamelCase_: Dict = expected[3 * ii + jj] UpperCamelCase_: Optional[int] = """ii={} jj={} a={} b={}""".format(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertTrue(math.isclose(snake_case_ , snake_case_ , rel_tol=snake_case_ , abs_tol=snake_case_ ) , msg=snake_case_ )
670
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
1
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F'''{i}\t\t{d}''' ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: for j in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: str = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> list[float]: UpperCamelCase_: str = [float("""inf""" )] * vertex_count UpperCamelCase_: Union[str, Any] = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: str = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: UpperCamelCase_: Tuple = distance[u] + w UpperCamelCase_: Optional[Any] = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : int = int(input("""Enter number of vertices: """).strip()) lowerCamelCase_ : int = int(input("""Enter number of edges: """).strip()) lowerCamelCase_ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) lowerCamelCase_ : Dict = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) lowerCamelCase_ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} lowerCamelCase_ : Optional[Any] = int(input("""\nEnter shortest path source:""").strip()) lowerCamelCase_ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
import math def A__ ( lowerCamelCase , lowerCamelCase ) -> int: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__A ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCamelCase_ : List[Any] = """Enter the base and the power separated by a comma: """ lowerCamelCase_ , lowerCamelCase_ : str = map(int, input(prompt).split(""",""")) lowerCamelCase_ , lowerCamelCase_ : str = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowerCamelCase_ : List[Any] = res(xa, ya) lowerCamelCase_ : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Any = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class _UpperCamelCase ( snake_case__ ): '''simple docstring''' __UpperCamelCase : str = """openai-gpt""" __UpperCamelCase : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int] , snake_case_ : List[str]=4_0478 , snake_case_ : Dict=512 , snake_case_ : Optional[int]=768 , snake_case_ : Optional[Any]=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : int=0.1 , snake_case_ : Dict=0.1 , snake_case_ : List[Any]=1e-5 , snake_case_ : List[str]=0.02 , snake_case_ : Dict="cls_index" , snake_case_ : Optional[Any]=True , snake_case_ : Optional[int]=None , snake_case_ : Any=True , snake_case_ : Dict=0.1 , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Optional[int] = n_positions UpperCamelCase_: Dict = n_embd UpperCamelCase_: Any = n_layer UpperCamelCase_: Optional[int] = n_head UpperCamelCase_: Optional[int] = afn UpperCamelCase_: int = resid_pdrop UpperCamelCase_: Tuple = embd_pdrop UpperCamelCase_: Any = attn_pdrop UpperCamelCase_: List[str] = layer_norm_epsilon UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: Optional[Any] = summary_type UpperCamelCase_: Tuple = summary_use_proj UpperCamelCase_: Dict = summary_activation UpperCamelCase_: List[Any] = summary_first_dropout UpperCamelCase_: Dict = summary_proj_to_labels super().__init__(**UpperCAmelCase_ )
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
from manim import * class _UpperCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(6 )] UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: int = VGroup(*A_ ).arrange(A_ , buff=0 ) UpperCamelCase_: Optional[Any] = VGroup(*A_ ).arrange(A_ , buff=0 ) UpperCamelCase_: str = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) UpperCamelCase_: Any = Text("""CPU""" , font_size=24 ) UpperCamelCase_: Any = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) UpperCamelCase_: List[str] = [mem.copy() for i in range(4 )] UpperCamelCase_: Dict = VGroup(*A_ ).arrange(A_ , buff=0 ) UpperCamelCase_: Union[str, Any] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) UpperCamelCase_: List[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: str = VGroup(*A_ ).arrange(A_ , buff=0 ) UpperCamelCase_: Dict = Text("""Model""" , font_size=24 ) UpperCamelCase_: Union[str, Any] = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) UpperCamelCase_: Any = [] for i, rect in enumerate(A_ ): rect.set_stroke(A_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCamelCase_: Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=A_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=A_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=A_ , buff=0.0 ) self.add(A_ ) cpu_targs.append(A_ ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: int = VGroup(*A_ ).arrange(A_ , buff=0 ) UpperCamelCase_: List[Any] = Text("""Loaded Checkpoint""" , font_size=24 ) UpperCamelCase_: Union[str, Any] = Group(A_ , A_ ).arrange(A_ , aligned_edge=A_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCamelCase_: int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: int = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) UpperCamelCase_: List[Any] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCamelCase_: List[str] = MarkupText( f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) , Write(A_ ) ) self.play(Write(A_ , run_time=1 ) , Create(A_ , run_time=1 ) ) UpperCamelCase_: Dict = [] UpperCamelCase_: List[Any] = [] for i, rect in enumerate(A_ ): UpperCamelCase_: Union[str, Any] = fill.copy().set_fill(A_ , opacity=0.7 ) target.move_to(A_ ) first_animations.append(GrowFromCenter(A_ , run_time=1 ) ) UpperCamelCase_: List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(A_ , run_time=1.5 ) ) self.play(*A_ ) self.play(*A_ ) self.wait()
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
import math def A__ ( lowerCamelCase , lowerCamelCase ) -> float: if ( not isinstance(_lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def A__ ( lowerCamelCase , lowerCamelCase ) -> float: if ( not isinstance(_lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _UpperCamelCase ( lowercase__ ): '''simple docstring''' __UpperCamelCase : Dict = 42 __UpperCamelCase : Any = 42 __UpperCamelCase : List[str] = None class _UpperCamelCase ( lowercase__ , lowercase__ ): '''simple docstring''' __UpperCamelCase : int = 2 @register_to_config def __init__( self : List[str] , snake_case_ : float = 0.02 , snake_case_ : float = 100 , snake_case_ : float = 1.007 , snake_case_ : float = 80 , snake_case_ : float = 0.05 , snake_case_ : float = 50 , ): UpperCamelCase_: List[str] = sigma_max # setable values UpperCamelCase_: int = None UpperCamelCase_: np.IntTensor = None UpperCamelCase_: torch.FloatTensor = None # sigma(t_i) def lowerCAmelCase__ ( self : Any , snake_case_ : torch.FloatTensor , snake_case_ : Optional[int] = None ): return sample def lowerCAmelCase__ ( self : str , snake_case_ : int , snake_case_ : Union[str, torch.device] = None ): UpperCamelCase_: Tuple = num_inference_steps UpperCamelCase_: int = np.arange(0 , self.num_inference_steps )[::-1].copy() UpperCamelCase_: Union[str, Any] = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) UpperCamelCase_: Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] UpperCamelCase_: Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.floataa , device=__lowerCamelCase ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : torch.FloatTensor , snake_case_ : float , snake_case_ : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase_: Dict = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase_: Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase_: Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=__lowerCamelCase ).to(sample.device ) UpperCamelCase_: str = sigma + gamma * sigma UpperCamelCase_: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : torch.FloatTensor , snake_case_ : float , snake_case_ : float , snake_case_ : torch.FloatTensor , snake_case_ : bool = True , ): UpperCamelCase_: str = sample_hat + sigma_hat * model_output UpperCamelCase_: Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase_: List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : torch.FloatTensor , snake_case_ : float , snake_case_ : float , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : bool = True , ): UpperCamelCase_: Any = sample_prev + sigma_prev * model_output UpperCamelCase_: Any = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase_: List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Dict ): raise NotImplementedError()
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
from torch import nn class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , snake_case_ : Tuple , snake_case_ : Optional[int] ): super().__init__() UpperCamelCase_: Dict = class_size UpperCamelCase_: Tuple = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCamelCase_: Dict = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : Union[str, Any] ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) UpperCamelCase_: int = self.mlp(UpperCAmelCase_ ) return logits
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase_ : Optional[int] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def A__ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None ) -> str: UpperCamelCase_: Tuple = True while ask_again: UpperCamelCase_: Optional[Any] = input(lowerCamelCase ) try: if default is not None and len(lowerCamelCase ) == 0: return default return convert_value(lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase=[] , lowerCamelCase=None , lowerCamelCase=0 ) -> Any: UpperCamelCase_: Tuple = BulletMenu(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Dict = menu.run(default_choice=lowerCamelCase ) return convert_value(lowerCamelCase ) if convert_value is not None else result def A__ ( lowerCamelCase ) -> List[str]: UpperCamelCase_: str = int(lowerCamelCase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: List[str] = int(lowerCamelCase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: List[Any] = int(lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: Union[str, Any] = int(lowerCamelCase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def A__ ( lowerCamelCase ) -> Dict: UpperCamelCase_: Dict = int(lowerCamelCase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def A__ ( lowerCamelCase ) -> str: return {"yes": True, "no": False}[value.lower()] class _UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : int ): UpperCamelCase_: str = super()._format_usage(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCamelCase_: int = usage.replace("""<command> [<args>] """ , """""" ) return usage
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = tempfile.mkdtemp() # fmt: off UpperCamelCase_: Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on UpperCamelCase_: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCamelCase_: List[Any] = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } UpperCamelCase_: Dict = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any , **snake_case_ : Any ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Any ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_: Any = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Optional[int] = self.get_image_processor() UpperCamelCase_: int = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: str = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: str = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: str = self.prepare_image_inputs() UpperCamelCase_: Any = image_processor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: Union[str, Any] = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: int = '''lower newer''' UpperCamelCase_: List[str] = processor(text=snake_case_ ) UpperCamelCase_: Tuple = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = self.get_image_processor() UpperCamelCase_: Dict = self.get_tokenizer() UpperCamelCase_: Dict = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Dict = '''lower newer''' UpperCamelCase_: List[Any] = self.prepare_image_inputs() UpperCamelCase_: Dict = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(snake_case_ ): processor() def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[str] = self.get_image_processor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: str = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Union[str, Any] = self.get_image_processor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: Tuple = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[int] = '''lower newer''' UpperCamelCase_: Dict = self.prepare_image_inputs() UpperCamelCase_: Any = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: UpperCamelCase_: Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" UpperCamelCase_: Optional[Any] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("""RGB""" ) UpperCamelCase_: Optional[int] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) UpperCamelCase_: Optional[Any] = transform(__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) return image def A__ ( lowerCamelCase ) -> Any: if "visual_encoder" in key: UpperCamelCase_: Tuple = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __lowerCAmelCase ) if "blocks" in key: UpperCamelCase_: Dict = re.sub(r"""blocks""" , """layers""" , __lowerCAmelCase ) if "attn" in key: UpperCamelCase_: List[Any] = re.sub(r"""attn""" , """self_attn""" , __lowerCAmelCase ) if "norm1" in key: UpperCamelCase_: List[Any] = re.sub(r"""norm1""" , """layer_norm1""" , __lowerCAmelCase ) if "norm2" in key: UpperCamelCase_: Dict = re.sub(r"""norm2""" , """layer_norm2""" , __lowerCAmelCase ) if "encoder.norm" in key: UpperCamelCase_: int = re.sub(r"""encoder.norm""" , """post_layernorm""" , __lowerCAmelCase ) if "encoder.patch_embed.proj" in key: UpperCamelCase_: List[str] = re.sub(r"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __lowerCAmelCase ) if "encoder.pos_embed" in key: UpperCamelCase_: List[str] = re.sub(r"""encoder.pos_embed""" , """embeddings.position_embedding""" , __lowerCAmelCase ) if "encoder.cls_token" in key: UpperCamelCase_: str = re.sub(r"""encoder.cls_token""" , """embeddings.class_embedding""" , __lowerCAmelCase ) if "self_attn" in key: UpperCamelCase_: Union[str, Any] = re.sub(r"""self_attn.proj""" , """self_attn.projection""" , __lowerCAmelCase ) return key @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase=None ) -> Tuple: if config_path is not None: UpperCamelCase_: Optional[Any] = BlipConfig.from_pretrained(__lowerCAmelCase ) else: UpperCamelCase_: Any = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) UpperCamelCase_: int = BlipForConditionalGeneration(__lowerCAmelCase ).eval() UpperCamelCase_: str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" UpperCamelCase_: str = blip_decoder(pretrained=__lowerCAmelCase , image_size=3_84 , vit="""base""" ) UpperCamelCase_: Dict = pt_model.eval() UpperCamelCase_: Union[str, Any] = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase_: Union[str, Any] = modified_state_dict.pop(__lowerCAmelCase ) UpperCamelCase_: Tuple = rename_key(__lowerCAmelCase ) UpperCamelCase_: Optional[Any] = value hf_model.load_state_dict(__lowerCAmelCase ) UpperCamelCase_: Dict = 3_84 UpperCamelCase_: Tuple = load_demo_image(image_size=__lowerCAmelCase , device="""cpu""" ) UpperCamelCase_: Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCamelCase_: Dict = tokenizer(["""a picture of"""] ).input_ids UpperCamelCase_: List[Any] = hf_model.generate(__lowerCAmelCase , __lowerCAmelCase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] UpperCamelCase_: Any = hf_model.generate(__lowerCAmelCase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCamelCase_: str = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) UpperCamelCase_: List[Any] = blip_vqa(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="""base""" ) vqa_model.eval() UpperCamelCase_: Union[str, Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase_: List[Any] = modified_state_dict.pop(__lowerCAmelCase ) UpperCamelCase_: int = rename_key(__lowerCAmelCase ) UpperCamelCase_: int = value UpperCamelCase_: Optional[Any] = BlipForQuestionAnswering(__lowerCAmelCase ) hf_vqa_model.load_state_dict(__lowerCAmelCase ) UpperCamelCase_: str = ["""How many dogs are in this image?"""] UpperCamelCase_: Union[str, Any] = tokenizer(__lowerCAmelCase , return_tensors="""pt""" ).input_ids UpperCamelCase_: Dict = hf_vqa_model.generate(__lowerCAmelCase , __lowerCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) UpperCamelCase_: Any = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" UpperCamelCase_: List[str] = blip_itm(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="""base""" ) itm_model.eval() UpperCamelCase_: Optional[int] = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase_: int = modified_state_dict.pop(__lowerCAmelCase ) UpperCamelCase_: str = rename_key(__lowerCAmelCase ) UpperCamelCase_: Dict = value UpperCamelCase_: Union[str, Any] = BlipForImageTextRetrieval(__lowerCAmelCase ) UpperCamelCase_: List[str] = ["""A picture of a woman with a dog sitting in a beach"""] UpperCamelCase_: List[Any] = tokenizer( __lowerCAmelCase , return_tensors="""pt""" , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__lowerCAmelCase ) hf_itm_model.eval() UpperCamelCase_: Union[str, Any] = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) UpperCamelCase_: Union[str, Any] = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase_ : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
from torch import nn def A__ ( lowerCamelCase ) -> List[Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
from __future__ import annotations lowerCamelCase_ : Optional[Any] = tuple[int, int, int] lowerCamelCase_ : str = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCamelCase_ : List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCamelCase_ : Union[str, Any] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowerCamelCase_ : Dict = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowerCamelCase_ : Optional[int] = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowerCamelCase_ : Any = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowerCamelCase_ : List[str] = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowerCamelCase_ : Any = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowerCamelCase_ : int = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowerCamelCase_ : Tuple = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowerCamelCase_ : str = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowerCamelCase_ : str = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if (unique_rotsel := len(set(_lowerCAmelCase ) )) < 3: UpperCamelCase_: List[str] = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_lowerCAmelCase ) # Checks if rotor positions are valid UpperCamelCase_: int = rotpos if not 0 < rotorposa <= len(_lowerCAmelCase ): UpperCamelCase_: Optional[Any] = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_lowerCAmelCase ) if not 0 < rotorposa <= len(_lowerCAmelCase ): UpperCamelCase_: Union[str, Any] = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowerCAmelCase ) if not 0 < rotorposa <= len(_lowerCAmelCase ): UpperCamelCase_: Optional[int] = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowerCAmelCase ) # Validates string and returns dict UpperCamelCase_: str = _plugboard(_lowerCAmelCase ) return rotpos, rotsel, pbdict def A__ ( lowerCamelCase ) -> List[str]: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase_: List[str] = F'''Plugboard setting isn\'t type string ({type(_lowerCAmelCase )})''' raise TypeError(_lowerCAmelCase ) elif len(_lowerCAmelCase ) % 2 != 0: UpperCamelCase_: Optional[int] = F'''Odd number of symbols ({len(_lowerCAmelCase )})''' raise Exception(_lowerCAmelCase ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique UpperCamelCase_: Union[str, Any] = set() for i in pbstring: if i not in abc: UpperCamelCase_: List[Any] = F'''\'{i}\' not in list of symbols''' raise Exception(_lowerCAmelCase ) elif i in tmppbl: UpperCamelCase_: Optional[int] = F'''Duplicate symbol ({i})''' raise Exception(_lowerCAmelCase ) else: tmppbl.add(_lowerCAmelCase ) del tmppbl # Created the dictionary UpperCamelCase_: List[Any] = {} for j in range(0 , len(_lowerCAmelCase ) - 1 , 2 ): UpperCamelCase_: List[Any] = pbstring[j + 1] UpperCamelCase_: Union[str, Any] = pbstring[j] return pb def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = (rotora, rotora, rotora) , lowerCamelCase = "" , ) -> Dict: '''simple docstring''' UpperCamelCase_: Optional[int] = text.upper() UpperCamelCase_: Union[str, Any] = _validator( _lowerCAmelCase , _lowerCAmelCase , plugb.upper() ) UpperCamelCase_: Tuple = rotor_position UpperCamelCase_: Tuple = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCamelCase_: List[Any] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCamelCase_: int = plugboard[symbol] # rotor ra -------------------------- UpperCamelCase_: int = abc.index(_lowerCAmelCase ) + rotorposa UpperCamelCase_: Dict = rotora[index % len(_lowerCAmelCase )] # rotor rb -------------------------- UpperCamelCase_: int = abc.index(_lowerCAmelCase ) + rotorposa UpperCamelCase_: Union[str, Any] = rotora[index % len(_lowerCAmelCase )] # rotor rc -------------------------- UpperCamelCase_: List[str] = abc.index(_lowerCAmelCase ) + rotorposa UpperCamelCase_: int = rotora[index % len(_lowerCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCamelCase_: List[str] = reflector[symbol] # 2nd rotors UpperCamelCase_: List[str] = abc[rotora.index(_lowerCAmelCase ) - rotorposa] UpperCamelCase_: Any = abc[rotora.index(_lowerCAmelCase ) - rotorposa] UpperCamelCase_: List[Any] = abc[rotora.index(_lowerCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCamelCase_: List[str] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowerCAmelCase ): UpperCamelCase_: List[str] = 0 rotorposa += 1 if rotorposa >= len(_lowerCAmelCase ): UpperCamelCase_: str = 0 rotorposa += 1 if rotorposa >= len(_lowerCAmelCase ): UpperCamelCase_: str = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : int = 'This is my Python script that emulates the Enigma machine from WWII.' lowerCamelCase_ : Union[str, Any] = (1, 1, 1) lowerCamelCase_ : int = 'pictures' lowerCamelCase_ : Tuple = (rotora, rotora, rotora) lowerCamelCase_ : Optional[Any] = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
def A__ ( lowerCamelCase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(__lowerCAmelCase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _UpperCamelCase ( _snake_case ): __UpperCamelCase : torch.FloatTensor __UpperCamelCase : Optional[torch.FloatTensor] = None def A__ ( lowerCamelCase , lowerCamelCase=0.999 , lowerCamelCase="cosine" , ) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCamelCase_: int = [] for i in range(__UpperCAmelCase ): UpperCamelCase_: Optional[Any] = i / num_diffusion_timesteps UpperCamelCase_: List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class _UpperCamelCase ( _snake_case , _snake_case ): @register_to_config def __init__( self : Optional[int] , snake_case_ : int = 1000 , snake_case_ : str = "fixed_small_log" , snake_case_ : bool = True , snake_case_ : Optional[float] = 1.0 , snake_case_ : str = "epsilon" , snake_case_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCamelCase_: Optional[Any] = betas_for_alpha_bar(snake_case_ ) UpperCamelCase_: Union[str, Any] = 1.0 - self.betas UpperCamelCase_: Optional[int] = torch.cumprod(self.alphas , dim=0 ) UpperCamelCase_: Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCamelCase_: Optional[Any] = 1.0 # setable values UpperCamelCase_: Optional[Any] = None UpperCamelCase_: Dict = torch.from_numpy(np.arange(0 , snake_case_ )[::-1].copy() ) UpperCamelCase_: int = variance_type def lowerCAmelCase__ ( self : List[str] , snake_case_ : torch.FloatTensor , snake_case_ : Optional[int] = None ): return sample def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int , snake_case_ : Union[str, torch.device] = None ): UpperCamelCase_: List[Any] = num_inference_steps UpperCamelCase_: Optional[int] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCamelCase_: Union[str, Any] = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCamelCase_: Optional[int] = torch.from_numpy(snake_case_ ).to(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Any , snake_case_ : List[str]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=None ): if prev_timestep is None: UpperCamelCase_: List[Any] = t - 1 UpperCamelCase_: List[str] = self.alphas_cumprod[t] UpperCamelCase_: Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase_: Optional[int] = 1 - alpha_prod_t UpperCamelCase_: Optional[int] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase_: Dict = self.betas[t] else: UpperCamelCase_: List[str] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase_: Any = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCamelCase_: int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCamelCase_: Union[str, Any] = torch.log(torch.clamp(snake_case_ , min=1e-20 ) ) UpperCamelCase_: Tuple = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCamelCase_: Any = variance.log() UpperCamelCase_: int = beta.log() UpperCamelCase_: str = (predicted_variance + 1) / 2 UpperCamelCase_: List[str] = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self : List[Any] , snake_case_ : torch.FloatTensor , snake_case_ : int , snake_case_ : torch.FloatTensor , snake_case_ : Optional[int] = None , snake_case_ : List[str]=None , snake_case_ : bool = True , ): UpperCamelCase_: List[str] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCamelCase_, UpperCamelCase_: List[str] = torch.split(snake_case_ , sample.shape[1] , dim=1 ) else: UpperCamelCase_: Union[str, Any] = None # 1. compute alphas, betas if prev_timestep is None: UpperCamelCase_: List[Any] = t - 1 UpperCamelCase_: Optional[int] = self.alphas_cumprod[t] UpperCamelCase_: List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase_: Optional[Any] = 1 - alpha_prod_t UpperCamelCase_: List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase_: Union[str, Any] = self.betas[t] UpperCamelCase_: str = self.alphas[t] else: UpperCamelCase_: Dict = 1 - alpha_prod_t / alpha_prod_t_prev UpperCamelCase_: Optional[int] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase_: Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase_: List[str] = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase_: str = torch.clamp( snake_case_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase_: Optional[int] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCamelCase_: int = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase_: Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase_: Union[str, Any] = 0 if t > 0: UpperCamelCase_: Optional[int] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case_ , device=model_output.device ) UpperCamelCase_: Optional[int] = self._get_variance( snake_case_ , predicted_variance=snake_case_ , prev_timestep=snake_case_ , ) if self.variance_type == "fixed_small_log": UpperCamelCase_: Optional[int] = variance elif self.variance_type == "learned_range": UpperCamelCase_: int = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) UpperCamelCase_: Any = variance * variance_noise UpperCamelCase_: Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case_ , pred_original_sample=snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : torch.IntTensor , ): UpperCamelCase_: int = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCamelCase_: int = timesteps.to(original_samples.device ) UpperCamelCase_: int = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase_: Optional[int] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase_: Optional[int] = sqrt_alpha_prod.unsqueeze(-1 ) UpperCamelCase_: Dict = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase_: Optional[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase_: Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCamelCase_: Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import os from datetime import datetime as dt from github import Github lowerCamelCase_ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A__ ( ) -> List[Any]: UpperCamelCase_: Optional[Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCamelCase_: Any = g.get_repo("""huggingface/diffusers""" ) UpperCamelCase_: Any = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCamelCase_: str = sorted(issue.get_comments() , key=lambda lowerCamelCase : i.created_at , reverse=lowerCAmelCase__ ) UpperCamelCase_: Union[str, Any] = comments[0] if len(lowerCAmelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
import warnings from .generation import TFGenerationMixin class _UpperCamelCase ( __lowerCAmelCase ): '''simple docstring''' warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , __lowerCAmelCase , )
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowerCamelCase ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: if index == len(_lowerCamelCase ): return True # Recursive Step for i in range(_lowerCamelCase ): if valid_coloring(graph[index] , _lowerCamelCase , _lowerCamelCase ): # Color current vertex UpperCamelCase_: Any = i # Validate coloring if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 ): return True # Backtrack UpperCamelCase_: int = -1 return False def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: int = [-1] * len(_lowerCamelCase ) if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 0 ): return colored_vertices return []
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase_: int = mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: UpperCamelCase_: Any = max( mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , j - wt[i - 1] ) + val[i - 1] , ) UpperCamelCase_: List[Any] = val return f[i][j] def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: str = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCamelCase_: Union[str, Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCamelCase_: Any = dp[i - 1][w_] return dp[n][w_], dp def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: if not (isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(_lowerCamelCase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) UpperCamelCase_: List[str] = len(_lowerCamelCase ) if num_items != len(_lowerCamelCase ): UpperCamelCase_: List[Any] = ( "The number of weights must be the same as the number of values.\n" F'''But got {num_items} weights and {len(_lowerCamelCase )} values''' ) raise ValueError(_lowerCamelCase ) for i in range(_lowerCamelCase ): if not isinstance(wt[i] , _lowerCamelCase ): UpperCamelCase_: str = ( "All weights must be integers but got weight of " F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = knapsack(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: set = set() _construct_solution(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return optimal_val, example_optional_set def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowerCamelCase , _lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) else: optimal_set.add(_lowerCamelCase ) _construct_solution(_lowerCamelCase , _lowerCamelCase , i - 1 , j - wt[i - 1] , _lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = [3, 2, 4, 4] lowerCamelCase_ : List[Any] = [4, 3, 2, 3] lowerCamelCase_ : Tuple = 4 lowerCamelCase_ : Optional[int] = 6 lowerCamelCase_ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase_ , lowerCamelCase_ : Tuple = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase_ , lowerCamelCase_ : str = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , snake_case_ : Dict , snake_case_ : List[Any]=7 , snake_case_ : str=3 , snake_case_ : Optional[Any]=30 , snake_case_ : Dict=400 , snake_case_ : Any=True , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=True , snake_case_ : List[Any]=[0.5, 0.5, 0.5] , snake_case_ : List[str]=[0.5, 0.5, 0.5] , snake_case_ : List[Any]=True , snake_case_ : Tuple=1 / 255 , snake_case_ : Any=True , ): UpperCamelCase_: Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCamelCase_: Tuple = parent UpperCamelCase_: Union[str, Any] = batch_size UpperCamelCase_: str = num_channels UpperCamelCase_: Union[str, Any] = min_resolution UpperCamelCase_: List[Any] = max_resolution UpperCamelCase_: List[Any] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = do_normalize UpperCamelCase_: Dict = image_mean UpperCamelCase_: List[str] = image_std UpperCamelCase_: Optional[Any] = do_rescale UpperCamelCase_: Optional[Any] = rescale_factor UpperCamelCase_: Optional[int] = do_pad def lowerCAmelCase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=False ): if not batched: UpperCamelCase_: List[Any] = image_inputs[0] if isinstance(lowerCamelCase_ , Image.Image ): UpperCamelCase_: Any = image.size else: UpperCamelCase_: List[str] = image.shape[1], image.shape[2] if w < h: UpperCamelCase_: str = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_: Optional[int] = self.size['''shortest_edge'''] elif w > h: UpperCamelCase_: Tuple = self.size['''shortest_edge'''] UpperCamelCase_: Union[str, Any] = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_: Optional[Any] = self.size['''shortest_edge'''] UpperCamelCase_: Union[str, Any] = self.size['''shortest_edge'''] else: UpperCamelCase_: Dict = [] for image in image_inputs: UpperCamelCase_: Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_: Union[str, Any] = max(lowerCamelCase_ , key=lambda snake_case_ : item[0] )[0] UpperCamelCase_: List[str] = max(lowerCamelCase_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: List[str] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase_ ) UpperCamelCase_: List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] ): pass def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_: Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase_: str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_: List[str] = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_: Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) UpperCamelCase_: List[Any] = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase_: List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_: str = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_: int = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values UpperCamelCase_: Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase_: str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_: Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_: str = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values UpperCamelCase_: Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_: Optional[int] = json.loads(f.read() ) UpperCamelCase_: int = {'''image_id''': 3_9769, '''annotations''': target} # encode them UpperCamelCase_: Any = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCamelCase_: List[str] = image_processing(images=lowerCamelCase_ , annotations=lowerCamelCase_ , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_: List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase_ ) UpperCamelCase_: Any = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase_: Dict = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase_ ) ) # verify boxes UpperCamelCase_: List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase_ ) UpperCamelCase_: Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase_: Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase_ ) ) # verify is_crowd UpperCamelCase_: Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase_ ) ) # verify class_labels UpperCamelCase_: List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase_ ) ) # verify orig_size UpperCamelCase_: int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase_ ) ) # verify size UpperCamelCase_: List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase_ ) ) @slow def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_: List[Any] = json.loads(f.read() ) UpperCamelCase_: List[str] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} UpperCamelCase_: List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_: int = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_: str = image_processing(images=lowerCamelCase_ , annotations=lowerCamelCase_ , masks_path=lowerCamelCase_ , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_: Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase_ ) UpperCamelCase_: Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase_: Tuple = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase_ ) ) # verify boxes UpperCamelCase_: Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase_ ) UpperCamelCase_: Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase_: Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase_ ) ) # verify is_crowd UpperCamelCase_: Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase_ ) ) # verify class_labels UpperCamelCase_: Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase_ ) ) # verify masks UpperCamelCase_: Union[str, Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCamelCase_ ) # verify orig_size UpperCamelCase_: List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase_ ) ) # verify size UpperCamelCase_: List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase_ ) )
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Tuple = '''Hello, World!''' lowerCamelCase_ : Optional[Any] = '''en_XX''' def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: Dict = Path("""data_bin""" ) UpperCamelCase_: Tuple = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_A ).parent ) , checkpoint_file=Path(_A ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_A ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_A ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_A ) UpperCamelCase_: str = xmod.model.encoder.sentence_encoder UpperCamelCase_: List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCamelCase_: Dict = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _A ) UpperCamelCase_: str = XmodForSequenceClassification(_A ) if classification_head else XmodForMaskedLM(_A ) model.eval() # Now let's copy all the weights. # Embeddings UpperCamelCase_: Dict = xmod_sent_encoder.embed_tokens.weight UpperCamelCase_: Tuple = xmod_sent_encoder.embed_positions.weight UpperCamelCase_: Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCamelCase_: int = xmod_sent_encoder.layernorm_embedding.weight UpperCamelCase_: Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCamelCase_: Tuple = model.roberta.encoder.layer[i] UpperCamelCase_: Optional[int] = xmod_sent_encoder.layers[i] # self attention UpperCamelCase_: Union[str, Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCamelCase_: List[str] = xmod_layer.self_attn.q_proj.weight UpperCamelCase_: Dict = xmod_layer.self_attn.q_proj.bias UpperCamelCase_: int = xmod_layer.self_attn.k_proj.weight UpperCamelCase_: str = xmod_layer.self_attn.k_proj.bias UpperCamelCase_: str = xmod_layer.self_attn.v_proj.weight UpperCamelCase_: int = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCamelCase_: str = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCamelCase_: Any = xmod_layer.self_attn.out_proj.weight UpperCamelCase_: Optional[Any] = xmod_layer.self_attn.out_proj.bias UpperCamelCase_: Optional[int] = xmod_layer.self_attn_layer_norm.weight UpperCamelCase_: List[str] = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCamelCase_: Union[str, Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCamelCase_: str = xmod_layer.fca.weight UpperCamelCase_: Tuple = xmod_layer.fca.bias # output UpperCamelCase_: str = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCamelCase_: Tuple = xmod_layer.fca.weight UpperCamelCase_: Any = xmod_layer.fca.bias UpperCamelCase_: str = xmod_layer.final_layer_norm.weight UpperCamelCase_: Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCamelCase_: Tuple = xmod_layer.adapter_layer_norm.weight UpperCamelCase_: List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCamelCase_: Optional[int] = bert_output.adapter_modules[lang_code] UpperCamelCase_: Optional[int] = xmod_layer.adapter_modules[lang_code] UpperCamelCase_: Tuple = from_adapter.fca.weight UpperCamelCase_: str = from_adapter.fca.bias UpperCamelCase_: Tuple = from_adapter.fca.weight UpperCamelCase_: Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCamelCase_: Optional[int] = xmod_sent_encoder.layer_norm.weight UpperCamelCase_: Dict = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCamelCase_: int = xmod.model.classification_heads["""mnli"""].dense.weight UpperCamelCase_: Union[str, Any] = xmod.model.classification_heads["""mnli"""].dense.bias UpperCamelCase_: int = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCamelCase_: List[Any] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCamelCase_: Any = xmod.model.encoder.lm_head.dense.weight UpperCamelCase_: Optional[Any] = xmod.model.encoder.lm_head.dense.bias UpperCamelCase_: Any = xmod.model.encoder.lm_head.layer_norm.weight UpperCamelCase_: Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias UpperCamelCase_: List[Any] = xmod.model.encoder.lm_head.weight UpperCamelCase_: List[str] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCamelCase_: int = xmod.encode(_A ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_A ) UpperCamelCase_: Tuple = model(_A )[0] if classification_head: UpperCamelCase_: int = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_A ) ) else: UpperCamelCase_: Dict = xmod.model(_A , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCamelCase_: Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCamelCase_: int = torch.allclose(_A , _A , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_A ).mkdir(parents=_A , exist_ok=_A ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) if __name__ == "__main__": lowerCamelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCamelCase_ : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]: UpperCamelCase_: List[Any] = torch.load(lowerCamelCase , map_location="""cpu""" ) UpperCamelCase_: List[Any] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository UpperCamelCase_: Union[str, Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase_: Optional[int] = v else: UpperCamelCase_: List[str] = v UpperCamelCase_: Optional[Any] = chkpt["""params"""] UpperCamelCase_: Union[str, Any] = {n: v for n, v in config.items() if not isinstance(lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase_: Union[str, Any] = chkpt["""dico_word2id"""] UpperCamelCase_: Optional[int] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase_: Union[str, Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase_: str = pytorch_dump_folder_path + """/""" + CONFIG_NAME UpperCamelCase_: Union[str, Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(lowerCamelCase , lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Optional[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
from typing import List from .keymap import KEYMAP, get_character def A__ ( lowerCamelCase ) -> str: def decorator(lowerCamelCase ): UpperCamelCase_: Dict = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += [key] setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator def A__ ( *lowerCamelCase ) -> str: def decorator(lowerCamelCase ): UpperCamelCase_: Optional[int] = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += keys setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator class _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __new__( cls : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[str] ): UpperCamelCase_: Any = super().__new__(cls , _lowercase , _lowercase , _lowercase ) if not hasattr(_lowercase , """key_handler""" ): setattr(_lowercase , """key_handler""" , {} ) setattr(_lowercase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): UpperCamelCase_: List[str] = getattr(_lowercase , """handle_key""" , [] ) for key in handled_keys: UpperCamelCase_: List[str] = value return new_cls @staticmethod def lowerCAmelCase__ ( cls : List[Any] ): UpperCamelCase_: Optional[int] = get_character() if char != KEYMAP["undefined"]: UpperCamelCase_: int = ord(_lowercase ) UpperCamelCase_: Tuple = cls.key_handler.get(_lowercase ) if handler: UpperCamelCase_: Union[str, Any] = char return handler(cls ) else: return None def A__ ( cls ) -> List[str]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
def A__ ( lowerCamelCase ) -> List[str]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) UpperCamelCase_: Optional[int] = [True] * (num + 1) UpperCamelCase_: int = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case__ ): UpperCamelCase_: List[str] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[str] = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Dict = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } UpperCamelCase_: List[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case_ ) , x.transpose() ) ) UpperCamelCase_: Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Optional[int] = np.random.randn(3 , 4 ) UpperCamelCase_: str = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) ) UpperCamelCase_: int = np.random.randn(3 , 4 , 5 ) UpperCamelCase_: str = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = np.random.randn(3 , 4 ) UpperCamelCase_: Optional[Any] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) ) UpperCamelCase_: int = np.random.randn(3 , 4 , 5 ) UpperCamelCase_: List[str] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = np.random.randn(3 , 4 ) UpperCamelCase_: str = jnp.array(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , np.asarray(transpose(snake_case_ ) ) ) ) UpperCamelCase_: Tuple = np.random.randn(3 , 4 , 5 ) UpperCamelCase_: Optional[int] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case_ , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.reshape(snake_case_ , (4, 3) ) ) ) UpperCamelCase_: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.reshape(snake_case_ , (12, 5) ) ) ) @require_torch def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: List[Any] = np.random.randn(3 , 4 ) UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) ) UpperCamelCase_: Tuple = np.random.randn(3 , 4 , 5 ) UpperCamelCase_: List[Any] = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Tuple = np.random.randn(3 , 4 ) UpperCamelCase_: Optional[int] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) ) UpperCamelCase_: str = np.random.randn(3 , 4 , 5 ) UpperCamelCase_: str = tf.constant(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = np.random.randn(3 , 4 ) UpperCamelCase_: Optional[int] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.asarray(reshape(snake_case_ , (4, 3) ) ) ) ) UpperCamelCase_: List[str] = np.random.randn(3 , 4 , 5 ) UpperCamelCase_: int = jnp.array(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.asarray(reshape(snake_case_ , (12, 5) ) ) ) ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Any = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.squeeze(snake_case_ ) ) ) UpperCamelCase_: str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.squeeze(snake_case_ , axis=2 ) ) ) @require_torch def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[Any] = np.random.randn(1 , 3 , 4 ) UpperCamelCase_: Tuple = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) ) UpperCamelCase_: int = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_: Tuple = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: str = np.random.randn(1 , 3 , 4 ) UpperCamelCase_: Optional[int] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) ) UpperCamelCase_: Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_: List[Any] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[str] = np.random.randn(1 , 3 , 4 ) UpperCamelCase_: List[Any] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.asarray(squeeze(snake_case_ ) ) ) ) UpperCamelCase_: Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_: Optional[int] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.asarray(squeeze(snake_case_ , axis=2 ) ) ) ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.expand_dims(snake_case_ , axis=1 ) ) ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Any = np.random.randn(3 , 4 ) UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = np.random.randn(3 , 4 ) UpperCamelCase_: List[Any] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Dict = np.random.randn(3 , 4 ) UpperCamelCase_: Dict = jnp.array(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.asarray(expand_dims(snake_case_ , axis=1 ) ) ) )
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
from __future__ import annotations from decimal import Decimal from numpy import array def A__ ( lowerCamelCase ) -> Tuple: UpperCamelCase_: Dict = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCamelCase_: str = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements UpperCamelCase_: str = [[0.0, 0.0], [0.0, 0.0]] UpperCamelCase_, UpperCamelCase_: Optional[int] = matrix[1][1], matrix[0][0] UpperCamelCase_, UpperCamelCase_: List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCamelCase_: Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix UpperCamelCase_: Union[str, Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCamelCase_: Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCamelCase_: Dict = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCamelCase_: Tuple = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCamelCase_: str = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCamelCase_: Dict = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCamelCase_: List[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCamelCase_: str = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCamelCase_: Optional[int] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCamelCase_: Dict = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCamelCase_: List[Any] = array(lowerCamelCase ) for i in range(3 ): for j in range(3 ): UpperCamelCase_: Any = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCamelCase_: List[Any] = array(lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = None __UpperCamelCase : Optional[int] = BloomTokenizerFast __UpperCamelCase : Optional[int] = BloomTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : int = False __UpperCamelCase : List[str] = """tokenizer_file""" __UpperCamelCase : Optional[Any] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowerCAmelCase__ ( self : Tuple ): super().setUp() UpperCamelCase_: Union[str, Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : str , **snake_case_ : Dict ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: int = self.get_rust_tokenizer() UpperCamelCase_: List[str] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] UpperCamelCase_: Optional[int] = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] UpperCamelCase_: Optional[int] = tokenizer.batch_encode_plus(snake_case_ )["input_ids"] self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[Any] = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : List[str]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: List[Any] = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input UpperCamelCase_: Dict = "This is a simple input" UpperCamelCase_: Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] UpperCamelCase_: List[str] = ("This is a simple input", "This is a pair") UpperCamelCase_: Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(snake_case_ , max_length=snake_case_ ) tokenizer_r.encode_plus(snake_case_ , max_length=snake_case_ ) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_ ) tokenizer_r.encode(snake_case_ , max_length=snake_case_ ) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) UpperCamelCase_: str = None # Hotfixing padding = None self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[Any] = self.get_rust_tokenizer() UpperCamelCase_: List[str] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=snake_case_ ) UpperCamelCase_: Optional[Any] = next(iter(snake_case_ ) )["premise"] # pick up one data UpperCamelCase_: Any = list(sample_data.values() ) UpperCamelCase_: List[str] = list(map(tokenizer.encode , snake_case_ ) ) UpperCamelCase_: Optional[Any] = [tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) for x in output_tokens] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
def A__ ( lowerCamelCase ) -> Any: def merge(lowerCamelCase , lowerCamelCase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCamelCase ) <= 1: return collection UpperCamelCase_: Dict = len(lowerCamelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : int = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase_ : List[str] = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case : Union[str, Any] = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : List[str] = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _UpperCamelCase : '''simple docstring''' def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : int ): return None class _UpperCamelCase : '''simple docstring''' def lowerCAmelCase__ ( self : int , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): return None class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCAmelCase__ ( self : Optional[int] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase_ , """tf""" , 12 , **lowercase_ ) @require_torch @slow def lowerCAmelCase__ ( self : Tuple ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase_ , """pt""" , 12 , **lowercase_ ) @require_torch @slow def lowerCAmelCase__ ( self : Optional[int] ): from transformers import BertModel UpperCamelCase_: str = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(lowercase_ ) ) vocab_file.flush() UpperCamelCase_: str = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCamelCase_: Any = BertModel(BertConfig(vocab_size=len(lowercase_ ) ) ) model.save_pretrained(lowercase_ ) self._test_export(lowercase_ , """pt""" , 12 , lowercase_ ) @require_tf @slow def lowerCAmelCase__ ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_: Optional[int] = self._test_export(lowercase_ , """tf""" , 12 , **lowercase_ ) UpperCamelCase_: Dict = quantize(Path(lowercase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase_ ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def lowerCAmelCase__ ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_: Union[str, Any] = self._test_export(lowercase_ , """pt""" , 12 , **lowercase_ ) UpperCamelCase_: List[Any] = quantize(lowercase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase_ ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def lowerCAmelCase__ ( self : Dict , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : List[str]=None , **snake_case_ : Tuple ): try: # Compute path with TemporaryDirectory() as tempdir: UpperCamelCase_: List[str] = Path(lowercase_ ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) return path except Exception as e: self.fail(lowercase_ ) @require_torch @require_tokenizers @slow def lowerCAmelCase__ ( self : int ): from transformers import BertModel UpperCamelCase_: List[str] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) UpperCamelCase_: Any = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(lowercase_ , lowercase_ , """pt""" ) @require_tf @require_tokenizers @slow def lowerCAmelCase__ ( self : Tuple ): from transformers import TFBertModel UpperCamelCase_: Any = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) UpperCamelCase_: str = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(lowercase_ , lowercase_ , """tf""" ) def lowerCAmelCase__ ( self : Any , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): UpperCamelCase_: Optional[int] = FeatureExtractionPipeline(lowercase_ , lowercase_ ) UpperCamelCase_: List[Any] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] UpperCamelCase_: Any = infer_shapes(lowercase_ , lowercase_ ) # Assert all variables are present self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowercase_ ) self.assertSequenceEqual(variable_names[3:] , lowercase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = ["""input_ids""", """attention_mask""", """token_type_ids"""] UpperCamelCase_: List[Any] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} UpperCamelCase_: Optional[Any] = ensure_valid_input(FuncContiguousArgs() , lowercase_ , lowercase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowercase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowercase_ ) , set(lowercase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowercase_ , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCamelCase_: List[Any] = ensure_valid_input(FuncNonContiguousArgs() , lowercase_ , lowercase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowercase_ ) , 1 ) self.assertEqual(len(lowercase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Tuple = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
import math def A__ ( lowerCamelCase , lowerCamelCase ) -> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_lowercase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _UpperCamelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase : Dict = """swin""" __UpperCamelCase : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , snake_case_ : Union[str, Any]=224 , snake_case_ : str=4 , snake_case_ : Union[str, Any]=3 , snake_case_ : Union[str, Any]=96 , snake_case_ : Optional[int]=[2, 2, 6, 2] , snake_case_ : Any=[3, 6, 12, 24] , snake_case_ : Dict=7 , snake_case_ : Optional[Any]=4.0 , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=0.0 , snake_case_ : List[Any]=0.0 , snake_case_ : int=0.1 , snake_case_ : Any="gelu" , snake_case_ : Optional[Any]=False , snake_case_ : Optional[int]=0.02 , snake_case_ : Dict=1e-5 , snake_case_ : Optional[int]=32 , snake_case_ : int=None , snake_case_ : Any=None , **snake_case_ : Optional[int] , ): super().__init__(**__lowerCAmelCase ) UpperCamelCase_: Tuple = image_size UpperCamelCase_: Optional[Any] = patch_size UpperCamelCase_: List[Any] = num_channels UpperCamelCase_: Union[str, Any] = embed_dim UpperCamelCase_: Union[str, Any] = depths UpperCamelCase_: Dict = len(__lowerCAmelCase ) UpperCamelCase_: Union[str, Any] = num_heads UpperCamelCase_: List[Any] = window_size UpperCamelCase_: Optional[int] = mlp_ratio UpperCamelCase_: Any = qkv_bias UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: str = drop_path_rate UpperCamelCase_: Optional[Any] = hidden_act UpperCamelCase_: Optional[int] = use_absolute_embeddings UpperCamelCase_: int = layer_norm_eps UpperCamelCase_: str = initializer_range UpperCamelCase_: Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase_: Union[str, Any] = int(embed_dim * 2 ** (len(__lowerCAmelCase ) - 1) ) UpperCamelCase_: str = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__lowerCAmelCase ) + 1 )] UpperCamelCase_, UpperCamelCase_: Optional[Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names ) class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase : List[Any] = version.parse("""1.11""" ) @property def lowerCAmelCase__ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self : Optional[int] ): return 1e-4
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , """width_multiplier""" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , snake_case_ : Optional[int] , snake_case_ : Optional[int]=13 , snake_case_ : Dict=64 , snake_case_ : Union[str, Any]=2 , snake_case_ : Any=3 , snake_case_ : Any="swish" , snake_case_ : List[Any]=3 , snake_case_ : str=32 , snake_case_ : List[str]=0.1 , snake_case_ : Tuple=0.02 , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=True , snake_case_ : str=10 , snake_case_ : List[str]=None , snake_case_ : Optional[int]=0.25 , snake_case_ : int=0.0 , snake_case_ : Tuple=0.0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: str = batch_size UpperCamelCase_: int = image_size UpperCamelCase_: Any = patch_size UpperCamelCase_: int = num_channels UpperCamelCase_: List[Any] = make_divisible(512 * width_multiplier , divisor=8 ) UpperCamelCase_: Optional[int] = hidden_act UpperCamelCase_: Any = conv_kernel_size UpperCamelCase_: int = output_stride UpperCamelCase_: List[Any] = classifier_dropout_prob UpperCamelCase_: Tuple = use_labels UpperCamelCase_: Optional[Any] = is_training UpperCamelCase_: Optional[int] = num_labels UpperCamelCase_: int = initializer_range UpperCamelCase_: Tuple = scope UpperCamelCase_: Any = width_multiplier UpperCamelCase_: Optional[Any] = ffn_dropout UpperCamelCase_: List[Any] = attn_dropout def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: int = None UpperCamelCase_: Union[str, Any] = None if self.use_labels: UpperCamelCase_: List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_: Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_: Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self : Tuple ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Union[str, Any] ): UpperCamelCase_: Union[str, Any] = MobileViTVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase_: Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str] ): UpperCamelCase_: List[str] = self.num_labels UpperCamelCase_: Any = MobileViTVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase_: List[str] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Tuple ): UpperCamelCase_: Optional[int] = self.num_labels UpperCamelCase_: int = MobileViTVaForSemanticSegmentation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase_: int = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_: Optional[Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[Any] = config_and_inputs UpperCamelCase_: int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : Union[str, Any] = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : Dict = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[int] = False def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = MobileViTVaModelTester(self ) UpperCamelCase_: Any = MobileViTVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowerCAmelCase__ ( self : str ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowerCAmelCase__ ( self : Union[str, Any] ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowerCAmelCase__ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowerCAmelCase__ ( self : Tuple ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase__ ( self : Any ): pass def lowerCAmelCase__ ( self : Any ): UpperCamelCase_, UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Optional[Any] = model_class(UpperCAmelCase_ ) UpperCamelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: List[str] = [*signature.parameters.keys()] UpperCamelCase_: Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] ): def check_hidden_states_output(snake_case_ : int , snake_case_ : Dict , snake_case_ : Any ): UpperCamelCase_: Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase_: Dict = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) UpperCamelCase_: List[str] = outputs.hidden_states UpperCamelCase_: Any = 5 self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase_: Dict = 2 for i in range(len(UpperCAmelCase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCamelCase_, UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Optional[Any] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[int] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ ) @slow def lowerCAmelCase__ ( self : List[Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Dict = MobileViTVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def A__ ( ) -> Tuple: '''simple docstring''' UpperCamelCase_: int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self : Tuple ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: int = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( UpperCAmelCase_ ) UpperCamelCase_: Any = self.default_image_processor UpperCamelCase_: str = prepare_img() UpperCamelCase_: Tuple = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: Dict = model(**UpperCAmelCase_ ) # verify the logits UpperCamelCase_: List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) UpperCamelCase_: str = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: int = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCamelCase_: Tuple = model.to(UpperCAmelCase_ ) UpperCamelCase_: Optional[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCamelCase_: str = prepare_img() UpperCamelCase_: Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: Any = model(**UpperCAmelCase_ ) UpperCamelCase_: Any = outputs.logits # verify the logits UpperCamelCase_: Any = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) UpperCamelCase_: int = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCamelCase_: Tuple = model.to(UpperCAmelCase_ ) UpperCamelCase_: str = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCamelCase_: Optional[Any] = prepare_img() UpperCamelCase_: List[Any] = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: Dict = model(**UpperCAmelCase_ ) UpperCamelCase_: Optional[int] = outputs.logits.detach().cpu() UpperCamelCase_: str = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ , target_sizes=[(50, 60)] ) UpperCamelCase_: int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ ) UpperCamelCase_: List[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ ) UpperCamelCase_: str = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ )
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : List[str] , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[Any] = 13 UpperCamelCase_: Any = 7 UpperCamelCase_: int = True UpperCamelCase_: Union[str, Any] = True UpperCamelCase_: List[Any] = True UpperCamelCase_: Any = True UpperCamelCase_: int = True UpperCamelCase_: str = False UpperCamelCase_: Optional[int] = False UpperCamelCase_: Tuple = False UpperCamelCase_: int = 2 UpperCamelCase_: Any = 99 UpperCamelCase_: Optional[Any] = 0 UpperCamelCase_: Optional[Any] = 32 UpperCamelCase_: List[Any] = 2 UpperCamelCase_: Any = 4 UpperCamelCase_: Dict = 0.1 UpperCamelCase_: Tuple = 0.1 UpperCamelCase_: Dict = 512 UpperCamelCase_: Tuple = 16 UpperCamelCase_: Any = 2 UpperCamelCase_: int = 0.02 UpperCamelCase_: Tuple = 3 UpperCamelCase_: List[Any] = 4 UpperCamelCase_: int = '''last''' UpperCamelCase_: int = True UpperCamelCase_: Optional[Any] = None UpperCamelCase_: Optional[int] = 0 def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: int = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase_: int = None if self.use_input_lengths: UpperCamelCase_: Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase_: int = None if self.use_token_type_ids: UpperCamelCase_: str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: List[str] = None UpperCamelCase_: Tuple = None if self.use_labels: UpperCamelCase_: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase_: Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: List[str] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase__ ( self : int , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : int , ): UpperCamelCase_: Dict = TFFlaubertModel(config=UpperCamelCase__ ) UpperCamelCase_: List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase_: Optional[Any] = model(UpperCamelCase__ ) UpperCamelCase_: List[str] = [input_ids, input_mask] UpperCamelCase_: Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : int , ): UpperCamelCase_: List[Any] = TFFlaubertWithLMHeadModel(UpperCamelCase__ ) UpperCamelCase_: Optional[int] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase_: Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : str , snake_case_ : str , snake_case_ : int , snake_case_ : Dict , ): UpperCamelCase_: Union[str, Any] = TFFlaubertForQuestionAnsweringSimple(UpperCamelCase__ ) UpperCamelCase_: Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase_: Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : str , snake_case_ : Any , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Tuple , ): UpperCamelCase_: Any = TFFlaubertForSequenceClassification(UpperCamelCase__ ) UpperCamelCase_: List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase_: Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : int , ): UpperCamelCase_: List[str] = self.num_labels UpperCamelCase_: Optional[int] = TFFlaubertForTokenClassification(config=UpperCamelCase__ ) UpperCamelCase_: Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase_: Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , ): UpperCamelCase_: List[Any] = self.num_choices UpperCamelCase_: int = TFFlaubertForMultipleChoice(config=UpperCamelCase__ ) UpperCamelCase_: Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_: Dict = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_: Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_: int = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase_: Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[Any] = self.prepare_config_and_inputs() ( UpperCamelCase_ ): Optional[int] = config_and_inputs UpperCamelCase_: Optional[Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCamelCase : Union[str, Any] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : str ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[Any] = TFFlaubertModelTester(self ) UpperCamelCase_: Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , emb_dim=37 ) def lowerCAmelCase__ ( self : int ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase__ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase__ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*UpperCamelCase__ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*UpperCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[int] ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Union[str, Any] = TFFlaubertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase_: Optional[Any] = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase_: Tuple = model(UpperCamelCase__ )[0] UpperCamelCase_: str = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice. UpperCamelCase_: Optional[Any] = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : List[str] = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class _UpperCamelCase ( _A ): __UpperCamelCase : Union[str, Any] = """nllb-moe""" __UpperCamelCase : List[str] = ["""past_key_values"""] __UpperCamelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , snake_case_ : str=12_8112 , snake_case_ : str=1024 , snake_case_ : Dict=12 , snake_case_ : Dict=4096 , snake_case_ : List[Any]=16 , snake_case_ : Dict=12 , snake_case_ : List[Any]=4096 , snake_case_ : int=16 , snake_case_ : List[Any]=0.05 , snake_case_ : Any=0.05 , snake_case_ : Tuple=True , snake_case_ : List[Any]=True , snake_case_ : List[Any]="relu" , snake_case_ : Union[str, Any]=1024 , snake_case_ : Dict=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[int]=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Optional[int]=2 , snake_case_ : Dict=True , snake_case_ : Tuple=False , snake_case_ : str="float32" , snake_case_ : List[Any]=False , snake_case_ : str=128 , snake_case_ : Union[str, Any]=64 , snake_case_ : Dict=4 , snake_case_ : Optional[Any]=4 , snake_case_ : Optional[Any]=0.001 , snake_case_ : List[Any]=0.001 , snake_case_ : List[str]="all" , snake_case_ : Dict=False , snake_case_ : Optional[Any]=False , snake_case_ : List[str]=1.0 , snake_case_ : Any=0.2 , snake_case_ : str=1 , snake_case_ : Dict=0 , snake_case_ : List[str]=2 , snake_case_ : Any=False , **snake_case_ : Tuple , ): UpperCamelCase_: Optional[int] = vocab_size UpperCamelCase_: Tuple = max_position_embeddings UpperCamelCase_: str = d_model UpperCamelCase_: Optional[int] = encoder_ffn_dim UpperCamelCase_: int = encoder_layers UpperCamelCase_: Dict = encoder_attention_heads UpperCamelCase_: Union[str, Any] = decoder_ffn_dim UpperCamelCase_: Dict = decoder_layers UpperCamelCase_: str = decoder_attention_heads UpperCamelCase_: Any = dropout UpperCamelCase_: List[Any] = attention_dropout UpperCamelCase_: Optional[Any] = activation_dropout UpperCamelCase_: Dict = activation_function UpperCamelCase_: int = init_std UpperCamelCase_: Union[str, Any] = encoder_layerdrop UpperCamelCase_: int = decoder_layerdrop UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: Tuple = encoder_layers UpperCamelCase_: Dict = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_: Tuple = router_z_loss_coef UpperCamelCase_: str = router_aux_loss_coef UpperCamelCase_: Optional[int] = decoder_sparse_step UpperCamelCase_: Optional[Any] = encoder_sparse_step UpperCamelCase_: Union[str, Any] = num_experts UpperCamelCase_: Union[str, Any] = expert_capacity UpperCamelCase_: List[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) UpperCamelCase_: Dict = router_dtype UpperCamelCase_: Optional[Any] = router_ignore_padding_tokens UpperCamelCase_: Tuple = batch_prioritized_routing UpperCamelCase_: List[Any] = second_expert_policy UpperCamelCase_: int = normalize_router_prob_before_dropping UpperCamelCase_: Any = moe_eval_capacity_token_fraction UpperCamelCase_: List[str] = moe_token_dropout UpperCamelCase_: Tuple = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _UpperCamelCase ( yaml.SafeLoader ): '''simple docstring''' def lowerCAmelCase__ ( self : int , snake_case_ : List[str] ): UpperCamelCase_: Any = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCamelCase_: Any = [tuple(snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else key for key in keys] UpperCamelCase_: Dict = Counter(snake_case_ ) UpperCamelCase_: List[str] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : str , snake_case_ : Optional[int]=False ): UpperCamelCase_: Tuple = super().construct_mapping(snake_case_ , deep=snake_case_ ) self._check_no_duplicates_on_constructed_node(snake_case_ ) return mapping def A__ ( lowerCamelCase ) -> List[str]: UpperCamelCase_: Dict = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCamelCase_: Union[str, Any] = full_content[1:].index("""---""" ) + 1 UpperCamelCase_: List[str] = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCamelCase ) class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCAmelCase__ ( cls : List[Any] , snake_case_ : Path ): with open(snake_case_ , encoding="""utf-8""" ) as readme_file: UpperCamelCase_: Union[str, Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(snake_case_ ) else: return cls() def lowerCAmelCase__ ( self : Any , snake_case_ : Path ): if path.exists(): with open(snake_case_ , encoding="""utf-8""" ) as readme_file: UpperCamelCase_: str = readme_file.read() else: UpperCamelCase_: str = None UpperCamelCase_: Tuple = self._to_readme(snake_case_ ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Optional[str] = None ): if readme_content is not None: UpperCamelCase_: List[str] = _split_yaml_from_readme(snake_case_ ) UpperCamelCase_: List[str] = """---\n""" + self.to_yaml_string() + """---\n""" + content else: UpperCamelCase_: List[Any] = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCAmelCase__ ( cls : Optional[int] , snake_case_ : str ): UpperCamelCase_: int = yaml.load(snake_case_ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCamelCase_: List[Any] = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**snake_case_ ) def lowerCAmelCase__ ( self : Dict ): return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=snake_case_ , allow_unicode=snake_case_ , encoding="""utf-8""" , ).decode("""utf-8""" ) lowerCamelCase_ : List[str] = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCamelCase_ : Dict = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") lowerCamelCase_ : Union[str, Any] = ap.parse_args() lowerCamelCase_ : Dict = Path(args.readme_filepath) lowerCamelCase_ : Any = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: List[str] = 1 UpperCamelCase_: Dict = 3 UpperCamelCase_: Any = (32, 32) UpperCamelCase_: Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowercase ) return image @property def lowerCAmelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) UpperCamelCase_: List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase__ ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase_: str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCAmelCase__ ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase_: Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowercase ) @property def lowerCAmelCase__ ( self : Dict ): def extract(*snake_case_ : Optional[Any] , **snake_case_ : Union[str, Any] ): class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] ): UpperCamelCase_: Any = torch.ones([0] ) def lowerCAmelCase__ ( self : Any , snake_case_ : Dict ): self.pixel_values.to(__lowercase ) return self return Out() return extract def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: List[Any] = self.dummy_cond_unet UpperCamelCase_: Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) UpperCamelCase_: Dict = self.dummy_vae UpperCamelCase_: Dict = self.dummy_text_encoder UpperCamelCase_: int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCamelCase_: Tuple = StableDiffusionPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) UpperCamelCase_: Optional[Any] = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) UpperCamelCase_: Tuple = """A painting of a squirrel eating a burger""" UpperCamelCase_: Optional[int] = torch.Generator(device=__lowercase ).manual_seed(0 ) UpperCamelCase_: Optional[Any] = sd_pipe([prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase_: Optional[Any] = output.images UpperCamelCase_: str = torch.Generator(device=__lowercase ).manual_seed(0 ) UpperCamelCase_: Optional[int] = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowercase , )[0] UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Tuple = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Union[str, Any] = self.dummy_cond_unet UpperCamelCase_: List[str] = PNDMScheduler(skip_prk_steps=__lowercase ) UpperCamelCase_: Optional[int] = self.dummy_vae UpperCamelCase_: Tuple = self.dummy_text_encoder UpperCamelCase_: Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCamelCase_: Union[str, Any] = StableDiffusionPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) UpperCamelCase_: Tuple = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) UpperCamelCase_: Tuple = """A painting of a squirrel eating a burger""" UpperCamelCase_: Dict = torch.Generator(device=__lowercase ).manual_seed(0 ) UpperCamelCase_: Dict = sd_pipe([prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase_: Optional[Any] = output.images UpperCamelCase_: Union[str, Any] = torch.Generator(device=__lowercase ).manual_seed(0 ) UpperCamelCase_: Any = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowercase , )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Optional[int] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: str = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowercase ) assert isinstance(__lowercase , __lowercase ) assert isinstance(pipe.scheduler , __lowercase ) assert pipe.safety_checker is None UpperCamelCase_: str = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowercase ) UpperCamelCase_: Tuple = StableDiffusionPipeline.from_pretrained(__lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase_: str = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[Any] = self.dummy_cond_unet UpperCamelCase_: str = PNDMScheduler(skip_prk_steps=__lowercase ) UpperCamelCase_: Optional[int] = self.dummy_vae UpperCamelCase_: Any = self.dummy_text_encoder UpperCamelCase_: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCamelCase_: Union[str, Any] = unet.half() UpperCamelCase_: int = vae.half() UpperCamelCase_: Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase_: List[Any] = StableDiffusionPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) UpperCamelCase_: Tuple = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) UpperCamelCase_: Tuple = """A painting of a squirrel eating a burger""" UpperCamelCase_: Union[str, Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Dict = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowercase ) UpperCamelCase_: Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase_: Tuple = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) UpperCamelCase_: str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCamelCase_: Optional[int] = 40_0366_0346 UpperCamelCase_: Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase_: List[Any] = torch.manual_seed(__lowercase ) UpperCamelCase_: int = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase_: str = output.images UpperCamelCase_: Any = image[0, -3:, -3:, -1] UpperCamelCase_: List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase_: str = torch.manual_seed(__lowercase ) UpperCamelCase_: Optional[int] = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase_: Tuple = output.images UpperCamelCase_: str = image[0, -3:, -3:, -1] UpperCamelCase_: Union[str, Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Dict = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowercase ) UpperCamelCase_: Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase_: Optional[int] = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) UpperCamelCase_: str = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCamelCase_: Union[str, Any] = 27_3497_1755 UpperCamelCase_: List[str] = 7 UpperCamelCase_: List[str] = torch.manual_seed(__lowercase ) UpperCamelCase_: Tuple = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase_: Dict = output.images UpperCamelCase_: Tuple = image[0, -3:, -3:, -1] UpperCamelCase_: Any = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCamelCase_: int = torch.manual_seed(__lowercase ) UpperCamelCase_: int = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase_: List[str] = output.images UpperCamelCase_: str = image[0, -3:, -3:, -1] UpperCamelCase_: Any = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCamelCase_: int = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) UpperCamelCase_: Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCamelCase_: Tuple = 10_4435_5234 UpperCamelCase_: Optional[Any] = 12 UpperCamelCase_: Dict = torch.manual_seed(__lowercase ) UpperCamelCase_: Dict = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase_: Tuple = output.images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCamelCase_: List[str] = torch.manual_seed(__lowercase ) UpperCamelCase_: int = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase_: Optional[int] = output.images UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[Any] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCamelCase ( __snake_case ): '''simple docstring''' def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(A_ , """depth_multiplier""" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self : int , snake_case_ : int , snake_case_ : Optional[Any]=13 , snake_case_ : Optional[int]=3 , snake_case_ : int=32 , snake_case_ : Optional[Any]=0.25 , snake_case_ : Dict=8 , snake_case_ : Dict=True , snake_case_ : int=1024 , snake_case_ : Dict=32 , snake_case_ : str="relu6" , snake_case_ : Any=0.1 , snake_case_ : Optional[int]=0.02 , snake_case_ : Union[str, Any]=True , snake_case_ : Dict=True , snake_case_ : int=10 , snake_case_ : Any=None , ): UpperCamelCase_: Any = parent UpperCamelCase_: Optional[int] = batch_size UpperCamelCase_: Optional[int] = num_channels UpperCamelCase_: Tuple = image_size UpperCamelCase_: Any = depth_multiplier UpperCamelCase_: Any = min_depth UpperCamelCase_: Dict = tf_padding UpperCamelCase_: int = int(last_hidden_size * depth_multiplier ) UpperCamelCase_: Optional[int] = output_stride UpperCamelCase_: Any = hidden_act UpperCamelCase_: Any = classifier_dropout_prob UpperCamelCase_: Optional[int] = use_labels UpperCamelCase_: List[str] = is_training UpperCamelCase_: List[Any] = num_labels UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Union[str, Any] = scope def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: int = None UpperCamelCase_: Dict = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_: Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self : int ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : int ): UpperCamelCase_: List[str] = MobileNetVaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase_: List[Any] = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : str ): UpperCamelCase_: List[Any] = self.num_labels UpperCamelCase_: List[str] = MobileNetVaForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase_: Tuple = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() UpperCamelCase_: int = config_and_inputs UpperCamelCase_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __UpperCamelCase : Optional[int] = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[str] = False __UpperCamelCase : int = False __UpperCamelCase : int = False def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Union[str, Any] = MobileNetVaModelTester(self ) UpperCamelCase_: List[str] = MobileNetVaConfigTester(self , config_class=A_ , has_text_modality=A_ ) def lowerCAmelCase__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def lowerCAmelCase__ ( self : Optional[Any] ): pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def lowerCAmelCase__ ( self : Union[str, Any] ): pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(A_ ) UpperCamelCase_: Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: List[Any] = [*signature.parameters.keys()] UpperCamelCase_: Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowerCAmelCase__ ( self : Any ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : Optional[Any] ): UpperCamelCase_: Dict = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase_: str = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase_: Union[str, Any] = outputs.hidden_states UpperCamelCase_: List[str] = 26 self.assertEqual(len(A_ ) , A_ ) UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Optional[int] = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: List[Any] = True check_hidden_states_output(A_ , A_ , A_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Tuple = MobileNetVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A__ ( ) -> Any: UpperCamelCase_: List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self : Any ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(A_ ) UpperCamelCase_: List[Any] = self.default_image_processor UpperCamelCase_: Dict = prepare_img() UpperCamelCase_: Any = image_processor(images=A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase_: Any = model(**A_ ) # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase_: Any = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCamelCase_ : Tuple = TypeVar("""KT""") lowerCamelCase_ : Union[str, Any] = TypeVar("""VT""") class _UpperCamelCase ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : int , snake_case_ : Any = "root" , snake_case_ : Any = None ): UpperCamelCase_: Optional[Any] = key UpperCamelCase_: Optional[int] = value UpperCamelCase_: Tuple = [] def __repr__( self : Optional[Any] ): return f'''Node({self.key}: {self.value})''' @property def lowerCAmelCase__ ( self : Tuple ): return len(self.forward ) class _UpperCamelCase ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Any = 0.5 , snake_case_ : int = 16 ): UpperCamelCase_: Optional[int] = Node[KT, VT]() UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: List[str] = p UpperCamelCase_: List[str] = max_level def __str__( self : Dict ): UpperCamelCase_: Optional[int] = list(self ) if len(snake_case_ ) == 0: return f'''SkipList(level={self.level})''' UpperCamelCase_: Union[str, Any] = max((len(str(snake_case_ ) ) for item in items) , default=4 ) UpperCamelCase_: Dict = max(snake_case_ , 4 ) + 4 UpperCamelCase_: List[str] = self.head UpperCamelCase_: int = [] UpperCamelCase_: int = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(snake_case_ , """-""" ) + """* """ * len(snake_case_ ) ) lines.append(""" """ * label_size + """| """ * len(snake_case_ ) ) while len(node.forward ) != 0: UpperCamelCase_: Optional[Any] = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(snake_case_ , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(snake_case_ ) ) UpperCamelCase_: Any = node.forward lines.append("""None""".ljust(snake_case_ ) + """* """ * len(snake_case_ ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(snake_case_ ) def __iter__( self : Union[str, Any] ): UpperCamelCase_: Any = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCamelCase_: str = node.forward[0] def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Union[str, Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowerCAmelCase__ ( self : int , snake_case_ : str ): UpperCamelCase_: str = [] UpperCamelCase_: str = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCamelCase_: Optional[Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(snake_case_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowerCAmelCase__ ( self : List[str] , snake_case_ : Optional[int] ): UpperCamelCase_, UpperCamelCase_: Tuple = self._locate_node(snake_case_ ) if node is not None: for i, update_node in enumerate(snake_case_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCamelCase_: str = node.forward[i] else: UpperCamelCase_: Union[str, Any] = update_node.forward[:i] def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): UpperCamelCase_, UpperCamelCase_: int = self._locate_node(snake_case_ ) if node is not None: UpperCamelCase_: List[str] = value else: UpperCamelCase_: List[Any] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , snake_case_ ): update_vector.append(self.head ) UpperCamelCase_: Any = level UpperCamelCase_: List[str] = Node(snake_case_ , snake_case_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(snake_case_ ) else: UpperCamelCase_: Dict = new_node def lowerCAmelCase__ ( self : Tuple , snake_case_ : Union[str, Any] ): UpperCamelCase_, UpperCamelCase_: List[str] = self._locate_node(snake_case_ ) if node is not None: return node.value return None def A__ ( ) -> Any: UpperCamelCase_: Dict = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) UpperCamelCase_: List[Any] = skip_list.head UpperCamelCase_: Optional[Any] = {} while node.level != 0: UpperCamelCase_: Tuple = node.forward[0] UpperCamelCase_: Union[str, Any] = node.value assert len(lowerCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def A__ ( ) -> str: UpperCamelCase_: List[str] = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) UpperCamelCase_: Dict = skip_list.head UpperCamelCase_: Union[str, Any] = {} while node.level != 0: UpperCamelCase_: int = node.forward[0] UpperCamelCase_: List[str] = node.value if len(lowerCamelCase ) != 4: print() assert len(lowerCamelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def A__ ( ) -> Any: UpperCamelCase_: List[Any] = SkipList() assert skip_list.find("""Some key""" ) is None def A__ ( ) -> Dict: UpperCamelCase_: str = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def A__ ( ) -> Union[str, Any]: UpperCamelCase_: Any = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def A__ ( ) -> List[Any]: UpperCamelCase_: str = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def A__ ( ) -> Union[str, Any]: UpperCamelCase_: Optional[int] = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def A__ ( ) -> Dict: UpperCamelCase_: str = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 1_42 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(lowerCamelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(lowerCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def A__ ( ) -> List[Any]: def is_sorted(lowerCamelCase ): return all(next_item >= item for item, next_item in zip(lowerCamelCase , lst[1:] ) ) UpperCamelCase_: Optional[Any] = SkipList() for i in range(10 ): skip_list.insert(lowerCamelCase , lowerCamelCase ) assert is_sorted(list(lowerCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(lowerCamelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(lowerCamelCase ) ) def A__ ( ) -> Any: for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def A__ ( ) -> Dict: UpperCamelCase_: List[Any] = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ) -> Optional[int]: UpperCamelCase_: Dict = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__lowerCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__lowerCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__lowerCAmelCase ) return parser.parse_args() def A__ ( ) -> List[Any]: UpperCamelCase_: List[str] = parse_args() # Import training_script as a module. UpperCamelCase_: Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase_: Any = script_fpath.stem UpperCamelCase_: Tuple = importlib.import_module(__lowerCAmelCase ) # Patch sys.argv UpperCamelCase_: Union[str, Any] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : List[str] = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = """https://openaipublic.azureedge.net/jukebox/models/""" lowerCamelCase_ : Optional[Any] = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def A__ ( lowerCamelCase ) -> List[Any]: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase_: Tuple = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase_: Optional[Any] = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase_: Union[str, Any] = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase_: int = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: UpperCamelCase_: List[Any] = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: UpperCamelCase_: Optional[Any] = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase_: int = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: UpperCamelCase_: List[str] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: UpperCamelCase_: Optional[int] = {} import re UpperCamelCase_: Any = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCamelCase_: List[str] = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase_: List[Any] = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase_: Any = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCamelCase_: Union[str, Any] = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase_: Optional[Any] = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase_: Tuple = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) UpperCamelCase_: List[str] = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase_: Any = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowercase__ ): UpperCamelCase_: List[str] = re_encoder_block_conv_in.match(lowercase__ ) UpperCamelCase_: Dict = regex_match.groups() UpperCamelCase_: List[Any] = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase_: Tuple = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' UpperCamelCase_: List[str] = re_encoder_block_conv_in.sub(lowercase__ , lowercase__ ) elif re_encoder_block_resnet.fullmatch(lowercase__ ): UpperCamelCase_: str = re_encoder_block_resnet.match(lowercase__ ) UpperCamelCase_: Union[str, Any] = regex_match.groups() UpperCamelCase_: int = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase_: Tuple = {"""1""": 1, """3""": 2}[groups[-2]] UpperCamelCase_: Union[str, Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' UpperCamelCase_: Tuple = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase_: List[str] = prefix + resnet_block UpperCamelCase_: str = re_encoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_encoder_block_proj_out.fullmatch(lowercase__ ): UpperCamelCase_: int = re_encoder_block_proj_out.match(lowercase__ ) UpperCamelCase_: Optional[Any] = regex_match.groups() UpperCamelCase_: Dict = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' UpperCamelCase_: str = re_encoder_block_proj_out.sub(lowercase__ , lowercase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowercase__ ): UpperCamelCase_: Optional[int] = re_decoder_block_conv_out.match(lowercase__ ) UpperCamelCase_: List[str] = regex_match.groups() UpperCamelCase_: int = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase_: int = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase_: str = re_decoder_block_conv_out.sub(lowercase__ , lowercase__ ) elif re_decoder_block_resnet.fullmatch(lowercase__ ): UpperCamelCase_: Dict = re_decoder_block_resnet.match(lowercase__ ) UpperCamelCase_: str = regex_match.groups() UpperCamelCase_: Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase_: Union[str, Any] = {"""1""": 1, """3""": 2}[groups[-2]] UpperCamelCase_: List[str] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' UpperCamelCase_: Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase_: Any = prefix + resnet_block UpperCamelCase_: int = re_decoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_decoder_block_proj_in.fullmatch(lowercase__ ): UpperCamelCase_: Optional[Any] = re_decoder_block_proj_in.match(lowercase__ ) UpperCamelCase_: Any = regex_match.groups() UpperCamelCase_: Union[str, Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' UpperCamelCase_: Optional[Any] = re_decoder_block_proj_in.sub(lowercase__ , lowercase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowercase__ ): UpperCamelCase_: int = re_prior_cond_conv_out.match(lowercase__ ) UpperCamelCase_: List[Any] = regex_match.groups() UpperCamelCase_: Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase_: Any = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase_: int = re_prior_cond_conv_out.sub(lowercase__ , lowercase__ ) elif re_prior_cond_resnet.fullmatch(lowercase__ ): UpperCamelCase_: Tuple = re_prior_cond_resnet.match(lowercase__ ) UpperCamelCase_: Union[str, Any] = regex_match.groups() UpperCamelCase_: int = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase_: int = {"""1""": 1, """3""": 2}[groups[-2]] UpperCamelCase_: List[Any] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' UpperCamelCase_: List[str] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase_: Optional[int] = prefix + resnet_block UpperCamelCase_: Union[str, Any] = re_prior_cond_resnet.sub(lowercase__ , lowercase__ ) elif re_prior_cond_proj_in.fullmatch(lowercase__ ): UpperCamelCase_: Any = re_prior_cond_proj_in.match(lowercase__ ) UpperCamelCase_: str = regex_match.groups() UpperCamelCase_: Tuple = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' UpperCamelCase_: Optional[Any] = re_prior_cond_proj_in.sub(lowercase__ , lowercase__ ) # keep original key else: UpperCamelCase_: int = original_key UpperCamelCase_: List[Any] = replace_key(lowercase__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: UpperCamelCase_: List[str] = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) UpperCamelCase_: Any = original_key UpperCamelCase_: Optional[Any] = original_key UpperCamelCase_: Union[str, Any] = value return new_dict @torch.no_grad() def A__ ( lowerCamelCase=None , lowerCamelCase=None ) -> Any: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): UpperCamelCase_: List[str] = requests.get(F'''{PREFIX}{file}''' , allow_redirects=lowercase__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=lowercase__ ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , """wb""" ).write(r.content ) UpperCamelCase_: Union[str, Any] = MODEL_MAPPING[model_name.split("""/""" )[-1]] UpperCamelCase_: Any = JukeboxConfig.from_pretrained(lowercase__ ) UpperCamelCase_: List[Any] = JukeboxModel(lowercase__ ) UpperCamelCase_: Optional[Any] = [] UpperCamelCase_: Dict = {} for i, dict_name in enumerate(lowercase__ ): UpperCamelCase_: Dict = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["""model"""] UpperCamelCase_: List[Any] = {} for k in old_dic.keys(): if k.endswith(""".b""" ): UpperCamelCase_: List[str] = old_dic[k] elif k.endswith(""".w""" ): UpperCamelCase_: str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase_: Optional[Any] = old_dic[k] else: UpperCamelCase_: Dict = old_dic[k] UpperCamelCase_: Dict = """vqvae""" if i == 0 else F'''priors.{3 - i}''' UpperCamelCase_: Tuple = fix_jukebox_keys(lowercase__ , model.state_dict() , lowercase__ , lowercase__ ) weight_dict.append(lowercase__ ) UpperCamelCase_: Union[str, Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowercase__ ) for i in range(len(lowercase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile: json.dump(lowercase__ , lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) return weight_dict if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) lowerCamelCase_ : Optional[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> Tuple: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' UpperCamelCase_: Dict = nn.Parameter(UpperCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' UpperCamelCase_: Any = nn.Parameter(UpperCamelCase__ ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # set torch weights for 1-to-1 comparison UpperCamelCase_: Dict = np.asarray(weights[0] ) UpperCamelCase_: List[Any] = np.asarray(weights[1] ) UpperCamelCase_: List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: # set torch weights for 1-to-1 comparison UpperCamelCase_: Tuple = np.asarray(weights[0] ) UpperCamelCase_: Any = np.asarray(weights[1] ) UpperCamelCase_: List[Any] = np.asarray(weights[2] ) UpperCamelCase_: List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: # layernorm 1 UpperCamelCase_: str = weights[0][0][0] UpperCamelCase_: Optional[int] = np.asarray(layer_norm_a[0] ) UpperCamelCase_: Tuple = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # lsh weights + output UpperCamelCase_: List[Any] = weights[0][1] if len(UpperCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) else: set_layer_weights_in_torch_local(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) # intermediate weighs UpperCamelCase_: int = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase__ ) == 4: UpperCamelCase_: Dict = intermediate_weights[2] # layernorm 2 UpperCamelCase_: Optional[int] = np.asarray(intermediate_weights[0][0] ) UpperCamelCase_: Tuple = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # intermediate dense UpperCamelCase_: Optional[Any] = np.asarray(intermediate_weights[1][0] ) UpperCamelCase_: Union[str, Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) # intermediate out UpperCamelCase_: Optional[int] = np.asarray(intermediate_weights[4][0] ) UpperCamelCase_: List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: # reformer model UpperCamelCase_: List[Any] = torch_model.reformer # word embeds UpperCamelCase_: Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase__ ) , ) if isinstance(weights[3] , UpperCamelCase__ ): UpperCamelCase_: Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCamelCase_: str = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' UpperCamelCase_: Dict = nn.Parameter(torch.tensor(UpperCamelCase__ ) ) UpperCamelCase_: int = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCamelCase_: Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # output layer norm UpperCamelCase_: Any = np.asarray(weights[7][0] ) UpperCamelCase_: List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # output embeddings UpperCamelCase_: List[Any] = np.asarray(weights[9][0] ) UpperCamelCase_: Optional[int] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: # Initialise PyTorch model UpperCamelCase_: Union[str, Any] = ReformerConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: str = ReformerModelWithLMHead(UpperCamelCase__ ) with open(UpperCamelCase__ , """rb""" ) as f: UpperCamelCase_: str = pickle.load(UpperCamelCase__ )["""weights"""] set_model_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : List[str] = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = """open-llama""" def __init__( self : List[Any] , snake_case_ : Any=10_0000 , snake_case_ : Union[str, Any]=4096 , snake_case_ : int=1_1008 , snake_case_ : Any=32 , snake_case_ : int=32 , snake_case_ : Union[str, Any]="silu" , snake_case_ : List[str]=2048 , snake_case_ : List[Any]=0.02 , snake_case_ : Dict=1e-6 , snake_case_ : int=True , snake_case_ : Tuple=0 , snake_case_ : Tuple=1 , snake_case_ : Tuple=2 , snake_case_ : List[str]=False , snake_case_ : Optional[Any]=True , snake_case_ : int=0.1 , snake_case_ : str=0.1 , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : int=None , **snake_case_ : str , ): UpperCamelCase_: int = vocab_size UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: List[str] = intermediate_size UpperCamelCase_: Any = num_hidden_layers UpperCamelCase_: Optional[int] = num_attention_heads UpperCamelCase_: Any = hidden_act UpperCamelCase_: Tuple = initializer_range UpperCamelCase_: List[str] = rms_norm_eps UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: List[str] = kwargs.pop( """use_memorry_efficient_attention""" , UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: Union[str, Any] = attention_dropout_prob UpperCamelCase_: Union[str, Any] = use_stable_embedding UpperCamelCase_: List[str] = shared_input_output_embedding UpperCamelCase_: Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , tie_word_embeddings=UpperCAmelCase__ , **UpperCAmelCase__ , ) def lowerCAmelCase__ ( self : str ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) UpperCamelCase_: Tuple = self.rope_scaling.get("""type""" , UpperCAmelCase__ ) UpperCamelCase_: Dict = self.rope_scaling.get("""factor""" , UpperCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
from __future__ import annotations from scipy.special import comb # type: ignore class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , snake_case_ : Tuple ): UpperCamelCase_: Dict = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCamelCase_: str = len(A__ ) - 1 def lowerCAmelCase__ ( self : Any , snake_case_ : List[Any] ): assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase_: Union[str, Any] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A__ ) , 5 ) == 1 return output_values def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : int ): assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase_: str = self.basis_function(A__ ) UpperCamelCase_: Tuple = 0.0 UpperCamelCase_: int = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase__ ( self : Any , snake_case_ : str = 0.01 ): from matplotlib import pyplot as plt # type: ignore UpperCamelCase_: List[Any] = [] # x coordinates of points to plot UpperCamelCase_: Optional[Any] = [] # y coordinates of points to plot UpperCamelCase_: Optional[int] = 0.0 while t <= 1: UpperCamelCase_: Optional[Any] = self.bezier_curve_function(A__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size UpperCamelCase_: Tuple = [i[0] for i in self.list_of_points] UpperCamelCase_: Any = [i[1] for i in self.list_of_points] plt.plot( A__ , A__ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(A__ , A__ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
def A__ ( lowerCamelCase ) -> bool: if num < 0: return False UpperCamelCase_: Dict = num UpperCamelCase_: Union[str, Any] = 0 while num > 0: UpperCamelCase_: List[str] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( __snake_case ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : Any = """AutoImageProcessor""" __UpperCamelCase : Any = """AutoTokenizer""" def __init__( self : Tuple , snake_case_ : str , snake_case_ : List[str] ): super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_: str = self.image_processor def __call__( self : str , snake_case_ : int=None , snake_case_ : Any=None , snake_case_ : int=None , **snake_case_ : Optional[int] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase_: List[str] = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: UpperCamelCase_: List[str] = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: UpperCamelCase_: Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowerCAmelCase__ ( self : List[str] , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self : Dict , *snake_case_ : Any , **snake_case_ : Any ): return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): return ["input_ids", "attention_mask", "pixel_values"]
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( a__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = (DDIMParallelScheduler,) __UpperCamelCase : int = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : List[str] ): UpperCamelCase_: str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowercase__ ) return config def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : str ): UpperCamelCase_: List[Any] = self.scheduler_classes[0] UpperCamelCase_: List[Any] = self.get_scheduler_config(**lowercase__ ) UpperCamelCase_: str = scheduler_class(**lowercase__ ) UpperCamelCase_: Union[str, Any] = 10, 0.0 UpperCamelCase_: List[str] = self.dummy_model() UpperCamelCase_: Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for t in scheduler.timesteps: UpperCamelCase_: Union[str, Any] = model(lowercase__ , lowercase__ ) UpperCamelCase_: Any = scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase__ ( self : List[Any] ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowercase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase__ ) UpperCamelCase_: int = self.scheduler_classes[0] UpperCamelCase_: int = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase_: Optional[int] = scheduler_class(**lowercase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowerCAmelCase__ ( self : List[str] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def lowerCAmelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def lowerCAmelCase__ ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def lowerCAmelCase__ ( self : List[str] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def lowerCAmelCase__ ( self : int ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase__ ) def lowerCAmelCase__ ( self : Any ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase__ ) def lowerCAmelCase__ ( self : Any ): self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , ) def lowerCAmelCase__ ( self : int ): for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase__ ) def lowerCAmelCase__ ( self : Optional[int] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase__ , num_inference_steps=lowercase__ ) def lowerCAmelCase__ ( self : Optional[Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase__ , eta=lowercase__ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = self.scheduler_classes[0] UpperCamelCase_: List[Any] = self.get_scheduler_config() UpperCamelCase_: Union[str, Any] = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Any = self.scheduler_classes[0] UpperCamelCase_: Optional[int] = self.get_scheduler_config() UpperCamelCase_: Optional[int] = scheduler_class(**lowercase__ ) UpperCamelCase_: Tuple = 10, 0.0 scheduler.set_timesteps(lowercase__ ) UpperCamelCase_: Tuple = self.dummy_model() UpperCamelCase_: Any = self.dummy_sample_deter UpperCamelCase_: Tuple = self.dummy_sample_deter + 0.1 UpperCamelCase_: Optional[Any] = self.dummy_sample_deter - 0.1 UpperCamelCase_: Optional[int] = samplea.shape[0] UpperCamelCase_: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase_: Optional[Any] = torch.arange(lowercase__ )[0:3, None].repeat(1 , lowercase__ ) UpperCamelCase_: List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase_: Dict = scheduler.batch_step_no_noise(lowercase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase__ ) UpperCamelCase_: List[Any] = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase_: Optional[int] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[Any] = self.full_loop() UpperCamelCase_: int = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase_: int = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase_: int = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase_: Optional[Any] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Tuple = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) UpperCamelCase_: str = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase_: Optional[Any] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[Any] = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) UpperCamelCase_: Dict = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase_: Optional[Any] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
from __future__ import annotations import math def A__ ( lowerCamelCase ) -> List[Any]: if num <= 0: UpperCamelCase_: Tuple = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_: List[Any] = [True] * (num + 1) UpperCamelCase_: List[Any] = [] UpperCamelCase_: Union[str, Any] = 2 UpperCamelCase_: List[str] = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE__ ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE__ ): if sieve[i] is True: UpperCamelCase_: Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
from __future__ import annotations class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : List[str]=None ): UpperCamelCase_: List[str] = data UpperCamelCase_: str = None def __repr__( self : int ): UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Optional[Any] = self while temp: string_rep.append(f'''{temp.data}''' ) UpperCamelCase_: str = temp.next return "->".join(__snake_case ) def A__ ( lowerCamelCase ) -> List[str]: if not elements_list: raise Exception("""The Elements List is empty""" ) UpperCamelCase_: Optional[int] = Node(elements_list[0] ) for i in range(1 , len(a_ ) ): UpperCamelCase_: List[str] = Node(elements_list[i] ) UpperCamelCase_: str = current.next return head def A__ ( lowerCamelCase ) -> Union[str, Any]: if head_node is not None and isinstance(a_ , a_ ): print_reverse(head_node.next ) print(head_node.data ) def A__ ( ) -> Union[str, Any]: from doctest import testmod testmod() UpperCamelCase_: List[Any] = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(a_ ) print("""Elements in Reverse:""" ) print_reverse(a_ ) if __name__ == "__main__": main()
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: Dict = (boundary[1] - boundary[0]) / steps UpperCamelCase_: Optional[int] = boundary[0] UpperCamelCase_: Any = boundary[1] UpperCamelCase_: Dict = make_points(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = 0.0 y += (h / 2.0) * f(lowerCamelCase ) for i in x_i: # print(i) y += h * f(lowerCamelCase ) y += (h / 2.0) * f(lowerCamelCase ) return y def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: List[str] = a + h while x < (b - h): yield x UpperCamelCase_: Any = x + h def A__ ( lowerCamelCase ) -> int: # enter your function here UpperCamelCase_: int = (x - 0) * (x - 0) return y def A__ ( ) -> Tuple: UpperCamelCase_: Optional[Any] = 0.0 # Lower bound of integration UpperCamelCase_: Optional[int] = 1.0 # Upper bound of integration UpperCamelCase_: Optional[int] = 10.0 # define number of steps or resolution UpperCamelCase_: str = [a, b] # define boundary of integration UpperCamelCase_: Optional[int] = method_a(lowerCamelCase , lowerCamelCase ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ : List[Any] = { """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = ["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import argparse lowerCamelCase_ : str = """docs/source/_static/js/custom.js""" def A__ ( lowerCamelCase ) -> Dict: with open(__UpperCamelCase , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase_: Any = f.readlines() UpperCamelCase_: str = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 UpperCamelCase_: Union[str, Any] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") lowerCamelCase_ : Union[str, Any] = parser.parse_args() update_custom_js(args.version)
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
from __future__ import annotations def A__ ( lowerCamelCase ) -> str: if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) UpperCamelCase_: List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple ): UpperCamelCase_: dict[str, TrieNode] = {} # Mapping from char to TrieNode UpperCamelCase_: Optional[Any] = False def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Optional[Any] ): for word in words: self.insert(_a ) def lowerCAmelCase__ ( self : int , snake_case_ : Optional[int] ): UpperCamelCase_: Optional[Any] = self for char in word: if char not in curr.nodes: UpperCamelCase_: Optional[Any] = TrieNode() UpperCamelCase_: List[Any] = curr.nodes[char] UpperCamelCase_: Optional[int] = True def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[Any] ): UpperCamelCase_: Union[str, Any] = self for char in word: if char not in curr.nodes: return False UpperCamelCase_: str = curr.nodes[char] return curr.is_leaf def lowerCAmelCase__ ( self : int , snake_case_ : int ): def _delete(snake_case_ : int , snake_case_ : Tuple , snake_case_ : Tuple ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False UpperCamelCase_: Any = False return len(curr.nodes ) == 0 UpperCamelCase_: List[Any] = word[index] UpperCamelCase_: Optional[Any] = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCamelCase_: List[str] = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: if node.is_leaf: print(snake_case_ , end=""" """ ) for key, value in node.nodes.items(): print_words(snake_case_ , word + key ) def A__ ( ) -> Tuple: UpperCamelCase_: int = """banana bananas bandana band apple all beast""".split() UpperCamelCase_: Optional[int] = TrieNode() root.insert_many(snake_case_ ) # print_words(root, "") assert all(root.find(snake_case_ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: print(str(snake_case_ ) , """works!""" if passes else """doesn't work :(""" ) def A__ ( ) -> List[Any]: assert test_trie() def A__ ( ) -> List[str]: print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def lowerCAmelCase__ ( *snake_case_ : Optional[int] , **snake_case_ : int ): pass def A__ ( lowerCamelCase ) -> Optional[int]: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase_ : Dict = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : List[str] ): UpperCamelCase_: Dict = pipeline( """document-question-answering""" , model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase_: int = INVOICE_URL UpperCamelCase_: Union[str, Any] = list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , """""" ) ) ) UpperCamelCase_: Dict = '''What is the placebo?''' UpperCamelCase_: int = [ { '''image''': load_image(UpperCamelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Any , snake_case_ : str ): UpperCamelCase_: List[Any] = dqa_pipeline(UpperCamelCase__ , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ [ {"""score""": ANY(UpperCamelCase__ ), """answer""": ANY(UpperCamelCase__ ), """start""": ANY(UpperCamelCase__ ), """end""": ANY(UpperCamelCase__ )}, {"""score""": ANY(UpperCamelCase__ ), """answer""": ANY(UpperCamelCase__ ), """start""": ANY(UpperCamelCase__ ), """end""": ANY(UpperCamelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) UpperCamelCase_: str = INVOICE_URL UpperCamelCase_: Union[str, Any] = '''How many cats are there?''' UpperCamelCase_: str = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] UpperCamelCase_: str = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , UpperCamelCase__ ) UpperCamelCase_: List[str] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , UpperCamelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCamelCase_: int = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCamelCase_: Dict = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(UpperCamelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes UpperCamelCase_: Optional[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCamelCase_: int = [] UpperCamelCase_: Dict = [] UpperCamelCase_: Dict = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , words=UpperCamelCase__ , boxes=UpperCamelCase__ , top_k=2 ) self.assertEqual(UpperCamelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Any = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) UpperCamelCase_: Any = INVOICE_URL UpperCamelCase_: Dict = '''What is the invoice number?''' UpperCamelCase_: Any = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) UpperCamelCase_: int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) UpperCamelCase_: List[str] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: str = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) UpperCamelCase_: Dict = INVOICE_URL UpperCamelCase_: int = '''What is the invoice number?''' UpperCamelCase_: List[Any] = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) UpperCamelCase_: Union[str, Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) UpperCamelCase_: Optional[int] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=UpperCamelCase__ ) UpperCamelCase_: Dict = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=UpperCamelCase__ , revision="""3dc6de3""" , ) UpperCamelCase_: Tuple = INVOICE_URL UpperCamelCase_: Tuple = '''What is the invoice number?''' UpperCamelCase_: Union[str, Any] = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) UpperCamelCase_: str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) UpperCamelCase_: Optional[int] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) UpperCamelCase_: Union[str, Any] = list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , """""" ) ) ) # This model should also work if `image` is set to None UpperCamelCase_: Tuple = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: int = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=UpperCamelCase__ ) UpperCamelCase_: Optional[int] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=UpperCamelCase__ , revision="""3dc6de3""" , max_seq_len=50 , ) UpperCamelCase_: List[Any] = INVOICE_URL UpperCamelCase_: Union[str, Any] = '''What is the invoice number?''' UpperCamelCase_: Optional[int] = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) UpperCamelCase_: List[str] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) UpperCamelCase_: int = list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , """""" ) ) ) # This model should also work if `image` is set to None UpperCamelCase_: int = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) UpperCamelCase_: Dict = INVOICE_URL UpperCamelCase_: Optional[Any] = '''What is the invoice number?''' UpperCamelCase_: Optional[int] = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def lowerCAmelCase__ ( self : Union[str, Any] ): pass
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : Dict = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCAmelCase__ ( self : Dict , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : List[Any] ): UpperCamelCase_: Dict = TextaTextGenerationPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) return generator, ["Something to write", "Something else"] def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : List[Any] ): UpperCamelCase_: Union[str, Any] = generator("""Something there""" ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": ANY(_lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) UpperCamelCase_: Optional[int] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], ] , ) UpperCamelCase_: List[Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], ] , ) with self.assertRaises(_lowerCamelCase ): generator(4 ) @require_torch def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility UpperCamelCase_: Any = generator("""Something there""" , do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": """"""}] ) UpperCamelCase_: List[Any] = 3 UpperCamelCase_: Any = generator( """Something there""" , num_return_sequences=_lowerCamelCase , num_beams=_lowerCamelCase , ) UpperCamelCase_: Any = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: str = generator("""This is a test""" , do_sample=_lowerCamelCase , num_return_sequences=2 , return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) UpperCamelCase_: Optional[Any] = generator.model.config.eos_token_id UpperCamelCase_: Optional[Any] = """<pad>""" UpperCamelCase_: Tuple = generator( ["""This is a test""", """This is a second test"""] , do_sample=_lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCamelCase , ) self.assertEqual( _lowerCamelCase , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility UpperCamelCase_: str = generator("""Something there""" , do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": """"""}] )
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( _A , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): @property def lowerCAmelCase__ ( self : str ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = ort.SessionOptions() UpperCamelCase_: Any = False return options def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCamelCase_: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCamelCase_: List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Tuple = "A red cat sitting on a park bench" UpperCamelCase_: Optional[Any] = np.random.RandomState(0 ) UpperCamelCase_: List[str] = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) UpperCamelCase_: int = output.images UpperCamelCase_: Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase_: Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCamelCase_: List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCamelCase_: Optional[Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) UpperCamelCase_: Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Tuple = "A red cat sitting on a park bench" UpperCamelCase_: Dict = np.random.RandomState(0 ) UpperCamelCase_: Optional[Any] = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) UpperCamelCase_: Tuple = output.images UpperCamelCase_: str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase_: List[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : Tuple = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class _UpperCamelCase ( __lowercase ): '''simple docstring''' __UpperCamelCase : List[str] = 'data2vec-text' def __init__( self : Tuple , snake_case_ : int=3_0522 , snake_case_ : Optional[Any]=768 , snake_case_ : str=12 , snake_case_ : Any=12 , snake_case_ : Any=3072 , snake_case_ : str="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=512 , snake_case_ : List[str]=2 , snake_case_ : Tuple=0.02 , snake_case_ : Tuple=1e-12 , snake_case_ : Optional[int]=1 , snake_case_ : List[Any]=0 , snake_case_ : List[Any]=2 , snake_case_ : Dict="absolute" , snake_case_ : str=True , snake_case_ : Any=None , **snake_case_ : int , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) UpperCamelCase_: Optional[int] = vocab_size UpperCamelCase_: str = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: List[str] = num_attention_heads UpperCamelCase_: Optional[Any] = hidden_act UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: List[str] = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: List[str] = max_position_embeddings UpperCamelCase_: int = type_vocab_size UpperCamelCase_: Dict = initializer_range UpperCamelCase_: str = layer_norm_eps UpperCamelCase_: str = position_embedding_type UpperCamelCase_: Union[str, Any] = use_cache UpperCamelCase_: Tuple = classifier_dropout class _UpperCamelCase ( __lowercase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : List[Any] ): if self.task == "multiple-choice": UpperCamelCase_: Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase_: int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCamelCase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = KandinskyInpaintPipeline __UpperCamelCase : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] __UpperCamelCase : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] __UpperCamelCase : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __UpperCamelCase : List[str] = False @property def lowerCAmelCase__ ( self : Dict ): return 32 @property def lowerCAmelCase__ ( self : Optional[int] ): return 32 @property def lowerCAmelCase__ ( self : List[str] ): return self.time_input_dim @property def lowerCAmelCase__ ( self : Optional[int] ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Optional[int] ): return 100 @property def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCAmelCase__ ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCamelCase_: Any = MultilingualCLIP(__A ) UpperCamelCase_: Tuple = text_encoder.eval() return text_encoder @property def lowerCAmelCase__ ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase_: str = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCamelCase_: Optional[int] = UNetaDConditionModel(**__A ) return model @property def lowerCAmelCase__ ( self : Any ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self : str ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = self.dummy_text_encoder UpperCamelCase_: List[Any] = self.dummy_tokenizer UpperCamelCase_: int = self.dummy_unet UpperCamelCase_: List[str] = self.dummy_movq UpperCamelCase_: List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__A , set_alpha_to_one=__A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__A , ) UpperCamelCase_: Optional[int] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int] , snake_case_ : Union[str, Any]=0 ): UpperCamelCase_: Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__A ) ).to(__A ) UpperCamelCase_: Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__A ) # create init_image UpperCamelCase_: Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) UpperCamelCase_: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_: Union[str, Any] = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ).resize((256, 256) ) # create mask UpperCamelCase_: List[str] = np.ones((64, 64) , dtype=np.floataa ) UpperCamelCase_: str = 0 if str(__A ).startswith("""mps""" ): UpperCamelCase_: str = torch.manual_seed(__A ) else: UpperCamelCase_: int = torch.Generator(device=__A ).manual_seed(__A ) UpperCamelCase_: List[str] = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = """cpu""" UpperCamelCase_: List[str] = self.get_dummy_components() UpperCamelCase_: Any = self.pipeline_class(**__A ) UpperCamelCase_: Optional[int] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase_: List[Any] = pipe(**self.get_dummy_inputs(__A ) ) UpperCamelCase_: List[Any] = output.images UpperCamelCase_: Tuple = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] UpperCamelCase_: Tuple = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Tuple = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowerCAmelCase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) UpperCamelCase_: Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCamelCase_: Tuple = np.ones((768, 768) , dtype=np.floataa ) UpperCamelCase_: List[Any] = 0 UpperCamelCase_: Optional[Any] = """a hat""" UpperCamelCase_: str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__A ) UpperCamelCase_: str = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) UpperCamelCase_: Optional[int] = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) UpperCamelCase_: Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase_, UpperCamelCase_: Tuple = pipe_prior( __A , generator=__A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase_: Tuple = pipeline( __A , image=__A , mask_image=__A , image_embeds=__A , negative_image_embeds=__A , generator=__A , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) UpperCamelCase_: Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__A , __A )
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
import random def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: str = [], [], [] for element in data: if element < pivot: less.append(_UpperCAmelCase ) elif element > pivot: greater.append(_UpperCAmelCase ) else: equal.append(_UpperCAmelCase ) return less, equal, greater def A__ ( lowerCamelCase , lowerCamelCase ) -> List[Any]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_UpperCAmelCase ) or index < 0: return None UpperCamelCase_: List[str] = items[random.randint(0 , len(_UpperCAmelCase ) - 1 )] UpperCamelCase_: Dict = 0 UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = _partition(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_: str = len(_UpperCAmelCase ) UpperCamelCase_: Tuple = len(_UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_UpperCAmelCase , _UpperCAmelCase ) # must be in larger else: return quick_select(_UpperCAmelCase , index - (m + count) )
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = RobertaTokenizer __UpperCamelCase : Tuple = RobertaTokenizerFast __UpperCamelCase : Tuple = True __UpperCamelCase : Dict = {"""cls_token""": """<s>"""} def lowerCAmelCase__ ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase_: Tuple = dict(zip(__a , range(len(__a ) ) ) ) UpperCamelCase_: List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase_: Dict = {'unk_token': '<unk>'} UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase__ ( self : List[str] , **snake_case_ : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : List[Any] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Optional[Any] ): UpperCamelCase_: Any = 'lower newer' UpperCamelCase_: Optional[int] = 'lower newer' return input_text, output_text def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_: Optional[Any] = 'lower newer' UpperCamelCase_: Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase_: Optional[int] = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) UpperCamelCase_: List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase_: Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Tuple = self.tokenizer_class.from_pretrained("""roberta-base""" ) UpperCamelCase_: int = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) UpperCamelCase_: Any = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) UpperCamelCase_: Union[str, Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) UpperCamelCase_: List[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) UpperCamelCase_: str = tokenizer.build_inputs_with_special_tokens(__a ) UpperCamelCase_: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase__ ( self : int ): UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Any = 'Encode this sequence.' UpperCamelCase_: Dict = tokenizer.byte_encoder[' '.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCamelCase_: List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) UpperCamelCase_: Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) UpperCamelCase_: Tuple = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) UpperCamelCase_: Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCamelCase_: Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a ) UpperCamelCase_: List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens UpperCamelCase_: Dict = '<mask>' tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(__a ) UpperCamelCase_: int = 'Encode <mask> sequence' UpperCamelCase_: List[Any] = 'Encode <mask>sequence' UpperCamelCase_: str = tokenizer.encode(__a ) UpperCamelCase_: str = encoded.index(__a ) UpperCamelCase_: Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) UpperCamelCase_: Dict = tokenizer.encode(__a ) UpperCamelCase_: int = encoded.index(__a ) UpperCamelCase_: Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCamelCase_: Dict = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCamelCase_: Any = 'A, <mask> AllenNLP sentence.' UpperCamelCase_: Optional[int] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) UpperCamelCase_: int = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCamelCase_: List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCamelCase_: int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase__ ( self : Tuple ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase_: Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase_: Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase__ ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase_: str = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase_: Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) UpperCamelCase_: str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) UpperCamelCase_: Dict = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: Optional[int] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) UpperCamelCase_: Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: List[str] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) UpperCamelCase_: Any = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase_: List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: List[str] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) UpperCamelCase_: List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) UpperCamelCase_: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCamelCase_: Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from __future__ import annotations from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , snake_case_ : int , snake_case_ : int , snake_case_ : float = 0 ): UpperCamelCase_, UpperCamelCase_: Dict = row, column UpperCamelCase_: Union[str, Any] = [[default_value for c in range(__A )] for r in range(__A )] def __str__( self : int ): UpperCamelCase_: Any = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier UpperCamelCase_: Union[str, Any] = 0 for row_vector in self.array: for obj in row_vector: UpperCamelCase_: Optional[Any] = max(__A , len(str(__A ) ) ) UpperCamelCase_: Union[str, Any] = f'''%{max_element_length}s''' # Make string and return def single_line(snake_case_ : list[float] ) -> str: nonlocal string_format_identifier UpperCamelCase_: List[str] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__A ) for row_vector in self.array ) return s def __repr__( self : List[str] ): return str(self ) def lowerCAmelCase__ ( self : str , snake_case_ : tuple[int, int] ): if not (isinstance(__A , (list, tuple) ) and len(__A ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , snake_case_ : tuple[int, int] ): assert self.validate_indicies(__A ) return self.array[loc[0]][loc[1]] def __setitem__( self : Any , snake_case_ : tuple[int, int] , snake_case_ : float ): assert self.validate_indicies(__A ) UpperCamelCase_: Any = value def __add__( self : int , snake_case_ : Matrix ): assert isinstance(__A , __A ) assert self.row == another.row and self.column == another.column # Add UpperCamelCase_: Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase_: str = self[r, c] + another[r, c] return result def __neg__( self : Dict ): UpperCamelCase_: str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase_: Optional[int] = -self[r, c] return result def __sub__( self : List[Any] , snake_case_ : Matrix ): return self + (-another) def __mul__( self : List[str] , snake_case_ : int | float | Matrix ): if isinstance(__A , (int, float) ): # Scalar multiplication UpperCamelCase_: List[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase_: Optional[Any] = self[r, c] * another return result elif isinstance(__A , __A ): # Matrix multiplication assert self.column == another.row UpperCamelCase_: Any = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCamelCase_: Dict = f'''Unsupported type given for another ({type(__A )})''' raise TypeError(__A ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase_: List[Any] = self[r, c] return result def lowerCAmelCase__ ( self : List[str] , snake_case_ : Matrix , snake_case_ : Matrix ): assert isinstance(__A , __A ) and isinstance(__A , __A ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCamelCase_: Union[str, Any] = v.transpose() UpperCamelCase_: Optional[int] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A__ ( ) -> int: UpperCamelCase_: Optional[int] = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCamelCase_: Union[str, Any] = 1 print(F'''a^(-1) is {ainv}''' ) # u, v UpperCamelCase_: Optional[Any] = Matrix(3 , 1 , 0 ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = 1, 2, -3 UpperCamelCase_: Dict = Matrix(3 , 1 , 0 ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Union[str, Any] = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowercase , _lowercase )}''' ) def A__ ( ) -> Union[str, Any]: import doctest doctest.testmod() testa()
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
from __future__ import annotations import requests lowerCamelCase_ : int = set( """approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports""".split() ) def A__ ( lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = "new" , lowerCamelCase = None ) -> str: UpperCamelCase_: Union[str, Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_lowerCamelCase ) - valid_terms ) ): UpperCamelCase_: int = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(_lowerCamelCase ) UpperCamelCase_: Optional[int] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_29: raise requests.HTTPError UpperCamelCase_: Union[str, Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_lowerCamelCase )} UpperCamelCase_: Union[str, Any] = {} for id_ in range(_lowerCamelCase ): UpperCamelCase_: Optional[Any] = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCamelCase_ : Dict = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: List[Any] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) lowerCamelCase_ : Any = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: Dict = list(s_dict.keys() ) for key in keys: UpperCamelCase_: List[str] = key for k, v in WHISPER_MAPPING.items(): if k in key: UpperCamelCase_: List[Any] = new_key.replace(lowercase_ , lowercase_ ) print(F'''{key} -> {new_key}''' ) UpperCamelCase_: Tuple = s_dict.pop(lowercase_ ) return s_dict def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Any = emb.weight.shape UpperCamelCase_: str = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) UpperCamelCase_: Union[str, Any] = emb.weight.data return lin_layer def A__ ( lowerCamelCase , lowerCamelCase ) -> bytes: os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCamelCase_: Tuple = os.path.basename(lowercase_ ) UpperCamelCase_: int = url.split("""/""" )[-2] UpperCamelCase_: Dict = os.path.join(lowercase_ , lowercase_ ) if os.path.exists(lowercase_ ) and not os.path.isfile(lowercase_ ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(lowercase_ ): UpperCamelCase_: Optional[Any] = open(lowercase_ , """rb""" ).read() if hashlib.shaaaa(lowercase_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(lowercase_ ) as source, open(lowercase_ , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowercase_ , unit_divisor=10_24 ) as loop: while True: UpperCamelCase_: Any = source.read(81_92 ) if not buffer: break output.write(lowercase_ ) loop.update(len(lowercase_ ) ) UpperCamelCase_: Dict = open(lowercase_ , """rb""" ).read() if hashlib.shaaaa(lowercase_ ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[Any]: if ".pt" not in checkpoint_path: UpperCamelCase_: Tuple = _download(_MODELS[checkpoint_path] ) else: UpperCamelCase_: Optional[int] = torch.load(lowercase_ , map_location="""cpu""" ) UpperCamelCase_: str = original_checkpoint["""dims"""] UpperCamelCase_: List[Any] = original_checkpoint["""model_state_dict"""] UpperCamelCase_: Optional[Any] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(lowercase_ ) rename_keys(lowercase_ ) UpperCamelCase_: List[str] = True UpperCamelCase_: Optional[Any] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] UpperCamelCase_: List[Any] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowercase_ , decoder_ffn_dim=lowercase_ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) UpperCamelCase_: Optional[Any] = WhisperForConditionalGeneration(lowercase_ ) UpperCamelCase_: List[Any] = model.model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0 and not set(lowercase_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCamelCase_: Any = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCamelCase_: str = proj_out_weights model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ : Tuple = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase : Dict = ['image_processor', 'tokenizer'] __UpperCamelCase : Optional[int] = 'ChineseCLIPImageProcessor' __UpperCamelCase : Union[str, Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Tuple , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=None , **snake_case_ : Dict ): UpperCamelCase_: Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _a , ) UpperCamelCase_: int = kwargs.pop("""feature_extractor""" ) UpperCamelCase_: Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a , _a ) UpperCamelCase_: List[Any] = self.image_processor def __call__( self : int , snake_case_ : Optional[Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=None , **snake_case_ : Optional[int] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase_: List[str] = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: UpperCamelCase_: List[Any] = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: UpperCamelCase_: List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def lowerCAmelCase__ ( self : Optional[int] , *snake_case_ : List[str] , **snake_case_ : List[Any] ): return self.tokenizer.batch_decode(*_a , **_a ) def lowerCAmelCase__ ( self : Any , *snake_case_ : Tuple , **snake_case_ : str ): return self.tokenizer.decode(*_a , **_a ) @property def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = self.tokenizer.model_input_names UpperCamelCase_: Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self : List[Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _a , ) return self.image_processor_class
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowerCamelCase_ : Optional[int] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowerCamelCase_ : Dict = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = BartTokenizer def __init__( self : Any , snake_case_ : str=None , snake_case_ : str=None , snake_case_ : Tuple=None , snake_case_ : List[Any]="replace" , snake_case_ : List[Any]="<s>" , snake_case_ : List[Any]="</s>" , snake_case_ : Union[str, Any]="</s>" , snake_case_ : List[Any]="<s>" , snake_case_ : List[Any]="<unk>" , snake_case_ : int="<pad>" , snake_case_ : int="<mask>" , snake_case_ : str=False , snake_case_ : Optional[int]=True , **snake_case_ : Optional[int] , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCamelCase_: Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: UpperCamelCase_: Optional[int] = getattr(UpperCamelCase__ , pre_tok_state.pop("""type""" ) ) UpperCamelCase_: List[Any] = add_prefix_space UpperCamelCase_: int = pre_tok_class(**UpperCamelCase__ ) UpperCamelCase_: int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase_: Dict = """post_processor""" UpperCamelCase_: Any = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: UpperCamelCase_: Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase_: str = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase_: List[Any] = tuple(state["""cls"""] ) UpperCamelCase_: List[Any] = False if state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: UpperCamelCase_: Dict = add_prefix_space UpperCamelCase_: Tuple = True if state.get("""trim_offsets""" , UpperCamelCase__ ) != trim_offsets: UpperCamelCase_: Optional[int] = trim_offsets UpperCamelCase_: str = True if changes_to_apply: UpperCamelCase_: str = getattr(UpperCamelCase__ , state.pop("""type""" ) ) UpperCamelCase_: List[str] = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property def lowerCAmelCase__ ( self : Optional[Any] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self : Any , snake_case_ : Optional[Any] ): UpperCamelCase_: List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value UpperCamelCase_: Optional[int] = value def lowerCAmelCase__ ( self : Tuple , *snake_case_ : Tuple , **snake_case_ : Dict ): UpperCamelCase_: List[str] = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : List[Any] ): UpperCamelCase_: List[str] = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Union[str, Any] = None ): UpperCamelCase_: Optional[int] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowerCAmelCase__ ( self : Any , snake_case_ : Any , snake_case_ : List[str]=None ): UpperCamelCase_: Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : Tuple , snake_case_ : str , snake_case_ : Optional[int] = None ): UpperCamelCase_: List[Any] = [self.sep_token_id] UpperCamelCase_: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } lowerCamelCase_ : List[str] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: str = {} with open(lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(lowerCamelCase ): UpperCamelCase_: Tuple = line.strip() if line: UpperCamelCase_: int = line.split() UpperCamelCase_: List[str] = line_number UpperCamelCase_: Tuple = words[0] UpperCamelCase_: Union[str, Any] = value return result def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: for attribute in key.split(""".""" ): UpperCamelCase_: Optional[Any] = getattr(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCamelCase_: Dict = """param""" if weight_type is not None and weight_type != "param": UpperCamelCase_: Any = getattr(lowerCamelCase , lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[int] = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCamelCase_: Dict = getattr(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: Union[str, Any] = value[0] else: UpperCamelCase_: List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase_: int = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCamelCase_: str = getattr(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = value else: UpperCamelCase_: Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase ): UpperCamelCase_: Union[str, Any] = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCamelCase_: List[str] = """param""" if weight_type is not None and weight_type != "param": UpperCamelCase_: Union[str, Any] = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: List[str] = """.""".join([key, hf_param_name] ) else: UpperCamelCase_: Optional[Any] = key UpperCamelCase_: Tuple = value if """lm_head""" in full_key else value[0] lowerCamelCase_ : Dict = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ) -> List[str]: UpperCamelCase_: int = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Union[str, Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase_: Any = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(lowerCamelCase )[0].split(""".""" )[-2] UpperCamelCase_: Union[str, Any] = mapped_key.replace("""*""" , lowerCamelCase ) if "weight_g" in name: UpperCamelCase_: Dict = """weight_g""" elif "weight_v" in name: UpperCamelCase_: Optional[int] = """weight_v""" elif "bias" in name: UpperCamelCase_: Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: Dict = """weight""" else: UpperCamelCase_: Optional[int] = None if hf_dict is not None: rename_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return is_used return is_used def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = [] UpperCamelCase_: Optional[Any] = fairseq_model.state_dict() UpperCamelCase_: int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase_: Union[str, Any] = True else: UpperCamelCase_: List[str] = load_wavaveca_layer(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: UpperCamelCase_: List[Any] = full_name.split("""conv_layers.""" )[-1] UpperCamelCase_: Optional[Any] = name.split(""".""" ) UpperCamelCase_: Dict = int(items[0] ) UpperCamelCase_: Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase ) @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=False ) -> int: if config_path is not None: UpperCamelCase_: str = WavaVecaConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: Optional[int] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: Optional[Any] = read_txt_into_dict(lowerCamelCase ) UpperCamelCase_: List[Any] = idalabel UpperCamelCase_: int = WavaVecaForSequenceClassification(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) feature_extractor.save_pretrained(lowerCamelCase ) elif is_finetuned: if dict_path: UpperCamelCase_: str = Dictionary.load(lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: int = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: str = target_dict.eos_index UpperCamelCase_: Any = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(lowerCamelCase , """vocab.json""" ) if not os.path.isdir(lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase ) ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) UpperCamelCase_: Dict = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: List[str] = 1 with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Tuple = WavaVecaCTCTokenizer( lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase , ) UpperCamelCase_: List[str] = True if config.feat_extract_norm == """layer""" else False UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) UpperCamelCase_: Optional[Any] = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) UpperCamelCase_: Optional[Any] = WavaVecaForCTC(lowerCamelCase ) else: UpperCamelCase_: Optional[Any] = WavaVecaForPreTraining(lowerCamelCase ) if is_finetuned or is_seq_class: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCamelCase_: Any = argparse.Namespace(task="""audio_pretraining""" ) UpperCamelCase_: Optional[int] = fairseq.tasks.setup_task(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase ) UpperCamelCase_: Tuple = model[0].eval() recursively_load_weights(lowerCamelCase , lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) lowerCamelCase_ : Optional[Any] = parser.parse_args() lowerCamelCase_ : Optional[int] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> None: UpperCamelCase_: int = len(SCREAMING_SNAKE_CASE_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(SCREAMING_SNAKE_CASE_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) def A__ ( lowerCamelCase ) -> None: UpperCamelCase_: list[list[str]] = [] depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Print all the boards for board in boards: for column in board: print(SCREAMING_SNAKE_CASE_ ) print("""""" ) print(len(SCREAMING_SNAKE_CASE_ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Union[str, Any] = XGLMConfig __UpperCamelCase : int = {} __UpperCamelCase : str = """gelu""" def __init__( self : Tuple , snake_case_ : int , snake_case_ : str=14 , snake_case_ : Tuple=7 , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : List[str]=True , snake_case_ : int=99 , snake_case_ : Optional[int]=32 , snake_case_ : Any=2 , snake_case_ : Optional[Any]=4 , snake_case_ : Optional[int]=37 , snake_case_ : List[Any]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Optional[int]=512 , snake_case_ : Tuple=0.02 , ): UpperCamelCase_: str = parent UpperCamelCase_: Tuple = batch_size UpperCamelCase_: Optional[int] = seq_length UpperCamelCase_: List[Any] = is_training UpperCamelCase_: str = use_input_mask UpperCamelCase_: Optional[Any] = use_labels UpperCamelCase_: List[str] = vocab_size UpperCamelCase_: Optional[int] = d_model UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Dict = ffn_dim UpperCamelCase_: Any = activation_function UpperCamelCase_: Optional[Any] = activation_dropout UpperCamelCase_: Dict = attention_dropout UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: List[Any] = None UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: str = 2 UpperCamelCase_: List[str] = 1 def lowerCAmelCase__ ( self : List[Any] ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[str] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase_: Union[str, Any] = None if self.use_input_mask: UpperCamelCase_: Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: Optional[Any] = self.get_config() UpperCamelCase_: Tuple = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase__ ( self : List[str] ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case_ , ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: int = self.prepare_config_and_inputs() ( UpperCamelCase_ ): Tuple = config_and_inputs UpperCamelCase_: Tuple = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : List[Any] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Any = False __UpperCamelCase : int = False __UpperCamelCase : List[str] = False def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[int] = TFXGLMModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def lowerCAmelCase__ ( self : List[str] ): self.config_tester.run_common_tests() @slow def lowerCAmelCase__ ( self : List[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Tuple = TFXGLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def lowerCAmelCase__ ( self : Dict ): super().test_resize_token_embeddings() @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[Any]=True ): UpperCamelCase_: Union[str, Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase_: Dict = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase_: int = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on UpperCamelCase_: Dict = model.generate(snake_case_ , do_sample=snake_case_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase_: str = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) UpperCamelCase_: int = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) UpperCamelCase_: List[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): UpperCamelCase_: Tuple = model.generate(snake_case_ , do_sample=snake_case_ , seed=[7, 0] ) UpperCamelCase_: Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case_ ) UpperCamelCase_: int = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase_: Union[str, Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase_: Any = 'left' # use different length sentences to test batching UpperCamelCase_: List[Any] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase_: Dict = tokenizer(snake_case_ , return_tensors="""tf""" , padding=snake_case_ ) UpperCamelCase_: int = inputs['input_ids'] UpperCamelCase_: Dict = model.generate(input_ids=snake_case_ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) UpperCamelCase_: Union[str, Any] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids UpperCamelCase_: int = model.generate(input_ids=snake_case_ , max_new_tokens=12 ) UpperCamelCase_: Tuple = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids UpperCamelCase_: Any = model.generate(input_ids=snake_case_ , max_new_tokens=12 ) UpperCamelCase_: List[str] = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) UpperCamelCase_: Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] )
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
import numpy as np lowerCamelCase_ : Optional[int] = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] ): UpperCamelCase_: Any = np.array(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Optional[Any] = np.where(letter == self.SQUARE ) UpperCamelCase_: List[str] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCAmelCase__ ( self : Dict , snake_case_ : List[str] , snake_case_ : List[Any] ): UpperCamelCase_: int = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[Any] ): UpperCamelCase_: int = message.lower() UpperCamelCase_: Tuple = message.replace(""" """ , """""" ) UpperCamelCase_: int = message.replace("""j""" , """i""" ) UpperCamelCase_: Any = np.empty((2, len(snake_case_ )) ) for letter_index in range(len(snake_case_ ) ): UpperCamelCase_: Optional[int] = self.letter_to_numbers(message[letter_index] ) UpperCamelCase_: Union[str, Any] = numbers[0] UpperCamelCase_: Union[str, Any] = numbers[1] UpperCamelCase_: Optional[int] = first_step.reshape(2 * len(snake_case_ ) ) UpperCamelCase_: int = '' for numbers_index in range(len(snake_case_ ) ): UpperCamelCase_: str = int(second_step[numbers_index * 2] ) UpperCamelCase_: str = int(second_step[(numbers_index * 2) + 1] ) UpperCamelCase_: Tuple = self.numbers_to_letter(snake_case_ , snake_case_ ) UpperCamelCase_: Tuple = encoded_message + letter return encoded_message def lowerCAmelCase__ ( self : int , snake_case_ : List[str] ): UpperCamelCase_: Optional[int] = message.lower() message.replace(""" """ , """""" ) UpperCamelCase_: Tuple = np.empty(2 * len(snake_case_ ) ) for letter_index in range(len(snake_case_ ) ): UpperCamelCase_: Optional[Any] = self.letter_to_numbers(message[letter_index] ) UpperCamelCase_: Optional[int] = numbers[0] UpperCamelCase_: Dict = numbers[1] UpperCamelCase_: Optional[int] = first_step.reshape((2, len(snake_case_ )) ) UpperCamelCase_: List[str] = '' for numbers_index in range(len(snake_case_ ) ): UpperCamelCase_: List[Any] = int(second_step[0, numbers_index] ) UpperCamelCase_: Optional[int] = int(second_step[1, numbers_index] ) UpperCamelCase_: Tuple = self.numbers_to_letter(snake_case_ , snake_case_ ) UpperCamelCase_: str = decoded_message + letter return decoded_message
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = CTRLTokenizer __UpperCamelCase : str = False __UpperCamelCase : str = False def lowerCAmelCase__ ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCamelCase_: Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCamelCase_: List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCamelCase_: Dict = {"""unk_token""": """<unk>"""} UpperCamelCase_: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def lowerCAmelCase__ ( self : int , **snake_case_ : List[Any] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Dict = """adapt react readapt apt""" UpperCamelCase_: List[Any] = """adapt react readapt apt""" return input_text, output_text def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_: Optional[Any] = """adapt react readapt apt""" UpperCamelCase_: Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCamelCase_: Optional[int] = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCamelCase_: str = tokens + [tokenizer.unk_token] UpperCamelCase_: List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Optional[Any] = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( __a ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = '''bart''' __UpperCamelCase : Optional[int] = ['''past_key_values'''] __UpperCamelCase : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , snake_case_ : Union[str, Any]=5_0265 , snake_case_ : int=1024 , snake_case_ : Optional[Any]=12 , snake_case_ : Dict=4096 , snake_case_ : Dict=16 , snake_case_ : int=12 , snake_case_ : Optional[Any]=4096 , snake_case_ : Optional[Any]=16 , snake_case_ : Tuple=0.0 , snake_case_ : Dict=0.0 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Dict=1024 , snake_case_ : Any=0.1 , snake_case_ : List[Any]=0.0 , snake_case_ : str=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Optional[int]=0.0 , snake_case_ : List[str]=False , snake_case_ : Tuple=True , snake_case_ : List[Any]=3 , snake_case_ : str=1 , snake_case_ : Tuple=0 , snake_case_ : Union[str, Any]=2 , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=2 , snake_case_ : List[str]=2 , **snake_case_ : Tuple , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: Dict = d_model UpperCamelCase_: Optional[int] = encoder_ffn_dim UpperCamelCase_: Union[str, Any] = encoder_layers UpperCamelCase_: List[Any] = encoder_attention_heads UpperCamelCase_: Union[str, Any] = decoder_ffn_dim UpperCamelCase_: List[Any] = decoder_layers UpperCamelCase_: Any = decoder_attention_heads UpperCamelCase_: Any = dropout UpperCamelCase_: List[Any] = attention_dropout UpperCamelCase_: Any = activation_dropout UpperCamelCase_: Tuple = activation_function UpperCamelCase_: List[str] = init_std UpperCamelCase_: Dict = encoder_layerdrop UpperCamelCase_: Optional[Any] = decoder_layerdrop UpperCamelCase_: Tuple = classifier_dropout UpperCamelCase_: Tuple = use_cache UpperCamelCase_: Union[str, Any] = encoder_layers UpperCamelCase_: int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , snake_case__ ): UpperCamelCase_: str = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" ) class _UpperCamelCase ( __a ): '''simple docstring''' @property def lowerCAmelCase__ ( self : List[str] ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase_: Union[str, Any] = {0: """batch"""} UpperCamelCase_: List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCamelCase_: List[Any] = {0: """batch""", 1: """decoder_sequence"""} UpperCamelCase_: int = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase_: int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase_, UpperCamelCase_: Optional[Any] = self.num_layers for i in range(snake_case__ ): UpperCamelCase_: Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase_: Any = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCamelCase_: List[str] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCAmelCase__ ( self : int ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: Optional[Any] = super().outputs else: UpperCamelCase_: List[Any] = super(snake_case__ , self ).outputs if self.use_past: UpperCamelCase_, UpperCamelCase_: Any = self.num_layers for i in range(snake_case__ ): UpperCamelCase_: Dict = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase_: List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): UpperCamelCase_: int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Generate decoder inputs UpperCamelCase_: Tuple = seq_length if not self.use_past else 1 UpperCamelCase_: int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_: Any = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase_: List[str] = dict(**snake_case__ , **snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase_, UpperCamelCase_: Dict = common_inputs["""input_ids"""].shape UpperCamelCase_: str = common_inputs["""decoder_input_ids"""].shape[1] UpperCamelCase_, UpperCamelCase_: List[Any] = self.num_attention_heads UpperCamelCase_: str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_: List[Any] = decoder_seq_length + 3 UpperCamelCase_: List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase_: Union[str, Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(snake_case__ , snake_case__ )] , dim=1 ) UpperCamelCase_: Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase_, UpperCamelCase_: Union[str, Any] = self.num_layers UpperCamelCase_: Tuple = min(snake_case__ , snake_case__ ) UpperCamelCase_: Any = max(snake_case__ , snake_case__ ) - min_num_layers UpperCamelCase_: Tuple = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(snake_case__ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), ) ) # TODO: test this. UpperCamelCase_: int = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(snake_case__ , snake_case__ ): common_inputs["past_key_values"].append((torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) ) return common_inputs def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): UpperCamelCase_: str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase_, UpperCamelCase_: Union[str, Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCamelCase_: Optional[Any] = seqlen + 2 UpperCamelCase_, UpperCamelCase_: Optional[Any] = self.num_layers UpperCamelCase_, UpperCamelCase_: Tuple = self.num_attention_heads UpperCamelCase_: Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_: Tuple = common_inputs["""attention_mask"""].dtype UpperCamelCase_: Union[str, Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) UpperCamelCase_: Any = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(snake_case__ ) ] return common_inputs def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase_: List[Any] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase_: str = tokenizer.num_special_tokens_to_add(snake_case__ ) UpperCamelCase_: str = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase_: str = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase_: int = dict(tokenizer(snake_case__ , return_tensors=snake_case__ ) ) return common_inputs def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) elif self.task == "causal-lm": UpperCamelCase_: Tuple = self._generate_dummy_inputs_for_causal_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) else: UpperCamelCase_: List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) return common_inputs def lowerCAmelCase__ ( self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: Any = super()._flatten_past_key_values_(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: UpperCamelCase_: Optional[Any] = super(snake_case__ , self )._flatten_past_key_values_( snake_case__ , snake_case__ , snake_case__ , snake_case__ )
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) class _UpperCamelCase ( __lowerCamelCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = '''encoder-decoder''' __UpperCamelCase : int = True def __init__( self : List[str] , **snake_case_ : str ): super().__init__(**a_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCamelCase_: Tuple = kwargs.pop("""encoder""" ) UpperCamelCase_: List[str] = encoder_config.pop("""model_type""" ) UpperCamelCase_: List[Any] = kwargs.pop("""decoder""" ) UpperCamelCase_: List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig UpperCamelCase_: Tuple = AutoConfig.for_model(a_ , **a_ ) UpperCamelCase_: Optional[int] = AutoConfig.for_model(a_ , **a_ ) UpperCamelCase_: List[Any] = True @classmethod def lowerCAmelCase__ ( cls : Optional[int] , snake_case_ : Dict , snake_case_ : List[Any] , **snake_case_ : str ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase_: Dict = True UpperCamelCase_: Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: int = copy.deepcopy(self.__dict__ ) UpperCamelCase_: str = self.encoder.to_dict() UpperCamelCase_: Any = self.decoder.to_dict() UpperCamelCase_: List[Any] = self.__class__.model_type return output
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Union[str, Any] = [0] * len(_snake_case ) for i in range(1 , len(_snake_case ) ): # use last results for better performance - dynamic programming UpperCamelCase_: List[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCamelCase_: List[str] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCamelCase_: Union[str, Any] = j return prefix_result def A__ ( lowerCamelCase ) -> Tuple: return max(prefix_function(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[Any] ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , """env""" ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Optional[int] ): UpperCamelCase_: List[str] = f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings UpperCamelCase_: List[str] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_SCREAMING_SNAKE_CASE , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_SCREAMING_SNAKE_CASE , py_version="""py36""" , ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Optional[int] ): TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int ): # create estimator UpperCamelCase_: Any = self.create_estimator(_SCREAMING_SNAKE_CASE ) # run training estimator.fit() # result dataframe UpperCamelCase_: Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase_: List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase_: Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase_: int = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _SCREAMING_SNAKE_CASE )
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
from typing import List import numpy as np def A__ ( lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: Any = {key: len(A_ ) for key, value in gen_kwargs.items() if isinstance(A_ , A_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) UpperCamelCase_: Any = max(lists_lengths.values() , default=0 ) return max(1 , A_ ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Dict = [] for group_idx in range(A_ ): UpperCamelCase_: Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCamelCase_: Dict = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCamelCase_: Dict = range(A_ , start + num_shards_to_add ) shards_indices_per_group.append(A_ ) return shards_indices_per_group def A__ ( lowerCamelCase , lowerCamelCase ) -> Any: UpperCamelCase_: str = _number_of_shards_in_gen_kwargs(A_ ) if num_shards == 1: return [dict(A_ )] else: UpperCamelCase_: Dict = _distribute_shards(num_shards=A_ , max_num_jobs=A_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(A_ , A_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(A_ ) ) ] def A__ ( lowerCamelCase ) -> Any: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , A_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A__ ( lowerCamelCase , lowerCamelCase ) -> Any: UpperCamelCase_: List[Any] = {len(A_ ) for value in gen_kwargs.values() if isinstance(A_ , A_ )} UpperCamelCase_: Any = {} for size in list_sizes: UpperCamelCase_: int = list(range(A_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCamelCase_: Optional[Any] = dict(A_ ) for key, value in shuffled_kwargs.items(): if isinstance(A_ , A_ ): UpperCamelCase_: Optional[Any] = [value[i] for i in indices_per_size[len(A_ )]] return shuffled_kwargs
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Any , snake_case_ : str ): UpperCamelCase_: str = jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: List[Any] = 20 UpperCamelCase_: str = self._get_uniform_logits(batch_size=2 , length=_A ) # tweak scores to not be uniform anymore UpperCamelCase_: int = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCamelCase_: int = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCamelCase_: List[str] = jax.nn.softmax(_A , axis=-1 ) UpperCamelCase_: Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCamelCase_: Tuple = jax.nn.softmax(temp_dist_warper_sharper(_A , scores.copy() , cur_len=_A ) , axis=-1 ) UpperCamelCase_: str = jax.nn.softmax(temp_dist_warper_smoother(_A , scores.copy() , cur_len=_A ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[str] = None UpperCamelCase_: Dict = 10 UpperCamelCase_: Optional[Any] = 2 # create ramp distribution UpperCamelCase_: Union[str, Any] = np.broadcast_to(np.arange(_A )[None, :] , (batch_size, vocab_size) ).copy() UpperCamelCase_: Any = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCamelCase_: List[Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase_: List[Any] = top_k_warp(_A , _A , cur_len=_A ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCamelCase_: List[str] = 5 UpperCamelCase_: int = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCamelCase_: List[str] = np.broadcast_to(np.arange(_A )[None, :] , (batch_size, length) ).copy() UpperCamelCase_: Optional[int] = top_k_warp_safety_check(_A , _A , cur_len=_A ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = None UpperCamelCase_: Optional[Any] = 10 UpperCamelCase_: Optional[int] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCamelCase_: List[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCamelCase_: Any = FlaxTopPLogitsWarper(0.8 ) UpperCamelCase_: Any = np.exp(top_p_warp(_A , _A , cur_len=_A ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCamelCase_: Optional[int] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCamelCase_: str = np.broadcast_to(np.arange(_A )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCamelCase_: Any = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept UpperCamelCase_: Optional[Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCamelCase_: int = top_p_warp(_A , _A , cur_len=_A ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = 20 UpperCamelCase_: List[Any] = 4 UpperCamelCase_: Dict = 0 UpperCamelCase_: Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_A ) # check that min length is applied at length 5 UpperCamelCase_: Optional[int] = ids_tensor((batch_size, 20) , vocab_size=20 ) UpperCamelCase_: str = 5 UpperCamelCase_: Union[str, Any] = self._get_uniform_logits(_A , _A ) UpperCamelCase_: str = min_dist_processor(_A , _A , cur_len=_A ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 UpperCamelCase_: Tuple = self._get_uniform_logits(_A , _A ) UpperCamelCase_: Any = 15 UpperCamelCase_: Dict = min_dist_processor(_A , _A , cur_len=_A ) self.assertFalse(jnp.isinf(_A ).any() ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Optional[Any] = 20 UpperCamelCase_: int = 4 UpperCamelCase_: int = 0 UpperCamelCase_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_A ) # check that all scores are -inf except the bos_token_id score UpperCamelCase_: Optional[int] = ids_tensor((batch_size, 1) , vocab_size=20 ) UpperCamelCase_: Tuple = 1 UpperCamelCase_: Tuple = self._get_uniform_logits(_A , _A ) UpperCamelCase_: Optional[int] = logits_processor(_A , _A , cur_len=_A ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCamelCase_: str = 3 UpperCamelCase_: Optional[int] = self._get_uniform_logits(_A , _A ) UpperCamelCase_: Tuple = logits_processor(_A , _A , cur_len=_A ) self.assertFalse(jnp.isinf(_A ).any() ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = 20 UpperCamelCase_: Optional[Any] = 4 UpperCamelCase_: Dict = 0 UpperCamelCase_: Optional[Any] = 5 UpperCamelCase_: str = FlaxForcedEOSTokenLogitsProcessor(max_length=_A , eos_token_id=_A ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCamelCase_: int = ids_tensor((batch_size, 4) , vocab_size=20 ) UpperCamelCase_: int = 4 UpperCamelCase_: Union[str, Any] = self._get_uniform_logits(_A , _A ) UpperCamelCase_: List[str] = logits_processor(_A , _A , cur_len=_A ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCamelCase_: Any = 3 UpperCamelCase_: Union[str, Any] = self._get_uniform_logits(_A , _A ) UpperCamelCase_: Optional[Any] = logits_processor(_A , _A , cur_len=_A ) self.assertFalse(jnp.isinf(_A ).any() ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: int = 4 UpperCamelCase_: List[str] = 10 UpperCamelCase_: int = 15 UpperCamelCase_: Any = 2 UpperCamelCase_: Dict = 1 UpperCamelCase_: Optional[int] = 15 # dummy input_ids and scores UpperCamelCase_: Union[str, Any] = ids_tensor((batch_size, sequence_length) , _A ) UpperCamelCase_: str = input_ids.copy() UpperCamelCase_: Union[str, Any] = self._get_uniform_logits(_A , _A ) UpperCamelCase_: int = scores.copy() # instantiate all dist processors UpperCamelCase_: List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase_: Optional[int] = FlaxTopKLogitsWarper(3 ) UpperCamelCase_: Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase_: List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_A ) UpperCamelCase_: Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_A ) UpperCamelCase_: Any = FlaxForcedEOSTokenLogitsProcessor(max_length=_A , eos_token_id=_A ) UpperCamelCase_: List[str] = 10 # no processor list UpperCamelCase_: Dict = temp_dist_warp(_A , _A , cur_len=_A ) UpperCamelCase_: Optional[int] = top_k_warp(_A , _A , cur_len=_A ) UpperCamelCase_: Dict = top_p_warp(_A , _A , cur_len=_A ) UpperCamelCase_: int = min_dist_proc(_A , _A , cur_len=_A ) UpperCamelCase_: List[Any] = bos_dist_proc(_A , _A , cur_len=_A ) UpperCamelCase_: Optional[int] = eos_dist_proc(_A , _A , cur_len=_A ) # with processor list UpperCamelCase_: Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase_: List[str] = processor(_A , _A , cur_len=_A ) # scores should be equal self.assertTrue(jnp.allclose(_A , _A , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: int = 4 UpperCamelCase_: List[Any] = 10 UpperCamelCase_: Tuple = 15 UpperCamelCase_: Union[str, Any] = 2 UpperCamelCase_: Optional[int] = 1 UpperCamelCase_: List[str] = 15 # dummy input_ids and scores UpperCamelCase_: int = ids_tensor((batch_size, sequence_length) , _A ) UpperCamelCase_: Optional[int] = input_ids.copy() UpperCamelCase_: Optional[Any] = self._get_uniform_logits(_A , _A ) UpperCamelCase_: List[Any] = scores.copy() # instantiate all dist processors UpperCamelCase_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase_: Optional[int] = FlaxTopKLogitsWarper(3 ) UpperCamelCase_: Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_A ) UpperCamelCase_: Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_A ) UpperCamelCase_: Any = FlaxForcedEOSTokenLogitsProcessor(max_length=_A , eos_token_id=_A ) UpperCamelCase_: List[str] = 10 # no processor list def run_no_processor_list(snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Tuple ): UpperCamelCase_: Optional[Any] = temp_dist_warp(_A , _A , cur_len=_A ) UpperCamelCase_: Optional[Any] = top_k_warp(_A , _A , cur_len=_A ) UpperCamelCase_: List[Any] = top_p_warp(_A , _A , cur_len=_A ) UpperCamelCase_: Optional[Any] = min_dist_proc(_A , _A , cur_len=_A ) UpperCamelCase_: Tuple = bos_dist_proc(_A , _A , cur_len=_A ) UpperCamelCase_: Dict = eos_dist_proc(_A , _A , cur_len=_A ) return scores # with processor list def run_processor_list(snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Tuple ): UpperCamelCase_: Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase_: List[Any] = processor(_A , _A , cur_len=_A ) return scores UpperCamelCase_: Dict = jax.jit(_A ) UpperCamelCase_: Optional[Any] = jax.jit(_A ) UpperCamelCase_: List[str] = jitted_run_no_processor_list(_A , _A , _A ) UpperCamelCase_: List[Any] = jitted_run_processor_list(_A , _A , _A ) # scores should be equal self.assertTrue(jnp.allclose(_A , _A , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
def A__ ( lowerCamelCase = 1_00_00_00 ) -> int: UpperCamelCase_: Union[str, Any] = limit + 1 UpperCamelCase_: int = [0] * limit for first_term in range(1 , __snake_case ): for n in range(__snake_case , __snake_case , __snake_case ): UpperCamelCase_: str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCamelCase_: Optional[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ) -> Any: UpperCamelCase_: Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCamelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCamelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCamelCase_ ) return parser.parse_args() def A__ ( ) -> Union[str, Any]: UpperCamelCase_: int = parse_args() # Import training_script as a module. UpperCamelCase_: Tuple = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase_: Optional[Any] = script_fpath.stem UpperCamelCase_: int = importlib.import_module(lowerCamelCase_ ) # Patch sys.argv UpperCamelCase_: str = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase_ : str = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = IFInpaintingPipeline __UpperCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ ( self : Tuple ): return self._get_dummy_components() def lowerCAmelCase__ ( self : str , snake_case_ : Dict , snake_case_ : List[Any]=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: Tuple = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: Dict = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ ( self : Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self : Optional[int] ): self._test_save_load_local() def lowerCAmelCase__ ( self : List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
def A__ ( lowerCamelCase ) -> str: if number > 0: raise ValueError("""input must be a negative integer""" ) UpperCamelCase_: List[str] = len(bin(a__ )[3:] ) UpperCamelCase_: List[str] = bin(abs(a__ ) - (1 << binary_number_length) )[3:] UpperCamelCase_: Dict = ( ( """1""" + """0""" * (binary_number_length - len(a__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : str , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : Optional[Any] = False , ): super().__init__() UpperCamelCase_: List[str] = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase_: Optional[Any] = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase_: str = False UpperCamelCase_: List[str] = nn.Dropout(p=lowerCAmelCase_ ) UpperCamelCase_: int = TaConfig( vocab_size=lowerCAmelCase_ , d_model=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , feed_forward_proj=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , ) UpperCamelCase_: Dict = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): UpperCamelCase_: Any = TaBlock(lowerCAmelCase_ ) self.encoders.append(lowerCAmelCase_ ) UpperCamelCase_: List[Any] = TaLayerNorm(lowerCAmelCase_ ) UpperCamelCase_: Tuple = nn.Dropout(p=lowerCAmelCase_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] ): UpperCamelCase_: Tuple = self.token_embedder(lowerCAmelCase_ ) UpperCamelCase_: List[str] = encoder_input_tokens.shape[1] UpperCamelCase_: List[Any] = torch.arange(lowerCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase_ ) UpperCamelCase_: Union[str, Any] = self.dropout_pre(lowerCAmelCase_ ) # inverted the attention mask UpperCamelCase_: str = encoder_input_tokens.size() UpperCamelCase_: str = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ ) for lyr in self.encoders: UpperCamelCase_: str = lyr(lowerCAmelCase_ , lowerCAmelCase_ )[0] UpperCamelCase_: Optional[Any] = self.layer_norm(lowerCAmelCase_ ) return self.dropout_post(lowerCAmelCase_ ), encoder_inputs_mask
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[str] = ['image_processor', 'tokenizer'] __UpperCamelCase : Any = 'CLIPImageProcessor' __UpperCamelCase : Optional[int] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Union[str, Any] , snake_case_ : str=None , snake_case_ : Union[str, Any]=None , **snake_case_ : Optional[int] ): UpperCamelCase_: Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase__ , ) UpperCamelCase_: List[Any] = kwargs.pop("""feature_extractor""" ) UpperCamelCase_: Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self : Any , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None , snake_case_ : int=None , **snake_case_ : Union[str, Any] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase_: int = self.tokenizer(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if images is not None: UpperCamelCase_: Dict = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None and images is not None: UpperCamelCase_: Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase__ ) , tensor_type=UpperCAmelCase__ ) def lowerCAmelCase__ ( self : List[str] , *snake_case_ : Dict , **snake_case_ : int ): return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , *snake_case_ : Optional[Any] , **snake_case_ : str ): return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.tokenizer.model_input_names UpperCamelCase_: Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self : Tuple ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase__ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : Any ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase__ , ) return self.image_processor
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase ) -> bool: UpperCamelCase_: Union[str, Any] = get_failure_array(lowerCamelCase ) # 2) Step through text searching for pattern UpperCamelCase_: Union[str, Any] = 0, 0 # index into text, pattern while i < len(lowerCamelCase ): if pattern[j] == text[i]: if j == (len(lowerCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase_: str = failure[j - 1] continue i += 1 return False def A__ ( lowerCamelCase ) -> list[int]: UpperCamelCase_: Tuple = [0] UpperCamelCase_: List[str] = 0 UpperCamelCase_: Optional[int] = 1 while j < len(lowerCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase_: Dict = failure[i - 1] continue j += 1 failure.append(lowerCamelCase ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase_ : Any = """abc1abc12""" lowerCamelCase_ : int = """alskfjaldsabc1abc1abc12k23adsfabcabc""" lowerCamelCase_ : Dict = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase_ : str = """ABABX""" lowerCamelCase_ : List[str] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) lowerCamelCase_ : Dict = """AAAB""" lowerCamelCase_ : int = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) lowerCamelCase_ : Optional[int] = """abcdabcy""" lowerCamelCase_ : str = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) lowerCamelCase_ : Tuple = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class _UpperCamelCase ( __lowerCamelCase ): '''simple docstring''' __UpperCamelCase : str = """open-llama""" def __init__( self : Optional[Any] , snake_case_ : Union[str, Any]=10_0000 , snake_case_ : Tuple=4096 , snake_case_ : List[Any]=1_1008 , snake_case_ : Any=32 , snake_case_ : List[str]=32 , snake_case_ : int="silu" , snake_case_ : int=2048 , snake_case_ : List[str]=0.02 , snake_case_ : int=1e-6 , snake_case_ : List[Any]=True , snake_case_ : str=0 , snake_case_ : Any=1 , snake_case_ : str=2 , snake_case_ : List[str]=False , snake_case_ : int=True , snake_case_ : Optional[int]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=True , snake_case_ : str=True , snake_case_ : Union[str, Any]=None , **snake_case_ : List[Any] , ): UpperCamelCase_: str = vocab_size UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: Dict = hidden_size UpperCamelCase_: List[Any] = intermediate_size UpperCamelCase_: Optional[int] = num_hidden_layers UpperCamelCase_: Union[str, Any] = num_attention_heads UpperCamelCase_: Optional[int] = hidden_act UpperCamelCase_: int = initializer_range UpperCamelCase_: Optional[int] = rms_norm_eps UpperCamelCase_: Optional[Any] = use_cache UpperCamelCase_: Dict = kwargs.pop( """use_memorry_efficient_attention""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_dropout_prob UpperCamelCase_: int = use_stable_embedding UpperCamelCase_: Tuple = shared_input_output_embedding UpperCamelCase_: Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def lowerCAmelCase__ ( self : Any ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) UpperCamelCase_: Any = self.rope_scaling.get("""type""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_: str = self.rope_scaling.get("""factor""" , SCREAMING_SNAKE_CASE_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : Tuple = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class _UpperCamelCase ( _snake_case ): '''simple docstring''' __UpperCamelCase : Optional[int] = """pix2struct_text_model""" __UpperCamelCase : Optional[Any] = ["""past_key_values"""] __UpperCamelCase : List[Any] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[Any] , snake_case_ : str=5_0244 , snake_case_ : List[Any]=768 , snake_case_ : Any=64 , snake_case_ : int=2048 , snake_case_ : int=12 , snake_case_ : List[Any]=12 , snake_case_ : Tuple=32 , snake_case_ : Optional[int]=128 , snake_case_ : int=0.1 , snake_case_ : Optional[int]=1e-6 , snake_case_ : List[Any]=1.0 , snake_case_ : List[str]="gelu_new" , snake_case_ : List[str]=0 , snake_case_ : str=False , snake_case_ : List[str]=0 , snake_case_ : str=1 , snake_case_ : List[str]=False , snake_case_ : Dict=True , **snake_case_ : Any , ): UpperCamelCase_: int = vocab_size UpperCamelCase_: List[str] = hidden_size UpperCamelCase_: int = d_kv UpperCamelCase_: Any = d_ff UpperCamelCase_: int = num_layers UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Any = relative_attention_num_buckets UpperCamelCase_: Union[str, Any] = relative_attention_max_distance UpperCamelCase_: str = dropout_rate UpperCamelCase_: str = layer_norm_epsilon UpperCamelCase_: Optional[Any] = initializer_factor UpperCamelCase_: Any = use_cache UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Dict = decoder_start_token_id # for backwards compatibility UpperCamelCase_: List[str] = dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def lowerCAmelCase__ ( cls : Tuple , snake_case_ : Optional[Any] , **snake_case_ : List[str] ): cls._set_token_in_kwargs(snake_case_ ) UpperCamelCase_: Dict = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCamelCase_: int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case_ , **snake_case_ ) class _UpperCamelCase ( _snake_case ): '''simple docstring''' __UpperCamelCase : List[str] = """pix2struct_vision_model""" def __init__( self : Optional[Any] , snake_case_ : int=768 , snake_case_ : Dict=768 , snake_case_ : List[Any]=2048 , snake_case_ : Any=64 , snake_case_ : Optional[Any]=12 , snake_case_ : Optional[int]=12 , snake_case_ : Tuple="gelu_new" , snake_case_ : Optional[int]=1e-6 , snake_case_ : List[Any]=0.0 , snake_case_ : Dict=0.0 , snake_case_ : Optional[int]=1e-10 , snake_case_ : Dict=1.0 , snake_case_ : Any=4096 , snake_case_ : List[str]=32 , snake_case_ : List[str]=128 , **snake_case_ : List[str] , ): super().__init__(**snake_case_ ) UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: Dict = patch_embed_hidden_size UpperCamelCase_: Tuple = d_ff UpperCamelCase_: Tuple = dropout_rate UpperCamelCase_: int = num_hidden_layers UpperCamelCase_: Optional[int] = num_attention_heads UpperCamelCase_: Any = initializer_range UpperCamelCase_: List[str] = initializer_factor UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: Optional[int] = layer_norm_eps UpperCamelCase_: int = dense_act_fn UpperCamelCase_: int = seq_len UpperCamelCase_: Optional[Any] = relative_attention_num_buckets UpperCamelCase_: str = relative_attention_max_distance UpperCamelCase_: List[Any] = d_kv @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , snake_case_ : int , **snake_case_ : Optional[Any] ): cls._set_token_in_kwargs(snake_case_ ) UpperCamelCase_: str = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCamelCase_: Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case_ , **snake_case_ ) class _UpperCamelCase ( _snake_case ): '''simple docstring''' __UpperCamelCase : List[Any] = """pix2struct""" __UpperCamelCase : str = True def __init__( self : Any , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=1.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Union[str, Any]=False , snake_case_ : int=False , snake_case_ : Tuple=True , **snake_case_ : Optional[Any] , ): super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: UpperCamelCase_: List[str] = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: UpperCamelCase_: Optional[Any] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) UpperCamelCase_: Tuple = PixaStructTextConfig(**snake_case_ ) UpperCamelCase_: Optional[int] = PixaStructVisionConfig(**snake_case_ ) UpperCamelCase_: List[str] = self.text_config.decoder_start_token_id UpperCamelCase_: List[str] = self.text_config.pad_token_id UpperCamelCase_: Dict = self.text_config.eos_token_id UpperCamelCase_: Union[str, Any] = initializer_factor UpperCamelCase_: str = initializer_range UpperCamelCase_: Any = self.initializer_range UpperCamelCase_: Optional[int] = self.initializer_range UpperCamelCase_: List[str] = is_vqa @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] , **snake_case_ : int ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[str] = copy.deepcopy(self.__dict__ ) UpperCamelCase_: str = self.text_config.to_dict() UpperCamelCase_: Optional[int] = self.vision_config.to_dict() UpperCamelCase_: Optional[int] = self.__class__.model_type return output
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , snake_case_ : int , snake_case_ : Optional[int]=13 , snake_case_ : Union[str, Any]=7 , snake_case_ : str=True , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : List[Any]=99 , snake_case_ : Union[str, Any]=32 , snake_case_ : Union[str, Any]=5 , snake_case_ : Union[str, Any]=4 , snake_case_ : Tuple=37 , snake_case_ : List[Any]="gelu" , snake_case_ : Any=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Union[str, Any]=512 , snake_case_ : List[Any]=16 , snake_case_ : List[Any]=2 , snake_case_ : str=0.02 , snake_case_ : str=3 , snake_case_ : Optional[Any]=4 , snake_case_ : Optional[int]=None , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Tuple = batch_size UpperCamelCase_: Any = seq_length UpperCamelCase_: str = is_training UpperCamelCase_: str = use_token_type_ids UpperCamelCase_: int = use_labels UpperCamelCase_: List[str] = vocab_size UpperCamelCase_: List[str] = hidden_size UpperCamelCase_: Optional[int] = num_hidden_layers UpperCamelCase_: List[str] = num_attention_heads UpperCamelCase_: List[Any] = intermediate_size UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Optional[Any] = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: Optional[int] = type_vocab_size UpperCamelCase_: Any = type_sequence_label_size UpperCamelCase_: Tuple = initializer_range UpperCamelCase_: Tuple = num_labels UpperCamelCase_: Union[str, Any] = num_choices UpperCamelCase_: Any = scope UpperCamelCase_: Tuple = self.vocab_size - 1 def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase_: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_: str = None UpperCamelCase_: str = None UpperCamelCase_: Optional[int] = None if self.use_labels: UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: str = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: Dict = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCamelCase_: Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Tuple , *snake_case_ : Dict ): UpperCamelCase_: Optional[Any] = OpenAIGPTModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase_: List[Any] = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) UpperCamelCase_: Dict = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : str , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Any , *snake_case_ : List[Any] ): UpperCamelCase_: Tuple = OpenAIGPTLMHeadModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase_: Tuple = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : int , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int , *snake_case_ : Union[str, Any] ): UpperCamelCase_: str = OpenAIGPTDoubleHeadsModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase_: Any = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict , *snake_case_ : Any ): UpperCamelCase_: Dict = self.num_labels UpperCamelCase_: Union[str, Any] = OpenAIGPTForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Dict = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = self.prepare_config_and_inputs() ( UpperCamelCase_ ): Dict = config_and_inputs UpperCamelCase_: Optional[int] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase : Any = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __UpperCamelCase : List[str] = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase__ ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Dict ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Dict=False ): UpperCamelCase_: str = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCamelCase_: List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) UpperCamelCase_: List[Any] = inputs_dict['''labels'''] UpperCamelCase_: Optional[int] = inputs_dict['''labels'''] UpperCamelCase_: Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCAmelCase__ , ) UpperCamelCase_: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = OpenAIGPTModelTester(self ) UpperCamelCase_: str = ConfigTester(self , config_class=UpperCAmelCase__ , n_embd=37 ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Any ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Optional[Any] = OpenAIGPTModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCAmelCase__ ) # the president is UpperCamelCase_: Optional[int] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCamelCase_: Optional[int] = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase__ )
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Any = ort.SessionOptions() UpperCamelCase_: Union[str, Any] = False return options def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCamelCase_: str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCamelCase_: int = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = """A red cat sitting on a park bench""" UpperCamelCase_: List[Any] = np.random.RandomState(0 ) UpperCamelCase_: Optional[int] = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type="""np""" , ) UpperCamelCase_: Optional[int] = output.images UpperCamelCase_: Tuple = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase_: Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCamelCase_: Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCamelCase_: int = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) UpperCamelCase_: List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: List[Any] = """A red cat sitting on a park bench""" UpperCamelCase_: Optional[int] = np.random.RandomState(0 ) UpperCamelCase_: Union[str, Any] = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCamelCase , output_type="""np""" , ) UpperCamelCase_: Union[str, Any] = output.images UpperCamelCase_: List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase_: Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
import argparse import json from tqdm import tqdm def A__ ( ) -> Optional[Any]: UpperCamelCase_: int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=lowerCamelCase_ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=lowerCamelCase_ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=lowerCamelCase_ , help="""where to store parsed gold_data_path file""" , ) UpperCamelCase_: str = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: UpperCamelCase_: Optional[Any] = json.load(lowerCamelCase_ ) for dpr_record in tqdm(lowerCamelCase_ ): UpperCamelCase_: Optional[Any] = dpr_record['''question'''] UpperCamelCase_: Dict = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(lowerCamelCase_ ) + """\n""" ) if __name__ == "__main__": main()
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Dict = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0