code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int=13 , snake_case_ : Any=32 , snake_case_ : str=3 , snake_case_ : Optional[int]=4 , snake_case_ : Optional[Any]=[10, 20, 30, 40] , snake_case_ : Union[str, Any]=[2, 2, 3, 2] , snake_case_ : Optional[int]=True , snake_case_ : List[str]=True , snake_case_ : Dict=37 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : Union[str, Any]=10 , snake_case_ : str=0.02 , snake_case_ : str=["stage2", "stage3", "stage4"] , snake_case_ : List[str]=[2, 3, 4] , snake_case_ : Optional[Any]=None , ): UpperCamelCase_: Dict = parent UpperCamelCase_: int = batch_size UpperCamelCase_: List[str] = image_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Dict = num_stages UpperCamelCase_: Optional[int] = hidden_sizes UpperCamelCase_: Optional[Any] = depths UpperCamelCase_: Optional[int] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: List[str] = intermediate_size UpperCamelCase_: List[str] = hidden_act UpperCamelCase_: Dict = num_labels UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: int = out_features UpperCamelCase_: List[str] = out_indices UpperCamelCase_: int = scope def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: Tuple = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_: int = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : str ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] ): UpperCamelCase_: Dict = ConvNextVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_: Dict = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Any , snake_case_ : str , snake_case_ : Optional[Any] ): UpperCamelCase_: Tuple = ConvNextVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_: int = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str ): UpperCamelCase_: Tuple = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_: Any = model(lowercase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase_: Dict = None UpperCamelCase_: str = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_: List[str] = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() UpperCamelCase_: str = config_and_inputs UpperCamelCase_: int = {"pixel_values": pixel_values} return config, inputs_dict def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase_: Dict = config_and_inputs UpperCamelCase_: Union[str, Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _UpperCamelCase ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCamelCase : Dict = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : List[Any] = False __UpperCamelCase : Dict = False __UpperCamelCase : Any = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = ConvNextVaModelTester(self ) UpperCamelCase_: str = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def lowerCAmelCase__ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : Optional[int] ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase__ ( self : int ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase__ ( self : List[str] ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase__ ( self : int ): pass def lowerCAmelCase__ ( self : List[str] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCamelCase_: Union[str, Any] = True if model_class.__name__ in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ]: continue UpperCamelCase_: List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCamelCase_: int = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCamelCase_: Union[str, Any] = model(**lowercase_ ).loss loss.backward() def lowerCAmelCase__ ( self : Any ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCamelCase_: Dict = False UpperCamelCase_: Any = True if ( model_class.__name__ in [*get_values(lowercase_ ), *get_values(lowercase_ )] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase_: Any = model_class(lowercase_ ) model.to(lowercase_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase_: Any = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCamelCase_: Optional[int] = model(**lowercase_ ).loss loss.backward() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Any = model_class(lowercase_ ) UpperCamelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: List[Any] = [*signature.parameters.keys()] UpperCamelCase_: str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowerCAmelCase__ ( self : Optional[Any] ): def check_hidden_states_output(snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[int] ): UpperCamelCase_: int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase_: int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase_: int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_: Dict = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Union[str, Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def lowerCAmelCase__ ( self : List[Any] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Any = ConvNextVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def A__ ( ) -> Dict: UpperCamelCase_: List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self : Optional[int] ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(lowercase_ ) UpperCamelCase_: List[Any] = self.default_image_processor UpperCamelCase_: str = prepare_img() UpperCamelCase_: Any = preprocessor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: List[str] = model(**lowercase_ ) # verify the logits UpperCamelCase_: str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase_: str = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCamelCase_ : int = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , ) -> Union[str, Any]: output_path.parent.mkdir(parents=lowerCamelCase , exist_ok=lowerCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCamelCase , lowerCamelCase , f=output_path.as_posix() , input_names=lowerCamelCase , output_names=lowerCamelCase , dynamic_axes=lowerCamelCase , do_constant_folding=lowerCamelCase , use_external_data_format=lowerCamelCase , enable_onnx_checker=lowerCamelCase , opset_version=lowerCamelCase , ) else: export( lowerCamelCase , lowerCamelCase , f=output_path.as_posix() , input_names=lowerCamelCase , output_names=lowerCamelCase , dynamic_axes=lowerCamelCase , do_constant_folding=lowerCamelCase , opset_version=lowerCamelCase , ) @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> Dict: UpperCamelCase_: Optional[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCamelCase_: Tuple = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: UpperCamelCase_: Optional[Any] = """cpu""" UpperCamelCase_: int = Path(lowerCamelCase ) # VAE DECODER UpperCamelCase_: Dict = AutoencoderKL.from_pretrained(model_path + """/vae""" ) UpperCamelCase_: Optional[Any] = vae_decoder.config.latent_channels # forward only through the decoder part UpperCamelCase_: Tuple = vae_decoder.decode onnx_export( lowerCamelCase , model_args=( torch.randn(1 , lowerCamelCase , 25 , 25 ).to(device=lowerCamelCase , dtype=lowerCamelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCamelCase , ) del vae_decoder if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") lowerCamelCase_ : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline snake_case : Any = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") snake_case : Tuple = parser.parse_args() snake_case : str = 'cpu' snake_case : List[Any] = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' snake_case : Any = 'path-to-your-trained-model' snake_case : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: snake_case : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) snake_case : Dict = pipe.to(device) # to channels last snake_case : int = pipe.unet.to(memory_format=torch.channels_last) snake_case : int = pipe.vae.to(memory_format=torch.channels_last) snake_case : Dict = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: snake_case : List[str] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex snake_case : Any = torch.randn(2, 4, 64, 64) snake_case : Union[str, Any] = torch.rand(1) * 9_99 snake_case : List[Any] = torch.randn(2, 77, 7_68) snake_case : List[Any] = (sample, timestep, encoder_hidden_status) try: snake_case : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: snake_case : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) snake_case : Dict = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) snake_case : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: snake_case : Dict = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute snake_case : Any = 6_66 snake_case : int = torch.Generator(device).manual_seed(seed) snake_case : List[str] = {'generator': generator} if args.steps is not None: snake_case : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): snake_case : Dict = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple=13 , snake_case_ : Optional[Any]=7 , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=True , snake_case_ : List[Any]=True , snake_case_ : Any=True , snake_case_ : Optional[int]=99 , snake_case_ : int=32 , snake_case_ : List[str]=5 , snake_case_ : Optional[Any]=4 , snake_case_ : List[Any]=37 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Tuple=512 , snake_case_ : Optional[Any]=16 , snake_case_ : Optional[int]=2 , snake_case_ : int=0.02 , snake_case_ : Dict=4 , ): UpperCamelCase_: Optional[Any] = parent UpperCamelCase_: List[Any] = batch_size UpperCamelCase_: str = seq_length UpperCamelCase_: Any = is_training UpperCamelCase_: Optional[Any] = use_attention_mask UpperCamelCase_: Any = use_token_type_ids UpperCamelCase_: Optional[Any] = use_labels UpperCamelCase_: Any = vocab_size UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: int = num_attention_heads UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Dict = max_position_embeddings UpperCamelCase_: Optional[int] = type_vocab_size UpperCamelCase_: Union[str, Any] = type_sequence_label_size UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: List[str] = num_choices def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: str = None if self.use_attention_mask: UpperCamelCase_: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCamelCase , ) return config, input_ids, attention_mask def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[Any] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Union[str, Any] = config_and_inputs UpperCamelCase_: Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[int] = FlaxDistilBertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCamelCase_: int = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase_: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Optional[int] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase_: Any = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCamelCase_: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase_: List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] UpperCamelCase_: Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape , __UpperCamelCase ) UpperCamelCase_: Tuple = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) )
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( A_ ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (DEISMultistepScheduler,) __UpperCamelCase : Any = (('''num_inference_steps''', 25),) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : List[str] ): UpperCamelCase_: int = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**snake_case_ ) return config def lowerCAmelCase__ ( self : int , snake_case_ : Optional[int]=0 , **snake_case_ : Optional[int] ): UpperCamelCase_: Dict = dict(self.forward_default_kwargs ) UpperCamelCase_: Optional[int] = kwargs.pop("""num_inference_steps""" , snake_case_ ) UpperCamelCase_: Optional[Any] = self.dummy_sample UpperCamelCase_: List[Any] = 0.1 * sample UpperCamelCase_: Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase_: List[Any] = self.get_scheduler_config(**snake_case_ ) UpperCamelCase_: List[str] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals UpperCamelCase_: Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) UpperCamelCase_: List[str] = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals UpperCamelCase_: Dict = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase_: Dict = sample, sample for t in range(snake_case_ , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase_: Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase_: str = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : Optional[int] ): pass def lowerCAmelCase__ ( self : Dict , snake_case_ : int=0 , **snake_case_ : Tuple ): UpperCamelCase_: int = dict(self.forward_default_kwargs ) UpperCamelCase_: Any = kwargs.pop("""num_inference_steps""" , snake_case_ ) UpperCamelCase_: Tuple = self.dummy_sample UpperCamelCase_: Optional[Any] = 0.1 * sample UpperCamelCase_: Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase_: Any = self.get_scheduler_config() UpperCamelCase_: Union[str, Any] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase_: Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) UpperCamelCase_: str = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase_: Any = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase_: Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase_: Union[str, Any] = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : str , snake_case_ : Optional[Any]=None , **snake_case_ : List[str] ): if scheduler is None: UpperCamelCase_: Optional[Any] = self.scheduler_classes[0] UpperCamelCase_: List[str] = self.get_scheduler_config(**snake_case_ ) UpperCamelCase_: Union[str, Any] = scheduler_class(**snake_case_ ) UpperCamelCase_: str = self.scheduler_classes[0] UpperCamelCase_: List[str] = self.get_scheduler_config(**snake_case_ ) UpperCamelCase_: int = scheduler_class(**snake_case_ ) UpperCamelCase_: Tuple = 10 UpperCamelCase_: int = self.dummy_model() UpperCamelCase_: Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_: Dict = model(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = dict(self.forward_default_kwargs ) UpperCamelCase_: Any = kwargs.pop("""num_inference_steps""" , snake_case_ ) for scheduler_class in self.scheduler_classes: UpperCamelCase_: str = self.get_scheduler_config() UpperCamelCase_: List[Any] = scheduler_class(**snake_case_ ) UpperCamelCase_: Optional[Any] = self.dummy_sample UpperCamelCase_: int = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case_ , """set_timesteps""" ): scheduler.set_timesteps(snake_case_ ) elif num_inference_steps is not None and not hasattr(snake_case_ , """set_timesteps""" ): UpperCamelCase_: Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase_: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase_: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase_: Any = scheduler.timesteps[5] UpperCamelCase_: Tuple = scheduler.timesteps[6] UpperCamelCase_: str = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase_: Dict = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self : Any ): # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCamelCase_: List[str] = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase_: Any = self.full_loop(scheduler=snake_case_ ) UpperCamelCase_: Dict = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 UpperCamelCase_: Tuple = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase_: Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase_: int = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase_: Any = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase_: Tuple = self.full_loop(scheduler=snake_case_ ) UpperCamelCase_: Optional[int] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def lowerCAmelCase__ ( self : int ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowerCAmelCase__ ( self : int ): self.check_over_configs(thresholding=snake_case_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , algorithm_type="""deis""" , solver_order=snake_case_ , solver_type=snake_case_ , ) def lowerCAmelCase__ ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) UpperCamelCase_: List[str] = self.full_loop( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) assert not torch.isnan(snake_case_ ).any(), "Samples have nan numbers" def lowerCAmelCase__ ( self : Dict ): self.check_over_configs(lower_order_final=snake_case_ ) self.check_over_configs(lower_order_final=snake_case_ ) def lowerCAmelCase__ ( self : Dict ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=snake_case_ , time_step=0 ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.full_loop() UpperCamelCase_: Dict = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: int = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase_: List[str] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Dict = self.scheduler_classes[0] UpperCamelCase_: List[Any] = self.get_scheduler_config(thresholding=snake_case_ , dynamic_thresholding_ratio=0 ) UpperCamelCase_: List[str] = scheduler_class(**snake_case_ ) UpperCamelCase_: Optional[int] = 10 UpperCamelCase_: str = self.dummy_model() UpperCamelCase_: Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_: Optional[int] = model(snake_case_ , snake_case_ ) UpperCamelCase_: Dict = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample assert sample.dtype == torch.floataa
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCamelCase_ : List[str] = logging.get_logger(__name__) def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: def run_func(lowerCamelCase ): @wraps(lowerCAmelCase__ ) def run_in_eager_mode(*lowerCamelCase , **lowerCamelCase ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) @wraps(lowerCAmelCase__ ) @tf.function(experimental_compile=lowerCAmelCase__ ) def run_in_graph_mode(*lowerCamelCase , **lowerCamelCase ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: Optional[int] = random.Random() UpperCamelCase_: Tuple = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _UpperCamelCase ( __A ): '''simple docstring''' __UpperCamelCase : TensorFlowBenchmarkArguments __UpperCamelCase : PretrainedConfig __UpperCamelCase : str = "TensorFlow" @property def lowerCAmelCase__ ( self : List[Any] ): return tf.__version__ def lowerCAmelCase__ ( self : Any , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Union[str, Any] ): # initialize GPU on separate process UpperCamelCase_: List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_: Tuple = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Any ): UpperCamelCase_: List[Any] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_: Union[str, Any] = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self : str , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) UpperCamelCase_: Optional[int] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_: Tuple = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) UpperCamelCase_: List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_: List[Any] = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Tuple ): UpperCamelCase_: Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase_: Optional[int] = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase_: List[str] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase_: Tuple = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase_: List[str] = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase_: Tuple = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase_: int = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently UpperCamelCase_: Any = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase_: str = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ , training=UpperCamelCase__ ) UpperCamelCase_: Union[str, Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self : Any , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : List[str] ): UpperCamelCase_: List[str] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase_: Tuple = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase_: Dict = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase_: str = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase_: Union[str, Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase_: Dict = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase_: Optional[int] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently UpperCamelCase_: int = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase_: List[Any] = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase_: Optional[int] = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] UpperCamelCase_: Optional[int] = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase_: Union[str, Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] UpperCamelCase_: Optional[int] = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients UpperCamelCase_: Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Tuple ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(UpperCamelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase_: Optional[int] = timeit.repeat( UpperCamelCase__ , repeat=self.args.repeat , number=10 , ) return min(UpperCamelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Tuple ): logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) UpperCamelCase_: Tuple = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won\'t log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) UpperCamelCase_: int = 'N/A' else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() UpperCamelCase_: Tuple = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase_: int = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) UpperCamelCase_: Optional[int] = meminfo.used UpperCamelCase_: Tuple = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) UpperCamelCase_: Any = None else: UpperCamelCase_: Any = measure_peak_memory_cpu(UpperCamelCase__ ) UpperCamelCase_: Any = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase_: Optional[int] = stop_memory_tracing(UpperCamelCase__ ) if memory is None: UpperCamelCase_: str = summary.total else: UpperCamelCase_: Union[str, Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCamelCase ( a__ ): '''simple docstring''' __UpperCamelCase : Tuple = "Salesforce/blip-image-captioning-base" __UpperCamelCase : List[Any] = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) __UpperCamelCase : List[str] = "image_captioner" __UpperCamelCase : Optional[int] = AutoModelForVisionaSeq __UpperCamelCase : Union[str, Any] = ["image"] __UpperCamelCase : Optional[int] = ["text"] def __init__( self : int , *snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Union[str, Any] ): return self.pre_processor(images=lowerCamelCase_ , return_tensors="""pt""" ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Tuple ): return self.model.generate(**lowerCamelCase_ ) def lowerCAmelCase__ ( self : Any , snake_case_ : List[Any] ): return self.pre_processor.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )[0].strip()
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A__ ( lowerCamelCase ) -> Optional[int]: '''simple docstring''' random.seed(lowerCamelCase ) np.random.seed(lowerCamelCase ) torch.manual_seed(lowerCamelCase ) torch.cuda.manual_seed_all(lowerCamelCase ) # ^^ safe to call this function even if cuda is not available class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : Iterable[torch.nn.Parameter] , snake_case_ : float = 0.9999 , snake_case_ : float = 0.0 , snake_case_ : int = 0 , snake_case_ : bool = False , snake_case_ : Union[float, int] = 1.0 , snake_case_ : Union[float, int] = 2 / 3 , snake_case_ : Optional[Any] = None , snake_case_ : Dict[str, Any] = None , **snake_case_ : List[str] , ): if isinstance(UpperCamelCase__ , torch.nn.Module ): UpperCamelCase_: str = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , UpperCamelCase__ , standard_warn=UpperCamelCase__ , ) UpperCamelCase_: int = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase_: Any = True if kwargs.get("""max_value""" , UpperCamelCase__ ) is not None: UpperCamelCase_: List[str] = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) UpperCamelCase_: int = kwargs["""max_value"""] if kwargs.get("""min_value""" , UpperCamelCase__ ) is not None: UpperCamelCase_: List[Any] = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) UpperCamelCase_: Tuple = kwargs["""min_value"""] UpperCamelCase_: str = list(UpperCamelCase__ ) UpperCamelCase_: Union[str, Any] = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , UpperCamelCase__ ) is not None: UpperCamelCase_: List[str] = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) self.to(device=kwargs["""device"""] ) UpperCamelCase_: str = None UpperCamelCase_: List[str] = decay UpperCamelCase_: List[str] = min_decay UpperCamelCase_: Optional[Any] = update_after_step UpperCamelCase_: Any = use_ema_warmup UpperCamelCase_: Optional[int] = inv_gamma UpperCamelCase_: List[Any] = power UpperCamelCase_: Dict = 0 UpperCamelCase_: int = None # set in `step()` UpperCamelCase_: Any = model_cls UpperCamelCase_: Union[str, Any] = model_config @classmethod def lowerCAmelCase__ ( cls : List[Any] , snake_case_ : List[str] , snake_case_ : Optional[Any] ): UpperCamelCase_, UpperCamelCase_: int = model_cls.load_config(UpperCamelCase__ , return_unused_kwargs=UpperCamelCase__ ) UpperCamelCase_: List[Any] = model_cls.from_pretrained(UpperCamelCase__ ) UpperCamelCase_: str = cls(model.parameters() , model_cls=UpperCamelCase__ , model_config=model.config ) ema_model.load_state_dict(UpperCamelCase__ ) return ema_model def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCamelCase_: Optional[Any] = self.model_cls.from_config(self.model_config ) UpperCamelCase_: List[Any] = self.state_dict() state_dict.pop("""shadow_params""" , UpperCamelCase__ ) model.register_to_config(**UpperCamelCase__ ) self.copy_to(model.parameters() ) model.save_pretrained(UpperCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Any = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase_: Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase_: List[Any] = (1 + step) / (10 + step) UpperCamelCase_: List[str] = min(UpperCamelCase__ , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase_: Any = max(UpperCamelCase__ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase__ ( self : str , snake_case_ : Iterable[torch.nn.Parameter] ): if isinstance(UpperCamelCase__ , torch.nn.Module ): UpperCamelCase_: Any = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , UpperCamelCase__ , standard_warn=UpperCamelCase__ , ) UpperCamelCase_: int = parameters.parameters() UpperCamelCase_: Optional[Any] = list(UpperCamelCase__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase_: int = self.get_decay(self.optimization_step ) UpperCamelCase_: int = decay UpperCamelCase_: int = 1 - decay UpperCamelCase_: Dict = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , UpperCamelCase__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase_: Optional[int] = deepspeed.zero.GatheredParameters(UpperCamelCase__ , modifier_rank=UpperCamelCase__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(UpperCamelCase__ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Iterable[torch.nn.Parameter] ): UpperCamelCase_: Optional[Any] = list(UpperCamelCase__ ) for s_param, param in zip(self.shadow_params , UpperCamelCase__ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : Tuple=None , snake_case_ : Optional[int]=None ): UpperCamelCase_: Union[str, Any] = [ p.to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) if p.is_floating_point() else p.to(device=UpperCamelCase__ ) for p in self.shadow_params ] def lowerCAmelCase__ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase__ ( self : str , snake_case_ : Iterable[torch.nn.Parameter] ): UpperCamelCase_: List[Any] = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase__ ( self : str , snake_case_ : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , UpperCamelCase__ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase_: str = None def lowerCAmelCase__ ( self : List[Any] , snake_case_ : dict ): UpperCamelCase_: Union[str, Any] = copy.deepcopy(UpperCamelCase__ ) UpperCamelCase_: Dict = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCamelCase_: Optional[int] = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , UpperCamelCase__ ): raise ValueError("""Invalid min_decay""" ) UpperCamelCase_: Optional[int] = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , UpperCamelCase__ ): raise ValueError("""Invalid optimization_step""" ) UpperCamelCase_: str = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , UpperCamelCase__ ): raise ValueError("""Invalid update_after_step""" ) UpperCamelCase_: List[str] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , UpperCamelCase__ ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCamelCase_: Tuple = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCamelCase_: Tuple = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCamelCase_: str = state_dict.get("""shadow_params""" , UpperCamelCase__ ) if shadow_params is not None: UpperCamelCase_: int = shadow_params if not isinstance(self.shadow_params , UpperCamelCase__ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(UpperCamelCase__ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = StableDiffusionDiffEditPipeline __UpperCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} __UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} __UpperCamelCase : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCamelCase : Optional[Any] = frozenset([] ) def lowerCAmelCase__ ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase_: List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) UpperCamelCase_: Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) UpperCamelCase_: Optional[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase_ , set_alpha_to_zero=lowerCAmelCase_ , ) torch.manual_seed(0 ) UpperCamelCase_: Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase_: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCamelCase_: Optional[int] = CLIPTextModel(lowerCAmelCase_ ) UpperCamelCase_: Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase_: Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self : int , snake_case_ : List[Any] , snake_case_ : Dict=0 ): UpperCamelCase_: List[str] = floats_tensor((1, 16, 16) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) UpperCamelCase_: Tuple = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith("""mps""" ): UpperCamelCase_: List[Any] = torch.manual_seed(lowerCAmelCase_ ) else: UpperCamelCase_: Union[str, Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) UpperCamelCase_: Optional[Any] = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self : List[str] , snake_case_ : List[Any] , snake_case_ : str=0 ): UpperCamelCase_: str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) UpperCamelCase_: Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_: Optional[Any] = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): UpperCamelCase_: Tuple = torch.manual_seed(lowerCAmelCase_ ) else: UpperCamelCase_: Dict = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) UpperCamelCase_: Dict = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self : int , snake_case_ : Tuple , snake_case_ : Optional[Any]=0 ): UpperCamelCase_: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) UpperCamelCase_: Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_: str = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): UpperCamelCase_: int = torch.manual_seed(lowerCAmelCase_ ) else: UpperCamelCase_: Optional[Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) UpperCamelCase_: Dict = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self : Dict ): if not hasattr(self.pipeline_class , """_optional_components""" ): return UpperCamelCase_: Optional[int] = self.get_dummy_components() UpperCamelCase_: int = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCamelCase_: str = self.get_dummy_inputs(lowerCAmelCase_ ) UpperCamelCase_: str = pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) UpperCamelCase_: Dict = self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCamelCase_: str = self.get_dummy_inputs(lowerCAmelCase_ ) UpperCamelCase_: int = pipe_loaded(**lowerCAmelCase_ )[0] UpperCamelCase_: Dict = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase_ , 1e-4 ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: int = """cpu""" UpperCamelCase_: Any = self.get_dummy_components() UpperCamelCase_: Any = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCamelCase_: Optional[int] = self.get_dummy_mask_inputs(lowerCAmelCase_ ) UpperCamelCase_: str = pipe.generate_mask(**lowerCAmelCase_ ) UpperCamelCase_: Union[str, Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCamelCase_: int = np.array([0] * 9 ) UpperCamelCase_: Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = """cpu""" UpperCamelCase_: Optional[Any] = self.get_dummy_components() UpperCamelCase_: Optional[int] = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCamelCase_: List[str] = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) UpperCamelCase_: List[str] = pipe.invert(**lowerCAmelCase_ ).images UpperCamelCase_: str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCamelCase_: Any = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) UpperCamelCase_: Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def lowerCAmelCase__ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: int = """cpu""" UpperCamelCase_: Union[str, Any] = self.get_dummy_components() UpperCamelCase_: str = {"""beta_start""": 0.0_0085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} UpperCamelCase_: Any = DPMSolverMultistepScheduler(**lowerCAmelCase_ ) UpperCamelCase_: Dict = DPMSolverMultistepInverseScheduler(**lowerCAmelCase_ ) UpperCamelCase_: Union[str, Any] = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCamelCase_: str = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) UpperCamelCase_: List[str] = pipe.invert(**lowerCAmelCase_ ).images UpperCamelCase_: Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCamelCase_: int = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) UpperCamelCase_: Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCAmelCase__ ( cls : int ): UpperCamelCase_: str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) UpperCamelCase_: str = raw_image.convert("""RGB""" ).resize((768, 768) ) UpperCamelCase_: Optional[Any] = raw_image def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = torch.manual_seed(0 ) UpperCamelCase_: Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) UpperCamelCase_: str = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCamelCase_: Union[str, Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCamelCase_: List[Any] = """a bowl of fruit""" UpperCamelCase_: int = """a bowl of pears""" UpperCamelCase_: Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase_ , target_prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , ) UpperCamelCase_: List[str] = pipe.invert( prompt=lowerCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase_ ).latents UpperCamelCase_: List[Any] = pipe( prompt=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_latents=lowerCAmelCase_ , generator=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] UpperCamelCase_: int = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = torch.manual_seed(0 ) UpperCamelCase_: str = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) UpperCamelCase_: List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCamelCase_: Optional[int] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCamelCase_: Dict = """a bowl of fruit""" UpperCamelCase_: str = """a bowl of pears""" UpperCamelCase_: Dict = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase_ , target_prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , ) UpperCamelCase_: Tuple = pipe.invert( prompt=lowerCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase_ , num_inference_steps=25 , ).latents UpperCamelCase_: Any = pipe( prompt=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_latents=lowerCAmelCase_ , generator=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] UpperCamelCase_: Optional[int] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
from collections.abc import Callable import numpy as np def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> np.array: UpperCamelCase_: Tuple = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase_: Any = np.zeros((n + 1,) ) UpperCamelCase_: Any = ya UpperCamelCase_: int = xa for k in range(a_ ): UpperCamelCase_: List[Any] = y[k] + step_size * ode_func(a_ , y[k] ) UpperCamelCase_: str = y[k] + ( (step_size / 2) * (ode_func(a_ , y[k] ) + ode_func(x + step_size , a_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: hf_model.apply_weight_norm() UpperCamelCase_: Any = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: int = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: Tuple = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: List[Any] = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Dict = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Optional[int] = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: str = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: str = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[Any]: if config_path is not None: UpperCamelCase_: List[str] = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: Dict = SpeechTaHifiGanConfig() UpperCamelCase_: Any = SpeechTaHifiGan(UpperCAmelCase__ ) UpperCamelCase_: int = torch.load(UpperCAmelCase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = np.load(UpperCAmelCase__ ) UpperCamelCase_: str = stats[0].reshape(-1 ) UpperCamelCase_: List[str] = stats[1].reshape(-1 ) UpperCamelCase_: Union[str, Any] = torch.from_numpy(UpperCAmelCase__ ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(UpperCAmelCase__ ).float() model.save_pretrained(UpperCAmelCase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : str = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase_ : List[str] = """pt""" elif is_tf_available(): lowerCamelCase_ : Any = """tf""" else: lowerCamelCase_ : Union[str, Any] = """jax""" class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = PerceiverTokenizer __UpperCamelCase : Optional[Any] = False def lowerCAmelCase__ ( self : Any ): super().setUp() UpperCamelCase_: Dict = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self : int ): return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def lowerCAmelCase__ ( self : Optional[int] , **snake_case_ : Optional[int] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCAmelCase__ ( self : int , snake_case_ : int , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[int]=20 , snake_case_ : int=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCamelCase_: Dict = [] for i in range(len(__UpperCamelCase ) ): try: UpperCamelCase_: List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCamelCase_: Optional[int] = list(filter(lambda snake_case_ : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __UpperCamelCase ) ) UpperCamelCase_: str = list(filter(lambda snake_case_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCamelCase ) , __UpperCamelCase ) ) if max_length is not None and len(__UpperCamelCase ) > max_length: UpperCamelCase_: int = toks[:max_length] if min_length is not None and len(__UpperCamelCase ) < min_length and len(__UpperCamelCase ) > 0: while len(__UpperCamelCase ) < min_length: UpperCamelCase_: Dict = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase_: Any = [t[0] for t in toks] # Ensure consistency UpperCamelCase_: str = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) if " " not in output_txt and len(__UpperCamelCase ) > 1: UpperCamelCase_: Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCamelCase ) ) if with_prefix_space: UpperCamelCase_: List[str] = """ """ + output_txt UpperCamelCase_: Dict = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) return output_txt, output_ids def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = self.perceiver_tokenizer UpperCamelCase_: Optional[Any] = """Unicode €.""" UpperCamelCase_: Dict = tokenizer(__UpperCamelCase ) UpperCamelCase_: int = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["""input_ids"""] , __UpperCamelCase ) # decoding UpperCamelCase_: int = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , """[CLS]Unicode €.[SEP]""" ) UpperCamelCase_: Any = tokenizer("""e è é ê ë""" ) UpperCamelCase_: Optional[Any] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["""input_ids"""] , __UpperCamelCase ) # decoding UpperCamelCase_: Union[str, Any] = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: int = self.perceiver_tokenizer UpperCamelCase_: Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off UpperCamelCase_: Optional[Any] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCamelCase_: Union[str, Any] = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) if FRAMEWORK != "jax": UpperCamelCase_: Tuple = list(batch.input_ids.numpy()[0] ) else: UpperCamelCase_: Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[Any] = self.perceiver_tokenizer UpperCamelCase_: Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: str = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __UpperCamelCase ) self.assertIn("""attention_mask""" , __UpperCamelCase ) self.assertNotIn("""decoder_input_ids""" , __UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , __UpperCamelCase ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = self.perceiver_tokenizer UpperCamelCase_: Optional[int] = [ """Summary of the text.""", """Another summary.""", ] UpperCamelCase_: Tuple = tokenizer( text_target=__UpperCamelCase , max_length=32 , padding="""max_length""" , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCAmelCase__ ( self : Tuple ): # safety check on max_len default value so we are sure the test works UpperCamelCase_: Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCamelCase_: List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase_: int = tempfile.mkdtemp() UpperCamelCase_: str = """ He is very happy, UNwant\u00E9d,running""" UpperCamelCase_: Optional[int] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) UpperCamelCase_: Optional[int] = tokenizer.__class__.from_pretrained(__UpperCamelCase ) UpperCamelCase_: List[Any] = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) shutil.rmtree(__UpperCamelCase ) UpperCamelCase_: Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase_: List[Any] = tempfile.mkdtemp() UpperCamelCase_: Any = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) UpperCamelCase_: Dict = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) UpperCamelCase_: List[Any] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) UpperCamelCase_: str = tokenizer.__class__.from_pretrained(__UpperCamelCase ) UpperCamelCase_: List[str] = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCamelCase_: List[str] = tokenizer.__class__.from_pretrained(__UpperCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__UpperCamelCase ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase_: List[str] = json.load(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase_: Dict = json.load(__UpperCamelCase ) UpperCamelCase_: int = [f'''<extra_id_{i}>''' for i in range(125 )] UpperCamelCase_: int = added_tokens_extra_ids + [ """an_additional_special_token""" ] UpperCamelCase_: int = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__UpperCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase_: Any = tokenizer_class.from_pretrained( __UpperCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase_: Any = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__UpperCamelCase )] UpperCamelCase_: str = tokenizer_class.from_pretrained( __UpperCamelCase , additional_special_tokens=__UpperCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , """�""" ) def lowerCAmelCase__ ( self : List[str] ): pass def lowerCAmelCase__ ( self : Tuple ): pass def lowerCAmelCase__ ( self : Tuple ): pass def lowerCAmelCase__ ( self : Optional[Any] ): pass def lowerCAmelCase__ ( self : int ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCamelCase_: Optional[Any] = self.get_tokenizers(fast=__UpperCamelCase , do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase_: List[str] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] UpperCamelCase_: Optional[Any] = tokenizer.convert_tokens_to_string(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCamelCase : '''simple docstring''' def __init__( self : int , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Any=64 , snake_case_ : List[Any]=2 , snake_case_ : str=3 , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : Union[str, Any]=32 , snake_case_ : Dict=5 , snake_case_ : Optional[Any]=4 , snake_case_ : List[Any]=37 , snake_case_ : Dict="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : int=0.1 , snake_case_ : Dict=10 , snake_case_ : Any=0.02 , snake_case_ : Any=[1, 16, 4, 4] , snake_case_ : str=None , ): UpperCamelCase_: Dict = parent UpperCamelCase_: List[str] = batch_size UpperCamelCase_: Optional[Any] = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Tuple = is_training UpperCamelCase_: List[Any] = use_labels UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: Dict = num_hidden_layers UpperCamelCase_: str = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: Optional[Any] = hidden_act UpperCamelCase_: int = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: Any = type_sequence_label_size UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: str = scope UpperCamelCase_: List[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCamelCase_: Dict = (self.image_size // 32) ** 2 UpperCamelCase_: Tuple = num_patches + 1 def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[str] = None if self.use_labels: UpperCamelCase_: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: str = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=snake_case_ , ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any] ): UpperCamelCase_: Optional[int] = ViTHybridModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[int] ): UpperCamelCase_: str = self.type_sequence_label_size UpperCamelCase_: Optional[Any] = ViTHybridForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: str = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[Any] = config_and_inputs UpperCamelCase_: List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __UpperCamelCase : Optional[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : List[Any] = False __UpperCamelCase : str = False __UpperCamelCase : Optional[Any] = False def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Dict = ViTHybridModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase__ ( self : Union[str, Any] ): pass def lowerCAmelCase__ ( self : Any ): UpperCamelCase_, UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Any = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_, UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Any = model_class(snake_case_ ) UpperCamelCase_: Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Optional[Any] = [*signature.parameters.keys()] UpperCamelCase_: List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_, UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Tuple = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase_: Dict = model_class(config=snake_case_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCamelCase_: Dict = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCAmelCase__ ( self : str ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[Any] = ViTHybridModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def A__ ( ) -> str: UpperCamelCase_: Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self : Any ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( snake_case_ ) UpperCamelCase_: Any = self.default_image_processor UpperCamelCase_: List[str] = prepare_img() UpperCamelCase_: List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): UpperCamelCase_: List[Any] = model(**snake_case_ ) # verify the logits UpperCamelCase_: Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) UpperCamelCase_: Any = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow @require_accelerate def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) UpperCamelCase_: Any = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) UpperCamelCase_: Tuple = prepare_img() UpperCamelCase_: Optional[Any] = image_processor(images=snake_case_ , return_tensors="""pt""" ) UpperCamelCase_: Optional[Any] = model(**snake_case_ ) UpperCamelCase_: str = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCamelCase_: str = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _UpperCamelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : Dict = 42 __UpperCamelCase : List[str] = 42 __UpperCamelCase : List[Any] = 0.0 __UpperCamelCase : int = 1 __UpperCamelCase : Dict = 1 __UpperCamelCase : Tuple = True __UpperCamelCase : Tuple = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : str = False __UpperCamelCase : Optional[Any] = jnp.floataa def lowerCAmelCase__ ( self : str ): UpperCamelCase_: str = [] UpperCamelCase_: Tuple = [] for i in range(self.num_layers ): UpperCamelCase_: Optional[int] = self.in_channels if i == 0 else self.out_channels UpperCamelCase_: List[str] = FlaxResnetBlockaD( in_channels=snake_case_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) UpperCamelCase_: str = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case_ ) UpperCamelCase_: Tuple = resnets UpperCamelCase_: Tuple = attentions if self.add_downsample: UpperCamelCase_: Any = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Dict=True ): UpperCamelCase_: Union[str, Any] = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCamelCase_: str = resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) UpperCamelCase_: Tuple = attn(snake_case_ , snake_case_ , deterministic=snake_case_ ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase_: Union[str, Any] = self.downsamplers_a(snake_case_ ) output_states += (hidden_states,) return hidden_states, output_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : List[Any] = 42 __UpperCamelCase : Optional[int] = 42 __UpperCamelCase : int = 0.0 __UpperCamelCase : Optional[int] = 1 __UpperCamelCase : Dict = True __UpperCamelCase : Union[str, Any] = jnp.floataa def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Dict = [] for i in range(self.num_layers ): UpperCamelCase_: Optional[int] = self.in_channels if i == 0 else self.out_channels UpperCamelCase_: List[Any] = FlaxResnetBlockaD( in_channels=snake_case_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) UpperCamelCase_: Dict = resnets if self.add_downsample: UpperCamelCase_: int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Dict=True ): UpperCamelCase_: Optional[Any] = () for resnet in self.resnets: UpperCamelCase_: Union[str, Any] = resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase_: Optional[int] = self.downsamplers_a(snake_case_ ) output_states += (hidden_states,) return hidden_states, output_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : Dict = 42 __UpperCamelCase : Any = 42 __UpperCamelCase : str = 42 __UpperCamelCase : int = 0.0 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : List[str] = 1 __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[str] = jnp.floataa def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = [] UpperCamelCase_: Tuple = [] for i in range(self.num_layers ): UpperCamelCase_: Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase_: Dict = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase_: Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) UpperCamelCase_: str = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case_ ) UpperCamelCase_: Union[str, Any] = resnets UpperCamelCase_: Optional[int] = attentions if self.add_upsample: UpperCamelCase_: str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Optional[int]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCamelCase_: str = res_hidden_states_tuple[-1] UpperCamelCase_: Any = res_hidden_states_tuple[:-1] UpperCamelCase_: Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase_: Optional[int] = resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) UpperCamelCase_: int = attn(snake_case_ , snake_case_ , deterministic=snake_case_ ) if self.add_upsample: UpperCamelCase_: Optional[int] = self.upsamplers_a(snake_case_ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : Optional[Any] = 42 __UpperCamelCase : str = 42 __UpperCamelCase : Optional[Any] = 42 __UpperCamelCase : List[Any] = 0.0 __UpperCamelCase : str = 1 __UpperCamelCase : Dict = True __UpperCamelCase : Any = jnp.floataa def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: str = [] for i in range(self.num_layers ): UpperCamelCase_: Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase_: List[Any] = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase_: Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) UpperCamelCase_: List[Any] = resnets if self.add_upsample: UpperCamelCase_: int = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Union[str, Any]=True ): for resnet in self.resnets: # pop res hidden states UpperCamelCase_: str = res_hidden_states_tuple[-1] UpperCamelCase_: Any = res_hidden_states_tuple[:-1] UpperCamelCase_: str = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase_: List[str] = resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) if self.add_upsample: UpperCamelCase_: Optional[int] = self.upsamplers_a(snake_case_ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : str = 42 __UpperCamelCase : Dict = 0.0 __UpperCamelCase : Optional[Any] = 1 __UpperCamelCase : Dict = 1 __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[str] = False __UpperCamelCase : Optional[int] = jnp.floataa def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCamelCase_: List[Any] = [] for _ in range(self.num_layers ): UpperCamelCase_: str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case_ ) UpperCamelCase_: Optional[Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) UpperCamelCase_: Tuple = resnets UpperCamelCase_: str = attentions def __call__( self : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple=True ): UpperCamelCase_: List[str] = self.resnets[0](snake_case_ , snake_case_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCamelCase_: Optional[Any] = attn(snake_case_ , snake_case_ , deterministic=snake_case_ ) UpperCamelCase_: int = resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) return hidden_states
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Any = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
from __future__ import annotations def A__ ( lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: str = str(snake_case_ ) return n == n[::-1] def A__ ( lowerCamelCase = 1_00_00_00 ) -> List[Any]: UpperCamelCase_: Tuple = 0 for i in range(1 , snake_case_ ): if is_palindrome(snake_case_ ) and is_palindrome(bin(snake_case_ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCamelCase_ : str = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: Union[str, Any] = _TestCommandArgs(dataset=UpperCamelCase__ , all_configs=UpperCamelCase__ , save_infos=UpperCamelCase__ ) UpperCamelCase_: Tuple = TestCommand(*UpperCamelCase__ ) test_command.run() UpperCamelCase_: List[Any] = os.path.join(UpperCamelCase__ , """README.md""" ) assert os.path.exists(UpperCamelCase__ ) UpperCamelCase_: Optional[int] = DatasetInfosDict.from_directory(UpperCamelCase__ ) UpperCamelCase_: Optional[int] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_35_15_63, """num_examples""": 1_00_00, }, { """name""": """validation""", """num_bytes""": 23_84_18, """num_examples""": 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase_, UpperCamelCase_: int = getattr(dataset_infos["""default"""] , UpperCamelCase__ ), getattr(expected_dataset_infos["""default"""] , UpperCamelCase__ ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase__ , UpperCamelCase__ ) elif key == "splits": assert list(UpperCamelCase__ ) == list(UpperCamelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
from __future__ import annotations def A__ ( lowerCamelCase ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(lowerCamelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(lowerCamelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A__ ( lowerCamelCase ) -> int: if isinstance(lowerCamelCase , torch.Tensor ): return image elif isinstance(lowerCamelCase , PIL.Image.Image ): UpperCamelCase_: Optional[int] = [image] UpperCamelCase_: List[str] = [trans(img.convert("""RGB""" ) ) for img in image] UpperCamelCase_: Dict = torch.stack(lowerCamelCase ) return image class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Dict , snake_case_ : Dict , snake_case_ : Dict ): super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_: Union[str, Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[str] ): if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : List[str] ): # get the original timestep using init_timestep UpperCamelCase_: Dict = min(int(num_inference_steps * strength ) , snake_case_ ) UpperCamelCase_: Optional[int] = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_: Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any]=None ): if not isinstance(snake_case_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case_ )}''' ) UpperCamelCase_: List[str] = image.to(device=snake_case_ , dtype=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(snake_case_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_: Optional[int] = init_latents.shape UpperCamelCase_: Optional[int] = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) # get latents print("""add noise to latents at timestep""" , snake_case_ ) UpperCamelCase_: Optional[int] = self.scheduler.add_noise(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase_: Tuple = init_latents return latents @torch.no_grad() def __call__( self : str , snake_case_ : Union[torch.FloatTensor, PIL.Image.Image] = None , snake_case_ : float = 0.8 , snake_case_ : int = 1 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : float = 0.0 , snake_case_ : int = 50 , snake_case_ : Optional[bool] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): self.check_inputs(snake_case_ ) # 2. Preprocess image UpperCamelCase_: Any = preprocess(snake_case_ ) # 3. set timesteps self.scheduler.set_timesteps(snake_case_ , device=self.device ) UpperCamelCase_: List[str] = self.get_timesteps(snake_case_ , snake_case_ , self.device ) UpperCamelCase_: List[str] = timesteps[:1].repeat(snake_case_ ) # 4. Prepare latent variables UpperCamelCase_: Tuple = self.prepare_latents(snake_case_ , snake_case_ , snake_case_ , self.unet.dtype , self.device , snake_case_ ) UpperCamelCase_: List[Any] = latents # 5. Denoising loop for t in self.progress_bar(snake_case_ ): # 1. predict noise model_output UpperCamelCase_: List[str] = self.unet(snake_case_ , snake_case_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_: Dict = self.scheduler.step( snake_case_ , snake_case_ , snake_case_ , eta=snake_case_ , use_clipped_model_output=snake_case_ , generator=snake_case_ , ).prev_sample UpperCamelCase_: Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_: List[str] = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=snake_case_ )
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Optional[int] = logging.getLogger() def A__ ( lowerCamelCase ) -> Tuple: UpperCamelCase_: Any = {} UpperCamelCase_: Dict = os.path.join(lowerCamelCase , """all_results.json""" ) if os.path.exists(lowerCamelCase ): with open(lowerCamelCase , """r""" ) as f: UpperCamelCase_: Any = json.load(lowerCamelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results lowerCamelCase_ : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : Dict ): import xla_spawn UpperCamelCase_: List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase_: List[str] = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(snake_case_ , """argv""" , snake_case_ ): UpperCamelCase_: Tuple = time() xla_spawn.main() UpperCamelCase_: Dict = time() UpperCamelCase_: List[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowerCAmelCase__ ( self : Tuple ): import xla_spawn UpperCamelCase_: str = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(snake_case_ , """argv""" , snake_case_ ): xla_spawn.main()
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = """bart""" __UpperCamelCase : List[str] = ["""past_key_values"""] __UpperCamelCase : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , snake_case_ : Tuple=5_0265 , snake_case_ : int=1024 , snake_case_ : Any=12 , snake_case_ : Optional[Any]=4096 , snake_case_ : Union[str, Any]=16 , snake_case_ : Any=12 , snake_case_ : List[str]=4096 , snake_case_ : str=16 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : Dict=0.0 , snake_case_ : List[Any]="gelu" , snake_case_ : Union[str, Any]=1024 , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : Dict=0.02 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Any=False , snake_case_ : Any=True , snake_case_ : List[Any]=3 , snake_case_ : int=1 , snake_case_ : Optional[Any]=0 , snake_case_ : Any=2 , snake_case_ : Optional[int]=True , snake_case_ : List[str]=2 , snake_case_ : Dict=2 , **snake_case_ : Optional[int] , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: Dict = d_model UpperCamelCase_: List[Any] = encoder_ffn_dim UpperCamelCase_: int = encoder_layers UpperCamelCase_: Dict = encoder_attention_heads UpperCamelCase_: Optional[int] = decoder_ffn_dim UpperCamelCase_: Any = decoder_layers UpperCamelCase_: Tuple = decoder_attention_heads UpperCamelCase_: Tuple = dropout UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: Optional[int] = activation_dropout UpperCamelCase_: Any = activation_function UpperCamelCase_: Union[str, Any] = init_std UpperCamelCase_: List[Any] = encoder_layerdrop UpperCamelCase_: Union[str, Any] = decoder_layerdrop UpperCamelCase_: str = classifier_dropout UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: Optional[int] = encoder_layers UpperCamelCase_: Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , snake_case_ ): UpperCamelCase_: List[str] = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" ) class _UpperCamelCase ( _A ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: Tuple = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase_: int = {0: """batch"""} UpperCamelCase_: Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCamelCase_: Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} UpperCamelCase_: Optional[int] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase_: List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase_: Tuple = self.num_layers for i in range(snake_case_ ): UpperCamelCase_: Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase_: Any = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCamelCase_: Tuple = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCAmelCase__ ( self : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: Optional[int] = super().outputs else: UpperCamelCase_: List[Any] = super(snake_case_ , self ).outputs if self.use_past: UpperCamelCase_: List[str] = self.num_layers for i in range(snake_case_ ): UpperCamelCase_: Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase_: List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase__ ( self : Dict , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): UpperCamelCase_: Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs UpperCamelCase_: Optional[Any] = seq_length if not self.use_past else 1 UpperCamelCase_: str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase_: Optional[Any] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase_: Union[str, Any] = dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase_: Tuple = common_inputs["""input_ids"""].shape UpperCamelCase_: List[str] = common_inputs["""decoder_input_ids"""].shape[1] UpperCamelCase_: Union[str, Any] = self.num_attention_heads UpperCamelCase_: Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_: Tuple = decoder_seq_length + 3 UpperCamelCase_: Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase_: Union[str, Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) UpperCamelCase_: List[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase_: int = self.num_layers UpperCamelCase_: Dict = min(snake_case_ , snake_case_ ) UpperCamelCase_: Union[str, Any] = max(snake_case_ , snake_case_ ) - min_num_layers UpperCamelCase_: Union[str, Any] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. UpperCamelCase_: str = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def lowerCAmelCase__ ( self : int , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): UpperCamelCase_: int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase_: int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCamelCase_: Any = seqlen + 2 UpperCamelCase_: int = self.num_layers UpperCamelCase_: Union[str, Any] = self.num_attention_heads UpperCamelCase_: Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_: Optional[int] = common_inputs["""attention_mask"""].dtype UpperCamelCase_: Union[str, Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) UpperCamelCase_: List[Any] = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def lowerCAmelCase__ ( self : Dict , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase_: Any = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase_: Dict = tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase_: List[str] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase_: Optional[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase_: Any = dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def lowerCAmelCase__ ( self : int , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) elif self.task == "causal-lm": UpperCamelCase_: Optional[int] = self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: UpperCamelCase_: Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_: Tuple = super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: UpperCamelCase_: List[str] = super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ )
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = ReformerTokenizer __UpperCamelCase : List[Any] = ReformerTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : List[str] = False __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : List[str] ): super().setUp() UpperCamelCase_: List[Any] = ReformerTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[Any] = """<s>""" UpperCamelCase_: Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(snake_case_ ) , 1000 ) def lowerCAmelCase__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase__ ( self : Optional[int] ): if not self.test_rust_tokenizer: return UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Any = self.get_rust_tokenizer() UpperCamelCase_: List[str] = """I was born in 92000, and this is falsé.""" UpperCamelCase_: int = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: Dict = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Dict = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: List[str] = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: Union[str, Any] = tokenizer.encode(snake_case_ ) UpperCamelCase_: str = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Any=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: str = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # Simple input UpperCamelCase_: Dict = """This is a simple input""" UpperCamelCase_: Optional[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] UpperCamelCase_: Dict = ("""This is a simple input""", """This is a pair""") UpperCamelCase_: List[str] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) def lowerCAmelCase__ ( self : List[Any] ): pass def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = ReformerTokenizer(snake_case_ , keep_accents=snake_case_ ) UpperCamelCase_: int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [285, 46, 10, 170, 382] , ) UpperCamelCase_: Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase_: int = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase_: str = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase__ ( self : Tuple ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Dict = """Hello World!""" UpperCamelCase_: str = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCamelCase_: Union[str, Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @require_torch @slow def lowerCAmelCase__ ( self : List[str] ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCamelCase_: List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase_: Optional[int] = """ """.join(snake_case_ ) UpperCamelCase_: Tuple = self.big_tokenizer.encode_plus(snake_case_ , return_tensors="""pt""" ) UpperCamelCase_: Dict = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) UpperCamelCase_: int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCamelCase_: int = encoded_sequence["""input_ids"""].shape UpperCamelCase_: Optional[int] = ReformerModel(snake_case_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case_ ) model(**snake_case_ ) @slow def lowerCAmelCase__ ( self : str ): # fmt: off UpperCamelCase_: List[Any] = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCamelCase_: Optional[Any] = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=snake_case_ , sequences=snake_case_ , )
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : int = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class _UpperCamelCase ( _A , _A ): '''simple docstring''' __UpperCamelCase : Tuple = """dinat""" __UpperCamelCase : Optional[int] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , snake_case_ : Tuple=4 , snake_case_ : Optional[Any]=3 , snake_case_ : Tuple=64 , snake_case_ : List[Any]=[3, 4, 6, 5] , snake_case_ : int=[2, 4, 8, 16] , snake_case_ : str=7 , snake_case_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , snake_case_ : List[Any]=3.0 , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=0.0 , snake_case_ : str=0.0 , snake_case_ : Optional[Any]=0.1 , snake_case_ : str="gelu" , snake_case_ : Optional[int]=0.02 , snake_case_ : List[str]=1e-5 , snake_case_ : str=0.0 , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , **snake_case_ : Any , ): super().__init__(**snake_case_ ) UpperCamelCase_: int = patch_size UpperCamelCase_: Union[str, Any] = num_channels UpperCamelCase_: Dict = embed_dim UpperCamelCase_: List[str] = depths UpperCamelCase_: int = len(snake_case_ ) UpperCamelCase_: Optional[Any] = num_heads UpperCamelCase_: Optional[int] = kernel_size UpperCamelCase_: Union[str, Any] = dilations UpperCamelCase_: List[str] = mlp_ratio UpperCamelCase_: List[str] = qkv_bias UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: Any = drop_path_rate UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Any = layer_norm_eps UpperCamelCase_: List[str] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase_: List[str] = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) UpperCamelCase_: Any = layer_scale_init_value UpperCamelCase_: str = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )] UpperCamelCase_: List[str] = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
import operator def A__ ( lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None ) -> list: UpperCamelCase_: Union[str, Any] = operator.lt if reverse else operator.gt UpperCamelCase_: List[Any] = solution or [] if not arr: return solution UpperCamelCase_: str = [arr.pop(0 )] for i, item in enumerate(lowerCamelCase ): if _operator(lowerCamelCase , sublist[-1] ): sublist.append(lowerCamelCase ) arr.pop(lowerCamelCase ) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase ) else: while sublist: UpperCamelCase_: int = sublist.pop(0 ) for i, xx in enumerate(lowerCamelCase ): if not _operator(lowerCamelCase , lowerCamelCase ): solution.insert(lowerCamelCase , lowerCamelCase ) break else: solution.append(lowerCamelCase ) strand_sort(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
from graphs.minimum_spanning_tree_kruskal import kruskal def A__ ( ) -> Dict: UpperCamelCase_: Optional[Any] = 9 UpperCamelCase_: Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCamelCase_: Union[str, Any] = kruskal(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCamelCase ) == sorted(lowerCamelCase )
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
def A__ ( lowerCamelCase ) -> list[int]: UpperCamelCase_: List[Any] = [0 for i in range(len(lowerCamelCase ) )] # initialize interval's left pointer and right pointer UpperCamelCase_: str = 0, 0 for i in range(1 , len(lowerCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase_: Optional[int] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) UpperCamelCase_: Dict = min_edge while go_next(lowerCamelCase , lowerCamelCase , lowerCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase_: List[Any] = i, i + z_result[i] - 1 return z_result def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> bool: return i + z_result[i] < len(lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def A__ ( lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: List[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase_: Dict = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(lowerCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowerCamelCase_ : List[Any] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowerCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) # General docstring lowerCamelCase_ : Tuple = """RegNetConfig""" # Base docstring lowerCamelCase_ : List[Any] = """facebook/regnet-y-040""" lowerCamelCase_ : Any = [1, 10_88, 7, 7] # Image classification docstring lowerCamelCase_ : Optional[Any] = """facebook/regnet-y-040""" lowerCamelCase_ : List[str] = """tabby, tabby cat""" lowerCamelCase_ : Any = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , snake_case_ : int , snake_case_ : int = 3 , snake_case_ : int = 1 , snake_case_ : int = 1 , snake_case_ : Optional[str] = "relu" , **snake_case_ : List[Any] , ): super().__init__(**snake_case_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase_: int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase_: Optional[Any] = tf.keras.layers.ConvaD( filters=snake_case_ , kernel_size=snake_case_ , strides=snake_case_ , padding="""VALID""" , groups=snake_case_ , use_bias=snake_case_ , name="""convolution""" , ) UpperCamelCase_: List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) UpperCamelCase_: Dict = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : str , snake_case_ : Union[str, Any] ): UpperCamelCase_: Dict = self.convolution(self.padding(snake_case_ ) ) UpperCamelCase_: int = self.normalization(snake_case_ ) UpperCamelCase_: int = self.activation(snake_case_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : RegNetConfig , **snake_case_ : Any ): super().__init__(**snake_case_ ) UpperCamelCase_: Union[str, Any] = config.num_channels UpperCamelCase_: List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str ): UpperCamelCase_: str = shape_list(snake_case_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase_: str = tf.transpose(snake_case_ , perm=(0, 2, 3, 1) ) UpperCamelCase_: str = self.embedder(snake_case_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : int , snake_case_ : int = 2 , **snake_case_ : Optional[Any] ): super().__init__(**snake_case_ ) UpperCamelCase_: str = tf.keras.layers.ConvaD( filters=snake_case_ , kernel_size=1 , strides=snake_case_ , use_bias=snake_case_ , name="""convolution""" ) UpperCamelCase_: int = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def lowerCAmelCase__ ( self : Any , snake_case_ : tf.Tensor , snake_case_ : bool = False ): return self.normalization(self.convolution(snake_case_ ) , training=snake_case_ ) class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , snake_case_ : int , snake_case_ : int , **snake_case_ : List[str] ): super().__init__(**snake_case_ ) UpperCamelCase_: str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case_ , name="""pooler""" ) UpperCamelCase_: List[Any] = [ tf.keras.layers.ConvaD(filters=snake_case_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=snake_case_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] UpperCamelCase_: List[str] = self.pooler(snake_case_ ) for layer_module in self.attention: UpperCamelCase_: Union[str, Any] = layer_module(snake_case_ ) UpperCamelCase_: Dict = hidden_state * pooled return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , snake_case_ : RegNetConfig , snake_case_ : int , snake_case_ : int , snake_case_ : int = 1 , **snake_case_ : Dict ): super().__init__(**snake_case_ ) UpperCamelCase_: List[str] = in_channels != out_channels or stride != 1 UpperCamelCase_: Tuple = max(1 , out_channels // config.groups_width ) UpperCamelCase_: Tuple = ( TFRegNetShortCut(snake_case_ , stride=snake_case_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase_: Any = [ TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=snake_case_ , name="""layer.2""" ), ] UpperCamelCase_: Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Tuple ): UpperCamelCase_: Optional[Any] = hidden_state for layer_module in self.layers: UpperCamelCase_: Union[str, Any] = layer_module(snake_case_ ) UpperCamelCase_: Optional[int] = self.shortcut(snake_case_ ) hidden_state += residual UpperCamelCase_: List[str] = self.activation(snake_case_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : RegNetConfig , snake_case_ : int , snake_case_ : int , snake_case_ : int = 1 , **snake_case_ : List[Any] ): super().__init__(**snake_case_ ) UpperCamelCase_: Union[str, Any] = in_channels != out_channels or stride != 1 UpperCamelCase_: str = max(1 , out_channels // config.groups_width ) UpperCamelCase_: List[str] = ( TFRegNetShortCut(snake_case_ , stride=snake_case_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) UpperCamelCase_: str = [ TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(snake_case_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=snake_case_ , name="""layer.3""" ), ] UpperCamelCase_: List[str] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = hidden_state for layer_module in self.layers: UpperCamelCase_: str = layer_module(snake_case_ ) UpperCamelCase_: Optional[int] = self.shortcut(snake_case_ ) hidden_state += residual UpperCamelCase_: Optional[int] = self.activation(snake_case_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : RegNetConfig , snake_case_ : int , snake_case_ : int , snake_case_ : int = 2 , snake_case_ : int = 2 , **snake_case_ : Any ): super().__init__(**snake_case_ ) UpperCamelCase_: Dict = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer UpperCamelCase_: str = [ # downsampling is done in the first layer with stride of 2 layer(snake_case_ , snake_case_ , snake_case_ , stride=snake_case_ , name="""layers.0""" ), *[layer(snake_case_ , snake_case_ , snake_case_ , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[Any] ): for layer_module in self.layers: UpperCamelCase_: Any = layer_module(snake_case_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , snake_case_ : RegNetConfig , **snake_case_ : Optional[int] ): super().__init__(**snake_case_ ) UpperCamelCase_: Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) UpperCamelCase_: Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case_ , snake_case_ , snake_case_ , depth=snake_case_ , name=f'''stages.{i+1}''' ) ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : tf.Tensor , snake_case_ : bool = False , snake_case_ : bool = True ): UpperCamelCase_: int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase_: str = hidden_states + (hidden_state,) UpperCamelCase_: List[Any] = stage_module(snake_case_ ) if output_hidden_states: UpperCamelCase_: Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case_ , hidden_states=snake_case_ ) @keras_serializable class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' __UpperCamelCase : Any = RegNetConfig def __init__( self : Dict , snake_case_ : Union[str, Any] , **snake_case_ : Tuple ): super().__init__(**snake_case_ ) UpperCamelCase_: Optional[int] = config UpperCamelCase_: Tuple = TFRegNetEmbeddings(snake_case_ , name="""embedder""" ) UpperCamelCase_: Union[str, Any] = TFRegNetEncoder(snake_case_ , name="""encoder""" ) UpperCamelCase_: Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case_ , name="""pooler""" ) @unpack_inputs def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : tf.Tensor , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , ): UpperCamelCase_: Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_: str = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_: str = self.embedder(snake_case_ , training=snake_case_ ) UpperCamelCase_: List[str] = self.encoder( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ ) UpperCamelCase_: Optional[int] = encoder_outputs[0] UpperCamelCase_: Tuple = self.pooler(snake_case_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase_: Union[str, Any] = tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) UpperCamelCase_: Any = tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase_: List[Any] = tuple([tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case_ , pooler_output=snake_case_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Any = RegNetConfig __UpperCamelCase : Union[str, Any] = """regnet""" __UpperCamelCase : str = """pixel_values""" @property def lowerCAmelCase__ ( self : Optional[Any] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCamelCase_ : Tuple = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase_ : Tuple = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , _A , ) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Tuple , snake_case_ : RegNetConfig , *snake_case_ : int , **snake_case_ : Union[str, Any] ): super().__init__(snake_case_ , *snake_case_ , **snake_case_ ) UpperCamelCase_: int = TFRegNetMainLayer(snake_case_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : tf.Tensor , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : List[str]=False , ): UpperCamelCase_: Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_: Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_: Union[str, Any] = self.regnet( pixel_values=snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _A , ) class _UpperCamelCase ( _A , _A ): '''simple docstring''' def __init__( self : Dict , snake_case_ : RegNetConfig , *snake_case_ : Tuple , **snake_case_ : Union[str, Any] ): super().__init__(snake_case_ , *snake_case_ , **snake_case_ ) UpperCamelCase_: Union[str, Any] = config.num_labels UpperCamelCase_: Optional[Any] = TFRegNetMainLayer(snake_case_ , name="""regnet""" ) # classification head UpperCamelCase_: Tuple = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : tf.Tensor = None , snake_case_ : tf.Tensor = None , snake_case_ : bool = None , snake_case_ : bool = None , snake_case_ : Union[str, Any]=False , ): UpperCamelCase_: int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_: Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_: List[str] = self.regnet( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ ) UpperCamelCase_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase_: List[Any] = self.classifier[0](snake_case_ ) UpperCamelCase_: Dict = self.classifier[1](snake_case_ ) UpperCamelCase_: List[Any] = None if labels is None else self.hf_compute_loss(labels=snake_case_ , logits=snake_case_ ) if not return_dict: UpperCamelCase_: Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states )
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import math def A__ ( ) -> None: '''simple docstring''' UpperCamelCase_: Optional[Any] = input("""Enter message: """ ) UpperCamelCase_: str = int(input(F'''Enter key [2-{len(lowerCamelCase ) - 1}]: ''' ) ) UpperCamelCase_: List[str] = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCamelCase_: Any = encrypt_message(lowerCamelCase , lowerCamelCase ) elif mode.lower().startswith("""d""" ): UpperCamelCase_: Dict = decrypt_message(lowerCamelCase , lowerCamelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase_: Dict = [""""""] * key for col in range(lowerCamelCase ): UpperCamelCase_: List[str] = col while pointer < len(lowerCamelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase_: Any = math.ceil(len(lowerCamelCase ) / key ) UpperCamelCase_: int = key UpperCamelCase_: Any = (num_cols * num_rows) - len(lowerCamelCase ) UpperCamelCase_: Dict = [""""""] * num_cols UpperCamelCase_: List[str] = 0 UpperCamelCase_: Dict = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCamelCase_: str = 0 row += 1 return "".join(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = DanceDiffusionPipeline __UpperCamelCase : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __UpperCamelCase : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = False def lowerCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=snake_case_ , use_timestep_embedding=snake_case_ , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_: Optional[int] = IPNDMScheduler() UpperCamelCase_: Optional[Any] = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] , snake_case_ : int=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: List[Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: List[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Tuple = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Any = self.get_dummy_components() UpperCamelCase_: Optional[Any] = DanceDiffusionPipeline(**snake_case_ ) UpperCamelCase_: str = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: Union[str, Any] = pipe(**snake_case_ ) UpperCamelCase_: Optional[int] = output.audios UpperCamelCase_: str = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_: Tuple = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Any ): return super().test_save_load_local() @skip_mps def lowerCAmelCase__ ( self : Any ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCAmelCase__ ( self : str ): return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase__ ( self : str ): return super().test_attention_slicing_forward_pass() def lowerCAmelCase__ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = torch_device UpperCamelCase_: Tuple = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[Any] = torch.manual_seed(0 ) UpperCamelCase_: int = pipe(generator=snake_case_ , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_: Optional[int] = output.audios UpperCamelCase_: Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_: List[Any] = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = torch_device UpperCamelCase_: Union[str, Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[int] = torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = pipe(generator=snake_case_ , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_: Optional[Any] = output.audios UpperCamelCase_: Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_: List[Any] = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
lowerCamelCase_ : Union[str, Any] = """Alexander Joslin""" import operator as op from .stack import Stack def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: List[str] = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCamelCase_: Stack[int] = Stack() UpperCamelCase_: Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase ) elif i == ")": # RULE 4 UpperCamelCase_: Any = operator_stack.peek() operator_stack.pop() UpperCamelCase_: Dict = operand_stack.peek() operand_stack.pop() UpperCamelCase_: Any = operand_stack.peek() operand_stack.pop() UpperCamelCase_: Optional[int] = operators[opr](lowerCamelCase , lowerCamelCase ) operand_stack.push(lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase_ : str = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ : Any = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: assert isinstance(lowerCamelCase , lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: UpperCamelCase_: List[str] = tmp_path / """cache""" UpperCamelCase_: Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase_: Optional[Any] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: Optional[Any] = tmp_path / """cache""" UpperCamelCase_: Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase_: List[Any] = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase_: str = ParquetDatasetReader(lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: str = tmp_path / """cache""" UpperCamelCase_: int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[Any] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , split=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: if issubclass(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: List[str] = parquet_path elif issubclass(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: Tuple = [parquet_path] UpperCamelCase_: Any = tmp_path / """cache""" UpperCamelCase_: Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[Any] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=("train",) ) -> Optional[Any]: assert isinstance(lowerCamelCase , lowerCamelCase ) for split in splits: UpperCamelCase_: Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: Optional[Any] = tmp_path / """cache""" UpperCamelCase_: Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase_: Any = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: UpperCamelCase_: str = tmp_path / """cache""" UpperCamelCase_: Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[int] = features.copy() if features else default_expected_features UpperCamelCase_: Dict = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase_: Dict = ParquetDatasetReader({"""train""": parquet_path} , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: if split: UpperCamelCase_: List[str] = {split: parquet_path} else: UpperCamelCase_: int = """train""" UpperCamelCase_: List[str] = {"""train""": parquet_path, """test""": parquet_path} UpperCamelCase_: Tuple = tmp_path / """cache""" UpperCamelCase_: Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase_: Optional[int] = ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: List[Any] = ParquetDatasetWriter(lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 UpperCamelCase_: List[str] = pq.ParquetFile(tmp_path / """foo.parquet""" ) UpperCamelCase_: Any = pf.read() assert dataset.data.table == output_table def A__ ( lowerCamelCase , lowerCamelCase ) -> Dict: UpperCamelCase_: Tuple = str(shared_datadir / """test_image_rgb.jpg""" ) UpperCamelCase_: List[str] = {"""image""": [image_path]} UpperCamelCase_: Tuple = Features({"""image""": Image()} ) UpperCamelCase_: Any = Dataset.from_dict(lowerCamelCase , features=lowerCamelCase ) UpperCamelCase_: str = ParquetDatasetWriter(lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 UpperCamelCase_: Optional[int] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase_: str = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: assert get_writer_batch_size(lowerCamelCase ) == expected
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = DownBlockaD # noqa F405 __UpperCamelCase : Union[str, Any] = """down""" def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ResnetDownsampleBlockaD # noqa F405 __UpperCamelCase : Dict = """down""" def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[Any] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = AttnDownBlockaD # noqa F405 __UpperCamelCase : int = """down""" def lowerCAmelCase__ ( self : str ): UpperCamelCase_: int = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = CrossAttnDownBlockaD # noqa F405 __UpperCamelCase : List[Any] = """down""" def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = super().prepare_init_args_and_inputs_for_common() UpperCamelCase_: List[Any] = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[str] = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCamelCase : Tuple = """down""" @property def lowerCAmelCase__ ( self : Optional[Any] ): return super().get_dummy_input(include_encoder_hidden_states=snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: int = super().prepare_init_args_and_inputs_for_common() UpperCamelCase_: Optional[int] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = SkipDownBlockaD # noqa F405 __UpperCamelCase : str = """down""" @property def lowerCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_skip_sample=snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = AttnSkipDownBlockaD # noqa F405 __UpperCamelCase : Optional[int] = """down""" @property def lowerCAmelCase__ ( self : List[Any] ): return super().get_dummy_input(include_skip_sample=snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: int = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = DownEncoderBlockaD # noqa F405 __UpperCamelCase : Any = """down""" @property def lowerCAmelCase__ ( self : Dict ): return super().get_dummy_input(include_temb=snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: int = { """in_channels""": 32, """out_channels""": 32, } UpperCamelCase_: Union[str, Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Tuple = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = AttnDownEncoderBlockaD # noqa F405 __UpperCamelCase : Optional[int] = """down""" @property def lowerCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_temb=snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: str = { """in_channels""": 32, """out_channels""": 32, } UpperCamelCase_: Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: List[Any] = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = UNetMidBlockaD # noqa F405 __UpperCamelCase : Optional[int] = """mid""" def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Any = { """in_channels""": 32, """temb_channels""": 128, } UpperCamelCase_: List[str] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Union[str, Any] = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = UNetMidBlockaDCrossAttn # noqa F405 __UpperCamelCase : str = """mid""" def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: int = super().prepare_init_args_and_inputs_for_common() UpperCamelCase_: Tuple = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Tuple = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCamelCase : int = """mid""" @property def lowerCAmelCase__ ( self : Optional[Any] ): return super().get_dummy_input(include_encoder_hidden_states=snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[Any] = super().prepare_init_args_and_inputs_for_common() UpperCamelCase_: str = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[Any] = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = UpBlockaD # noqa F405 __UpperCamelCase : Dict = """up""" @property def lowerCAmelCase__ ( self : Any ): return super().get_dummy_input(include_res_hidden_states_tuple=snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = ResnetUpsampleBlockaD # noqa F405 __UpperCamelCase : str = """up""" @property def lowerCAmelCase__ ( self : Optional[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=snake_case_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = CrossAttnUpBlockaD # noqa F405 __UpperCamelCase : str = """up""" @property def lowerCAmelCase__ ( self : List[str] ): return super().get_dummy_input(include_res_hidden_states_tuple=snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[Any] = super().prepare_init_args_and_inputs_for_common() UpperCamelCase_: int = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[Any] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCamelCase : Union[str, Any] = """up""" @property def lowerCAmelCase__ ( self : Any ): return super().get_dummy_input(include_res_hidden_states_tuple=snake_case_ , include_encoder_hidden_states=snake_case_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Dict = super().prepare_init_args_and_inputs_for_common() UpperCamelCase_: str = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = AttnUpBlockaD # noqa F405 __UpperCamelCase : List[Any] = """up""" @property def lowerCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=snake_case_ ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[Any] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = SkipUpBlockaD # noqa F405 __UpperCamelCase : List[Any] = """up""" @property def lowerCAmelCase__ ( self : List[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Any = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = AttnSkipUpBlockaD # noqa F405 __UpperCamelCase : List[Any] = """up""" @property def lowerCAmelCase__ ( self : List[str] ): return super().get_dummy_input(include_res_hidden_states_tuple=snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = UpDecoderBlockaD # noqa F405 __UpperCamelCase : Union[str, Any] = """up""" @property def lowerCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_temb=snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = {"""in_channels""": 32, """out_channels""": 32} UpperCamelCase_: int = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: int = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(snake_case_ ) class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCamelCase : List[str] = """up""" @property def lowerCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_temb=snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = {"""in_channels""": 32, """out_channels""": 32} UpperCamelCase_: Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[Any] = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(snake_case_ )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) def A__ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False ) -> Tuple: UpperCamelCase_: int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def A__ ( lowerCamelCase , lowerCamelCase ) -> Any: for i in range(config.num_hidden_layers ): UpperCamelCase_: Dict = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase_: Optional[Any] = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) UpperCamelCase_: List[Any] = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_: List[str] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase_: List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase_: Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase_: Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase_: int = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase_: List[str] = in_proj_bias[-config.hidden_size :] def A__ ( lowerCamelCase ) -> List[Any]: UpperCamelCase_: Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: UpperCamelCase_: Union[str, Any] = dct.pop(lowerCamelCase ) UpperCamelCase_: int = val @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowerCamelCase ) UpperCamelCase_: Union[str, Any] = False UpperCamelCase_: List[Any] = False UpperCamelCase_: Optional[int] = False UpperCamelCase_: Union[str, Any] = False if "vqa" in checkpoint_url: UpperCamelCase_: str = True UpperCamelCase_: Optional[int] = 31_29 UpperCamelCase_: List[str] = """huggingface/label-files""" UpperCamelCase_: List[str] = """vqa2-id2label.json""" UpperCamelCase_: int = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_: str = {int(lowerCamelCase ): v for k, v in idalabel.items()} UpperCamelCase_: str = idalabel UpperCamelCase_: List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase_: Union[str, Any] = ViltForQuestionAnswering(lowerCamelCase ) elif "nlvr" in checkpoint_url: UpperCamelCase_: Optional[Any] = True UpperCamelCase_: Tuple = 2 UpperCamelCase_: str = {0: """False""", 1: """True"""} UpperCamelCase_: Tuple = {v: k for k, v in config.idalabel.items()} UpperCamelCase_: Union[str, Any] = 3 UpperCamelCase_: int = ViltForImagesAndTextClassification(lowerCamelCase ) elif "irtr" in checkpoint_url: UpperCamelCase_: str = True UpperCamelCase_: Any = ViltForImageAndTextRetrieval(lowerCamelCase ) elif "mlm_itm" in checkpoint_url: UpperCamelCase_: Optional[int] = True UpperCamelCase_: Union[str, Any] = ViltForMaskedLM(lowerCamelCase ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys UpperCamelCase_: str = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="""cpu""" )["""state_dict"""] UpperCamelCase_: Tuple = create_rename_keys(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase ) if mlm_model or irtr_model: UpperCamelCase_: str = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCamelCase_: Tuple = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCamelCase ) # Define processor UpperCamelCase_: List[str] = ViltImageProcessor(size=3_84 ) UpperCamelCase_: Any = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCamelCase_: str = ViltProcessor(lowerCamelCase , lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCamelCase_: List[str] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCamelCase ).raw ) UpperCamelCase_: Any = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCamelCase ).raw ) UpperCamelCase_: List[Any] = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) UpperCamelCase_: Optional[int] = processor(lowerCamelCase , lowerCamelCase , return_tensors="""pt""" ) UpperCamelCase_: Optional[int] = processor(lowerCamelCase , lowerCamelCase , return_tensors="""pt""" ) UpperCamelCase_: str = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCamelCase_: Optional[Any] = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCamelCase ).raw ) if mlm_model: UpperCamelCase_: Optional[Any] = """a bunch of [MASK] laying on a [MASK].""" else: UpperCamelCase_: List[Any] = """How many cats are there?""" UpperCamelCase_: Optional[Any] = processor(lowerCamelCase , lowerCamelCase , return_tensors="""pt""" ) UpperCamelCase_: List[str] = model(**lowerCamelCase ) # Verify outputs if mlm_model: UpperCamelCase_: str = torch.Size([1, 11, 3_05_22] ) UpperCamelCase_: Tuple = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase , atol=1E-4 ) # verify masked token prediction equals "cats" UpperCamelCase_: Optional[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCamelCase_: Union[str, Any] = torch.Size([1, 31_29] ) UpperCamelCase_: str = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase , atol=1E-4 ) # verify vqa prediction equals "2" UpperCamelCase_: List[str] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCamelCase_: Any = torch.Size([1, 2] ) UpperCamelCase_: Dict = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase_ : int = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def A__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : List[str] = logging.getLogger() def A__ ( ) -> List[Any]: UpperCamelCase_: str = argparse.ArgumentParser() parser.add_argument("""-f""" ) UpperCamelCase_: List[str] = parser.parse_args() return args.f def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: List[str] = {} UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , """all_results.json""" ) if os.path.exists(lowerCamelCase ): with open(lowerCamelCase , """r""" ) as f: UpperCamelCase_: int = json.load(lowerCamelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results def A__ ( ) -> Any: UpperCamelCase_: Tuple = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() lowerCamelCase_ : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls : List[str] ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU UpperCamelCase_: Dict = tempfile.mkdtemp() UpperCamelCase_: Union[str, Any] = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_: Any = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCAmelCase__ ( cls : Optional[Any] ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = self.get_auto_remove_tmp_dir() UpperCamelCase_: Optional[Any] = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase_: List[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCamelCase_: List[str] = get_results(snake_case_ ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: str = get_results(snake_case_ ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Dict ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase_: List[str] = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: str = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Union[str, Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Dict = self.get_auto_remove_tmp_dir() UpperCamelCase_: List[Any] = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[int] = get_results(snake_case_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[int] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: List[str] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Union[str, Any] = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """translation_no_trainer""" ) ) ) @slow def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case_ ) UpperCamelCase_: List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Optional[Any] = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: int = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: int = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase_: str = get_results(snake_case_ ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """image_classification_no_trainer""" ) ) )
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
def A__ ( lowerCamelCase , lowerCamelCase ) -> List[Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A__ ( lowerCamelCase , lowerCamelCase=0 ) -> Optional[Any]: return sorted(lowerCamelCase , key=lambda lowerCamelCase : x[column] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=float("""inf""" ) ) -> Optional[int]: for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase ): UpperCamelCase_: Any = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCamelCase_: Any = current_dis return min_dis def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=float("""inf""" ) ) -> Tuple: for i in range(min(6 , points_counts - 1 ) , lowerCamelCase ): for j in range(max(0 , i - 6 ) , lowerCamelCase ): UpperCamelCase_: Optional[int] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCamelCase_: Dict = current_dis return min_dis def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: # base case if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase , lowerCamelCase ) # recursion UpperCamelCase_: int = points_counts // 2 UpperCamelCase_: Optional[Any] = closest_pair_of_points_sqr( lowerCamelCase , points_sorted_on_y[:mid] , lowerCamelCase ) UpperCamelCase_: str = closest_pair_of_points_sqr( lowerCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) UpperCamelCase_: Dict = min(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: List[str] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase ) UpperCamelCase_: Dict = dis_between_closest_in_strip( lowerCamelCase , len(lowerCamelCase ) , lowerCamelCase ) return min(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]: UpperCamelCase_: str = column_based_sort(lowerCamelCase , column=0 ) UpperCamelCase_: Tuple = column_based_sort(lowerCamelCase , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ : int = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCamelCase_ : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCamelCase_ : List[str] = { """allenai/longformer-base-4096""": 40_96, """allenai/longformer-large-4096""": 40_96, """allenai/longformer-large-4096-finetuned-triviaqa""": 40_96, """allenai/longformer-base-4096-extra.pos.embd.only""": 40_96, """allenai/longformer-large-4096-extra.pos.embd.only""": 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A__ ( ) -> int: UpperCamelCase_: Any = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase_: List[str] = bs[:] UpperCamelCase_: Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase ) cs.append(2**8 + n ) n += 1 UpperCamelCase_: List[Any] = [chr(lowerCamelCase ) for n in cs] return dict(zip(lowerCamelCase , lowerCamelCase ) ) def A__ ( lowerCamelCase ) -> Union[str, Any]: UpperCamelCase_: Tuple = set() UpperCamelCase_: Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase_: str = char return pairs class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[Any]="replace" , snake_case_ : Union[str, Any]="<s>" , snake_case_ : Tuple="</s>" , snake_case_ : int="</s>" , snake_case_ : List[Any]="<s>" , snake_case_ : Optional[Any]="<unk>" , snake_case_ : Optional[Any]="<pad>" , snake_case_ : List[Any]="<mask>" , snake_case_ : Optional[int]=False , **snake_case_ : Tuple , ): UpperCamelCase_: str = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token UpperCamelCase_: str = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token UpperCamelCase_: Optional[Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token UpperCamelCase_: Optional[Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token UpperCamelCase_: List[Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token UpperCamelCase_: List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_: Dict = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase_: Tuple = json.load(snake_case_ ) UpperCamelCase_: Any = {v: k for k, v in self.encoder.items()} UpperCamelCase_: Optional[int] = errors # how to handle errors in decoding UpperCamelCase_: Union[str, Any] = bytes_to_unicode() UpperCamelCase_: List[str] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase_: Tuple = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase_: Tuple = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase_: Optional[int] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase_: Tuple = {} UpperCamelCase_: str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase_: Optional[int] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def lowerCAmelCase__ ( self : Tuple ): return len(self.encoder ) def lowerCAmelCase__ ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Union[str, Any] ): if token in self.cache: return self.cache[token] UpperCamelCase_: Any = tuple(snake_case_ ) UpperCamelCase_: Union[str, Any] = get_pairs(snake_case_ ) if not pairs: return token while True: UpperCamelCase_: Any = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase_: Union[str, Any] = bigram UpperCamelCase_: Optional[int] = [] UpperCamelCase_: List[str] = 0 while i < len(snake_case_ ): try: UpperCamelCase_: Tuple = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase_: List[str] = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase_: Union[str, Any] = tuple(snake_case_ ) UpperCamelCase_: str = new_word if len(snake_case_ ) == 1: break else: UpperCamelCase_: Tuple = get_pairs(snake_case_ ) UpperCamelCase_: List[str] = """ """.join(snake_case_ ) UpperCamelCase_: Union[str, Any] = word return word def lowerCAmelCase__ ( self : Dict , snake_case_ : int ): UpperCamelCase_: Optional[Any] = [] for token in re.findall(self.pat , snake_case_ ): UpperCamelCase_: Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(""" """ ) ) return bpe_tokens def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Any ): return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Union[str, Any] ): return self.decoder.get(snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : Optional[Any] ): UpperCamelCase_: Any = """""".join(snake_case_ ) UpperCamelCase_: List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCAmelCase__ ( self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_: Dict = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_: Optional[int] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + """\n""" ) UpperCamelCase_: Tuple = 0 with open(snake_case_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase_: List[str] = token_index writer.write(""" """.join(snake_case_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_: Union[str, Any] = [self.cls_token_id] UpperCamelCase_: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: Optional[int] = [self.sep_token_id] UpperCamelCase_: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any]=False , **snake_case_ : Union[str, Any] ): UpperCamelCase_: str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): UpperCamelCase_: str = """ """ + text return (text, kwargs)
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : Optional[int] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: List[str] = Rectangle(height=0.25 , width=0.25 ) UpperCamelCase_: List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: str = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: Optional[Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[str] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Dict = Text("""CPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: str = [mem.copy() for i in range(4 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.move_to([-1, -1, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: str = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = Text("""Model""" , font_size=24 ) UpperCamelCase_: str = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.add(snake_case_ ) UpperCamelCase_: List[str] = [] UpperCamelCase_: Optional[int] = [] UpperCamelCase_: List[Any] = [] for i, rect in enumerate(snake_case_ ): rect.set_stroke(snake_case_ ) UpperCamelCase_: List[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=snake_case_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=snake_case_ , buff=0.0 ) self.add(snake_case_ ) model_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ , *snake_case_ ) UpperCamelCase_: Union[str, Any] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = Text("""Loaded Checkpoint""" , font_size=24 ) UpperCamelCase_: List[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: str = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Optional[int] = fill.copy().set_fill(snake_case_ , opacity=0.7 ) target.move_to(snake_case_ ) ckpt_arr.append(snake_case_ ) UpperCamelCase_: List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case_ , snake_case_ ) UpperCamelCase_: int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case_ ) UpperCamelCase_: List[str] = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) UpperCamelCase_: Any = [meta_mem.copy() for i in range(6 )] UpperCamelCase_: Union[str, Any] = [meta_mem.copy() for i in range(6 )] UpperCamelCase_: Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[str] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: List[str] = Text("""Disk""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(snake_case_ , run_time=3 ) , Write(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) ) UpperCamelCase_: Dict = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Any = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(FadeOut(snake_case_ ) ) UpperCamelCase_: Optional[int] = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) ) self.play( FadeOut(snake_case_ , snake_case_ , *snake_case_ , *snake_case_ ) , ) self.wait()
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : List[str] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : Optional[Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[str] = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def lowerCAmelCase__ ( self : Any , snake_case_ : Any=False ): if class_cond: UpperCamelCase_: Optional[int] = self.dummy_cond_unet else: UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler UpperCamelCase_: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: Tuple = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self : Dict , snake_case_ : str , snake_case_ : str=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: List[Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: int = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Optional[Any] = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [22, 0], """generator""": generator, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: List[Any] = self.get_dummy_components() UpperCamelCase_: int = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Any = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[Any] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: Any = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: Tuple = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Optional[Any] = self.get_dummy_components(class_cond=snake_case_ ) UpperCamelCase_: str = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Optional[int] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Any = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: Tuple = 0 UpperCamelCase_: List[str] = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: str = self.get_dummy_components() UpperCamelCase_: Dict = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Dict = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[int] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: str = 1 UpperCamelCase_: int = None UpperCamelCase_: Optional[Any] = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Tuple = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: str = self.get_dummy_components(class_cond=snake_case_ ) UpperCamelCase_: Optional[int] = ConsistencyModelPipeline(**snake_case_ ) UpperCamelCase_: Optional[int] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[Any] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: List[str] = 1 UpperCamelCase_: List[Any] = None UpperCamelCase_: Any = 0 UpperCamelCase_: Union[str, Any] = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) UpperCamelCase_: Any = image[0, -3:, -3:, -1] UpperCamelCase_: Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Any=0 , snake_case_ : Tuple=False , snake_case_ : Optional[Any]="cpu" , snake_case_ : str=torch.floataa , snake_case_ : str=(1, 3, 64, 64) ): UpperCamelCase_: List[Any] = torch.manual_seed(snake_case_ ) UpperCamelCase_: Dict = { """num_inference_steps""": None, """timesteps""": [22, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: UpperCamelCase_: List[str] = self.get_fixed_latents(seed=snake_case_ , device=snake_case_ , dtype=snake_case_ , shape=snake_case_ ) UpperCamelCase_: Any = latents return inputs def lowerCAmelCase__ ( self : Any , snake_case_ : Optional[int]=0 , snake_case_ : Optional[int]="cpu" , snake_case_ : Any=torch.floataa , snake_case_ : List[Any]=(1, 3, 64, 64) ): if type(snake_case_ ) == str: UpperCamelCase_: Optional[Any] = torch.device(snake_case_ ) UpperCamelCase_: Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: List[str] = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) return latents def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: List[str] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[int] = self.get_inputs() UpperCamelCase_: List[str] = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: int = image[0, -3:, -3:, -1] UpperCamelCase_: str = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: Optional[int] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = self.get_inputs() UpperCamelCase_: Optional[int] = 1 UpperCamelCase_: str = None UpperCamelCase_: List[str] = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: int = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: List[Any] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Union[str, Any] = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): UpperCamelCase_: Optional[int] = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase_: str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase_: List[str] = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): UpperCamelCase_: Tuple = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) UpperCamelCase_: Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[Any] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
import operator as op def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Optional[int] = [] UpperCamelCase_: Optional[int] = lambda lowerCamelCase , lowerCamelCase : int(x / y ) # noqa: E731 integer division operation UpperCamelCase_: Any = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) else: UpperCamelCase_: Optional[int] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) UpperCamelCase_: Optional[Any] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(lowerCamelCase ) , int(lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase_ : Dict = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCamelCase_ : Tuple = """__DUMMY_TRANSFORMERS_USER__""" lowerCamelCase_ : List[Any] = """Dummy User""" lowerCamelCase_ : Optional[int] = """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""" lowerCamelCase_ : int = """https://hub-ci.huggingface.co""" lowerCamelCase_ : Optional[Any] = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCamelCase_ : Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCamelCase_ : str = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def A__ ( lowerCamelCase ) -> int: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> List[Any]: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , lowerCamelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> List[Any]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase , lowerCamelCase ) -> Dict: HfFolder.save_token(lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def A__ ( ) -> Any: return HfApi(endpoint=lowerCamelCase ) @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: Optional[int] = HfFolder.get_token() HfFolder.save_token(lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> Dict: def _cleanup_repo(lowerCamelCase ): hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def A__ ( lowerCamelCase ) -> int: @contextmanager def _temporary_repo(lowerCamelCase ): try: yield repo_id finally: cleanup_repo(lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: str = F'''repo_txt_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: Dict = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: UpperCamelCase_: Optional[Any] = F'''repo_zipped_txt_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: Tuple = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: UpperCamelCase_: Any = F'''repo_zipped_img_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: return hf_private_dataset_repo_zipped_img_data_
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
def A__ ( lowerCamelCase ) -> list: UpperCamelCase_: Union[str, Any] = int(lowerCamelCase ) if n_element < 1: UpperCamelCase_: Dict = ValueError("""a should be a positive number""" ) raise my_error UpperCamelCase_: int = [1] UpperCamelCase_: Union[str, Any] = (0, 0, 0) UpperCamelCase_: Tuple = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": snake_case : Optional[Any] = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") snake_case : Union[str, Any] = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
from collections import defaultdict def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: List[str] = 1 UpperCamelCase_: Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(lowerCamelCase ) if ret % 2 == 0: cuts.append(lowerCamelCase ) return ret def A__ ( ) -> Optional[int]: dfs(1 ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = 10, 9 lowerCamelCase_ : List[Any] = defaultdict(list) lowerCamelCase_ : dict[int, bool] = {} lowerCamelCase_ : list[int] = [] lowerCamelCase_ : str = 0 lowerCamelCase_ : Union[str, Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ["""flax"""] def __init__( self : Any , *snake_case_ : Union[str, Any] , **snake_case_ : Dict ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : int , **snake_case_ : int ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""flax"""] def __init__( self : Tuple , *snake_case_ : Any , **snake_case_ : Union[str, Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : str , **snake_case_ : str ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Any , *snake_case_ : Dict , **snake_case_ : Optional[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""flax"""] def __init__( self : int , *snake_case_ : int , **snake_case_ : Optional[int] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Dict , *snake_case_ : Any , **snake_case_ : List[str] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : str , *snake_case_ : List[Any] , **snake_case_ : int ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , *snake_case_ : str , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : str , *snake_case_ : List[str] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : int , *snake_case_ : List[str] , **snake_case_ : List[str] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , *snake_case_ : str , **snake_case_ : Dict ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , *snake_case_ : List[Any] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Tuple = ["""flax"""] def __init__( self : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : Tuple ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : int , **snake_case_ : Union[str, Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ["""flax"""] def __init__( self : List[Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Tuple , *snake_case_ : Union[str, Any] , **snake_case_ : str ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ["""flax"""] def __init__( self : Dict , *snake_case_ : int , **snake_case_ : List[Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Tuple , *snake_case_ : str , **snake_case_ : str ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""flax"""] def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : int ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Tuple , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Dict = ["""flax"""] def __init__( self : str , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : List[str] , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : List[Any] , *snake_case_ : str , **snake_case_ : Tuple ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : Union[str, Any] , *snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : int , *snake_case_ : List[Any] , **snake_case_ : List[Any] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , *snake_case_ : str , **snake_case_ : Any ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : Any = ["""flax"""] def __init__( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : Optional[Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[int] ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : int , **snake_case_ : int ): requires_backends(cls , ["""flax"""] ) class _UpperCamelCase ( metaclass=_A ): '''simple docstring''' __UpperCamelCase : List[str] = ["""flax"""] def __init__( self : List[str] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[Any] ): requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : str , **snake_case_ : int ): requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase__ ( cls : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ): requires_backends(cls , ["""flax"""] )
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCamelCase_ : Optional[int] = data_utils.TransfoXLTokenizer lowerCamelCase_ : Tuple = data_utils.TransfoXLCorpus lowerCamelCase_ : List[Any] = data_utils lowerCamelCase_ : Optional[int] = data_utils def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCamelCase , """rb""" ) as fp: UpperCamelCase_: Optional[Any] = pickle.load(lowerCamelCase , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: List[str] = corpus.vocab.__dict__ torch.save(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: List[str] = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , lowerCamelCase ) UpperCamelCase_: Optional[Any] = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(lowerCamelCase , lowerCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: List[Any] = os.path.abspath(lowerCamelCase ) UpperCamelCase_: Any = os.path.abspath(lowerCamelCase ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: Optional[Any] = TransfoXLConfig() else: UpperCamelCase_: List[str] = TransfoXLConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Optional[Any] = TransfoXLLMHeadModel(lowerCamelCase ) UpperCamelCase_: int = load_tf_weights_in_transfo_xl(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model UpperCamelCase_: List[Any] = os.path.join(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'''Save PyTorch model to {os.path.abspath(lowerCamelCase )}''' ) torch.save(model.state_dict() , lowerCamelCase ) print(F'''Save configuration file to {os.path.abspath(lowerCamelCase )}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ : str = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : List[str] = """OwlViTImageProcessor""" __UpperCamelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[Any] , snake_case_ : Dict=None , snake_case_ : Any=None , **snake_case_ : Dict ): UpperCamelCase_: List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case_ , ) UpperCamelCase_: str = kwargs.pop("""feature_extractor""" ) UpperCamelCase_: str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : Optional[int] , snake_case_ : int=None , snake_case_ : Tuple=None , snake_case_ : Any=None , snake_case_ : Tuple="max_length" , snake_case_ : List[str]="np" , **snake_case_ : Optional[Any] ): if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(snake_case_ , snake_case_ ) or (isinstance(snake_case_ , snake_case_ ) and not isinstance(text[0] , snake_case_ )): UpperCamelCase_: Any = [self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors=snake_case_ , **snake_case_ )] elif isinstance(snake_case_ , snake_case_ ) and isinstance(text[0] , snake_case_ ): UpperCamelCase_: Union[str, Any] = [] # Maximum number of queries across batch UpperCamelCase_: Optional[Any] = max([len(snake_case_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(snake_case_ ) != max_num_queries: UpperCamelCase_: Union[str, Any] = t + [""" """] * (max_num_queries - len(snake_case_ )) UpperCamelCase_: Tuple = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) encodings.append(snake_case_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCamelCase_: List[str] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase_: Union[str, Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCamelCase_: Optional[Any] = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase_: Any = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCamelCase_: Any = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCamelCase_: int = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCamelCase_: Optional[int] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase_: Any = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCamelCase_: Any = BatchEncoding() UpperCamelCase_: str = input_ids UpperCamelCase_: Union[str, Any] = attention_mask if query_images is not None: UpperCamelCase_: Tuple = BatchEncoding() UpperCamelCase_: Dict = self.image_processor( snake_case_ , return_tensors=snake_case_ , **snake_case_ ).pixel_values UpperCamelCase_: Optional[int] = query_pixel_values if images is not None: UpperCamelCase_: List[Any] = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and images is not None: UpperCamelCase_: Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCamelCase_: Dict = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def lowerCAmelCase__ ( self : Dict , *snake_case_ : Any , **snake_case_ : Any ): return self.image_processor.post_process(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , *snake_case_ : List[Any] , **snake_case_ : Tuple ): return self.image_processor.post_process_object_detection(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ): return self.image_processor.post_process_image_guided_detection(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : List[str] , *snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : int ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : int ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , snake_case_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : List[str] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , snake_case_ , ) return self.image_processor
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : str = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Any = """glpn""" def __init__( self : Tuple , snake_case_ : int=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : str=[8, 4, 2, 1] , snake_case_ : Dict=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : Optional[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : int=[4, 4, 4, 4] , snake_case_ : Optional[Any]="gelu" , snake_case_ : List[str]=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : int=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Tuple=1e-6 , snake_case_ : Any=64 , snake_case_ : Dict=10 , snake_case_ : Optional[Any]=-1 , **snake_case_ : List[Any] , ): super().__init__(**snake_case_ ) UpperCamelCase_: Union[str, Any] = num_channels UpperCamelCase_: Tuple = num_encoder_blocks UpperCamelCase_: str = depths UpperCamelCase_: Any = sr_ratios UpperCamelCase_: Tuple = hidden_sizes UpperCamelCase_: Optional[int] = patch_sizes UpperCamelCase_: Optional[int] = strides UpperCamelCase_: Any = mlp_ratios UpperCamelCase_: Tuple = num_attention_heads UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: int = hidden_dropout_prob UpperCamelCase_: List[str] = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: Union[str, Any] = drop_path_rate UpperCamelCase_: List[str] = layer_norm_eps UpperCamelCase_: Union[str, Any] = decoder_hidden_size UpperCamelCase_: Optional[Any] = max_depth UpperCamelCase_: Dict = head_in_index
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
import random def A__ ( lowerCamelCase , lowerCamelCase ) -> tuple: UpperCamelCase_: Tuple = [], [], [] for element in data: if element < pivot: less.append(lowerCamelCase ) elif element > pivot: greater.append(lowerCamelCase ) else: equal.append(lowerCamelCase ) return less, equal, greater def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(lowerCamelCase ) or index < 0: return None UpperCamelCase_: List[Any] = items[random.randint(0 , len(lowerCamelCase ) - 1 )] UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = _partition(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: str = len(lowerCamelCase ) UpperCamelCase_: int = len(lowerCamelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCamelCase , lowerCamelCase ) # must be in larger else: return quick_select(lowerCamelCase , index - (m + count) )
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : List[Any] = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
from math import pow, sqrt def A__ ( *lowerCamelCase ) -> bool: UpperCamelCase_: Tuple = len(lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def A__ ( lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import tensorflow as tf from ...tf_utils import shape_list class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , snake_case_ : int , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Any , snake_case_ : int=1 , snake_case_ : Dict=False , **snake_case_ : str ): super().__init__(**snake_case_ ) UpperCamelCase_: int = vocab_size UpperCamelCase_: List[Any] = d_embed UpperCamelCase_: Any = d_proj UpperCamelCase_: Any = cutoffs + [vocab_size] UpperCamelCase_: Any = [0] + self.cutoffs UpperCamelCase_: List[Any] = div_val UpperCamelCase_: Tuple = self.cutoffs[0] UpperCamelCase_: Tuple = len(self.cutoffs ) - 1 UpperCamelCase_: Dict = self.shortlist_size + self.n_clusters UpperCamelCase_: int = keep_order UpperCamelCase_: Dict = [] UpperCamelCase_: Tuple = [] def lowerCAmelCase__ ( self : int , snake_case_ : Optional[Any] ): if self.n_clusters > 0: UpperCamelCase_: Dict = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=snake_case_ , name="""cluster_weight""" ) UpperCamelCase_: Union[str, Any] = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=snake_case_ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCamelCase_: Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=snake_case_ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(snake_case_ ) else: self.out_projs.append(snake_case_ ) UpperCamelCase_: Tuple = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=snake_case_ , name=f'''out_layers_._{i}_._weight''' , ) UpperCamelCase_: int = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=snake_case_ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase_: List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_: str = self.d_embed // (self.div_val**i) UpperCamelCase_: str = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=snake_case_ , name=f'''out_projs_._{i}''' ) self.out_projs.append(snake_case_ ) UpperCamelCase_: List[str] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=snake_case_ , name=f'''out_layers_._{i}_._weight''' , ) UpperCamelCase_: str = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=snake_case_ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : str=None ): UpperCamelCase_: Optional[int] = x if proj is not None: UpperCamelCase_: Optional[Any] = tf.einsum("""ibd,ed->ibe""" , snake_case_ , snake_case_ ) return tf.einsum("""ibd,nd->ibn""" , snake_case_ , snake_case_ ) + b @staticmethod def lowerCAmelCase__ ( snake_case_ : Any , snake_case_ : List[str] ): UpperCamelCase_: str = shape_list(snake_case_ ) UpperCamelCase_: Optional[int] = tf.range(lp_size[0] , dtype=target.dtype ) UpperCamelCase_: Dict = tf.stack([r, target] , 1 ) return tf.gather_nd(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[str]=True , snake_case_ : List[Any]=False ): UpperCamelCase_: List[str] = 0 if self.n_clusters == 0: UpperCamelCase_: Optional[int] = self._logit(snake_case_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCamelCase_: List[Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case_ , logits=snake_case_ ) UpperCamelCase_: str = tf.nn.log_softmax(snake_case_ , axis=-1 ) else: UpperCamelCase_: Dict = shape_list(snake_case_ ) UpperCamelCase_: str = [] UpperCamelCase_: Union[str, Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCamelCase_: List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCamelCase_: Union[str, Any] = (target >= l_idx) & (target < r_idx) UpperCamelCase_: Dict = tf.where(snake_case_ ) UpperCamelCase_: Dict = tf.boolean_mask(snake_case_ , snake_case_ ) - l_idx if self.div_val == 1: UpperCamelCase_: str = self.out_layers[0][0][l_idx:r_idx] UpperCamelCase_: Optional[Any] = self.out_layers[0][1][l_idx:r_idx] else: UpperCamelCase_: Union[str, Any] = self.out_layers[i][0] UpperCamelCase_: Dict = self.out_layers[i][1] if i == 0: UpperCamelCase_: Tuple = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCamelCase_: int = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCamelCase_: str = self._logit(snake_case_ , snake_case_ , snake_case_ , self.out_projs[0] ) UpperCamelCase_: List[Any] = tf.nn.log_softmax(snake_case_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCamelCase_: Union[str, Any] = tf.boolean_mask(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[Any] = self._gather_logprob(snake_case_ , snake_case_ ) else: UpperCamelCase_: Dict = self._logit(snake_case_ , snake_case_ , snake_case_ , self.out_projs[i] ) UpperCamelCase_: Tuple = tf.nn.log_softmax(snake_case_ ) UpperCamelCase_: Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCamelCase_: int = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(snake_case_ ) if target is not None: UpperCamelCase_: Optional[int] = tf.boolean_mask(snake_case_ , snake_case_ ) UpperCamelCase_: Dict = tf.boolean_mask(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = self._gather_logprob(snake_case_ , snake_case_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(snake_case_ , -cur_logprob , shape_list(snake_case_ ) ) UpperCamelCase_: Optional[int] = tf.concat(snake_case_ , axis=-1 ) if target is not None: if return_mean: UpperCamelCase_: Optional[Any] = tf.reduce_mean(snake_case_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(snake_case_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(snake_case_ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): UpperCamelCase_: Optional[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase_: Dict = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case_ ) ) ] UpperCamelCase_: Optional[int] = defaultdict(snake_case_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase_: List[str] = (1 << len(snake_case_ )) - 1 def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Any ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase_: List[str] = self.count_ways_until(snake_case_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase_: Union[str, Any] = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Union[str, Any] ): # Store the list of persons for each task for i in range(len(snake_case_ ) ): for j in task_performed[i]: self.task[j].append(snake_case_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCamelCase_ : int = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCamelCase_ : Any = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCamelCase_ : Optional[Any] = threading.Lock() lowerCamelCase_ : Optional[logging.Handler] = None lowerCamelCase_ : Union[str, Any] = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } lowerCamelCase_ : List[str] = logging.WARNING lowerCamelCase_ : Optional[int] = True def A__ ( ) -> Any: UpperCamelCase_: Dict = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowerCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def A__ ( ) -> str: return __name__.split(""".""" )[0] def A__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def A__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCamelCase_: Any = logging.StreamHandler() # Set sys.stderr as stream. UpperCamelCase_: Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCamelCase_: Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCamelCase_: Any = False def A__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return UpperCamelCase_: List[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCamelCase_: int = None def A__ ( ) -> Optional[Any]: return log_levels def A__ ( lowerCamelCase = None ) -> logging.Logger: if name is None: UpperCamelCase_: str = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCamelCase ) def A__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A__ ( lowerCamelCase ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCamelCase ) def A__ ( ) -> Any: return set_verbosity(lowerCamelCase ) def A__ ( ) -> Optional[int]: return set_verbosity(lowerCamelCase ) def A__ ( ) -> Any: return set_verbosity(lowerCamelCase ) def A__ ( ) -> Dict: return set_verbosity(lowerCamelCase ) def A__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A__ ( lowerCamelCase ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCamelCase ) def A__ ( lowerCamelCase ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCamelCase ) def A__ ( ) -> None: _configure_library_root_logger() UpperCamelCase_: Any = False def A__ ( ) -> None: _configure_library_root_logger() UpperCamelCase_: List[str] = True def A__ ( ) -> None: UpperCamelCase_: List[str] = _get_library_root_logger().handlers for handler in handlers: UpperCamelCase_: Optional[int] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(lowerCamelCase ) def A__ ( ) -> None: UpperCamelCase_: int = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCamelCase ) def A__ ( self , *lowerCamelCase , **lowerCamelCase ) -> List[str]: UpperCamelCase_: List[str] = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , lowerCamelCase ) if no_advisory_warnings: return self.warning(*lowerCamelCase , **lowerCamelCase ) lowerCamelCase_ : Tuple = warning_advice @functools.lru_cache(lowerCamelCase ) def A__ ( self , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: self.warning(*lowerCamelCase , **lowerCamelCase ) lowerCamelCase_ : List[str] = warning_once class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : Union[str, Any] ): # pylint: disable=unused-argument UpperCamelCase_: Tuple = args[0] if args else None def __iter__( self : Tuple ): return iter(self._iterator ) def __getattr__( self : Tuple , snake_case_ : Optional[Any] ): def empty_fn(*snake_case_ : str , **snake_case_ : Optional[int] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): return self def __exit__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Optional[Any] ): return class _UpperCamelCase : '''simple docstring''' def __call__( self : Any , *snake_case_ : str , **snake_case_ : Dict ): if _tqdm_active: return tqdm_lib.tqdm(*snake_case_ , **snake_case_ ) else: return EmptyTqdm(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , *snake_case_ : Tuple , **snake_case_ : Dict ): UpperCamelCase_: Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : int ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase_ : List[str] = _tqdm_cls() def A__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def A__ ( ) -> List[Any]: global _tqdm_active UpperCamelCase_: Dict = True hf_hub_utils.enable_progress_bars() def A__ ( ) -> List[Any]: global _tqdm_active UpperCamelCase_: Tuple = False hf_hub_utils.disable_progress_bars()
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = tempfile.mkdtemp() UpperCamelCase_: List[Any] = BlipImageProcessor() UpperCamelCase_: List[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase_: Dict = BlipaProcessor(snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def lowerCAmelCase__ ( self : str ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_: List[str] = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: str = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: int = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[str] = self.get_image_processor() UpperCamelCase_: List[Any] = self.get_tokenizer() UpperCamelCase_: Any = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[str] = self.prepare_image_inputs() UpperCamelCase_: Dict = image_processor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: Optional[int] = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: Optional[Any] = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Dict = """lower newer""" UpperCamelCase_: List[str] = processor(text=snake_case_ ) UpperCamelCase_: Union[str, Any] = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = self.get_image_processor() UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: List[str] = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[Any] = """lower newer""" UpperCamelCase_: List[str] = self.prepare_image_inputs() UpperCamelCase_: Dict = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[Any] = self.get_image_processor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: List[str] = processor.batch_decode(snake_case_ ) UpperCamelCase_: Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = self.get_image_processor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: str = BlipaProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[Any] = """lower newer""" UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: Dict = processor(text=snake_case_ , images=snake_case_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Any = tempfile.mkdtemp() # fmt: off UpperCamelCase_: Optional[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCamelCase_: Optional[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase_: Dict = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] UpperCamelCase_: Tuple = {"""unk_token""": """<unk>"""} UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) UpperCamelCase_: int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase_: Dict = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Tuple ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : List[str] , **snake_case_ : Tuple ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : List[str] , **snake_case_ : Optional[int] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_: List[Any] = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Tuple = self.get_tokenizer() UpperCamelCase_: int = self.get_rust_tokenizer() UpperCamelCase_: List[Any] = self.get_image_processor() UpperCamelCase_: int = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase_: List[str] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case_ ) UpperCamelCase_: Optional[int] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase_: Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case_ ) self.assertIsInstance(processor_fast.tokenizer , snake_case_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case_ ) self.assertIsInstance(processor_fast.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Union[str, Any] = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: str = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[Any] = self.prepare_image_inputs() UpperCamelCase_: Union[str, Any] = image_processor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: List[str] = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: str = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: str = """lower newer""" UpperCamelCase_: int = processor(text=snake_case_ ) UpperCamelCase_: List[str] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Optional[Any] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[str] = """lower newer""" UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: Union[str, Any] = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: Optional[int] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Tuple = self.prepare_image_inputs() UpperCamelCase_: int = self.prepare_image_inputs() UpperCamelCase_: Any = processor(images=snake_case_ , visual_prompt=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = self.get_image_processor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Tuple = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Any = processor.batch_decode(snake_case_ ) UpperCamelCase_: Union[str, Any] = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ )
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A__ ( lowerCamelCase ) -> tuple: return (data["data"], data["target"]) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> np.ndarray: UpperCamelCase_: str = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCamelCase , lowerCamelCase ) # Predict target for test data UpperCamelCase_: List[str] = xgb.predict(lowerCamelCase ) UpperCamelCase_: Optional[Any] = predictions.reshape(len(lowerCamelCase ) , 1 ) return predictions def A__ ( ) -> None: UpperCamelCase_: Union[str, Any] = fetch_california_housing() UpperCamelCase_: Optional[Any] = data_handling(lowerCamelCase ) UpperCamelCase_: int = train_test_split( lowerCamelCase , lowerCamelCase , test_size=0.25 , random_state=1 ) UpperCamelCase_: str = xgboost(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCamelCase , lowerCamelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCamelCase , lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while a != 0: UpperCamelCase_: Dict = b % a, a return b def A__ ( lowerCamelCase , lowerCamelCase ) -> int: if gcd(lowerCamelCase , lowerCamelCase ) != 1: UpperCamelCase_: str = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(lowerCamelCase ) UpperCamelCase_: List[str] = 1, 0, a UpperCamelCase_: Dict = 0, 1, m while va != 0: UpperCamelCase_: List[str] = ua // va UpperCamelCase_: List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase_ : Union[str, Any] = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase_ : Union[str, Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase_ : List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def A__ ( lowerCamelCase , lowerCamelCase ) -> tuple[str, float]: UpperCamelCase_: Optional[int] = len([g for position, g in enumerate(lowerCamelCase ) if g == main_target[position]] ) return (item, float(lowerCamelCase )) def A__ ( lowerCamelCase , lowerCamelCase ) -> tuple[str, str]: UpperCamelCase_: Optional[int] = random.randint(0 , len(lowerCamelCase ) - 1 ) UpperCamelCase_: Dict = parent_a[:random_slice] + parent_a[random_slice:] UpperCamelCase_: Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Optional[int] = list(lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: UpperCamelCase_: Optional[Any] = random.choice(lowerCamelCase ) return "".join(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> list[str]: UpperCamelCase_: Optional[Any] = [] # Generate more children proportionally to the fitness score. UpperCamelCase_: List[str] = int(parent_a[1] * 1_00 ) + 1 UpperCamelCase_: List[str] = 10 if child_n >= 10 else child_n for _ in range(lowerCamelCase ): UpperCamelCase_: List[str] = population_score[random.randint(0 , lowerCamelCase )][0] UpperCamelCase_: Tuple = crossover(parent_a[0] , lowerCamelCase ) # Append new string to the population list. pop.append(mutate(lowerCamelCase , lowerCamelCase ) ) pop.append(mutate(lowerCamelCase , lowerCamelCase ) ) return pop def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: UpperCamelCase_: Union[str, Any] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCamelCase_: str = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCamelCase_: Union[str, Any] = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowerCamelCase ) # Generate random starting population. UpperCamelCase_: Union[str, Any] = [] for _ in range(lowerCamelCase ): population.append("""""".join([random.choice(lowerCamelCase ) for i in range(len(lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCamelCase_: Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCamelCase_: Dict = [evaluate(lowerCamelCase , lowerCamelCase ) for item in population] # Check if there is a matching evolution. UpperCamelCase_: Any = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] , reverse=lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCamelCase_: List[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCamelCase ) # Normalize population score to be between 0 and 1. UpperCamelCase_: Optional[Any] = [ (item, score / len(lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(lowerCamelCase ): population.extend(select(population_score[int(lowerCamelCase )] , lowerCamelCase , lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase_ : Any = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) lowerCamelCase_ : str = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) lowerCamelCase_ : Optional[Any] = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
lowerCamelCase_ : Optional[Any] = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } lowerCamelCase_ : Union[str, Any] = {value: key for key, value in encode_dict.items()} def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: List[Any] = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def A__ ( lowerCamelCase ) -> str: if set(lowerCamelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) UpperCamelCase_: str = """""" for word in coded.split(): while len(lowerCamelCase ) != 0: decoded += decode_dict[word[:5]] UpperCamelCase_: Optional[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
import re import string import numpy as np import datasets lowerCamelCase_ : Optional[int] = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ lowerCamelCase_ : Optional[Any] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ lowerCamelCase_ : int = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=None , snake_case_ : int=False , snake_case_ : Dict=False , snake_case_ : List[str]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase_: int = np.array([re.sub(snake_case_ , """""" , snake_case_ ) for x in predictions] ) UpperCamelCase_: Tuple = np.array([re.sub(snake_case_ , """""" , snake_case_ ) for x in references] ) else: UpperCamelCase_: int = np.asarray(snake_case_ ) UpperCamelCase_: Optional[Any] = np.asarray(snake_case_ ) if ignore_case: UpperCamelCase_: List[str] = np.char.lower(snake_case_ ) UpperCamelCase_: Optional[Any] = np.char.lower(snake_case_ ) if ignore_punctuation: UpperCamelCase_: Tuple = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase_: List[str] = np.char.translate(snake_case_ , table=snake_case_ ) UpperCamelCase_: List[str] = np.char.translate(snake_case_ , table=snake_case_ ) if ignore_numbers: UpperCamelCase_: str = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase_: List[str] = np.char.translate(snake_case_ , table=snake_case_ ) UpperCamelCase_: int = np.char.translate(snake_case_ , table=snake_case_ ) UpperCamelCase_: Dict = predictions == references return {"exact_match": np.mean(snake_case_ ) * 100}
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : List[str] = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = ["""MobileNetV2FeatureExtractor"""] snake_case : Union[str, Any] = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Dict = """visual_bert""" def __init__( self : Any , snake_case_ : List[Any]=3_0522 , snake_case_ : int=768 , snake_case_ : List[Any]=512 , snake_case_ : int=12 , snake_case_ : Tuple=12 , snake_case_ : Optional[Any]=3072 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Optional[Any]=512 , snake_case_ : Tuple=2 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : Optional[int]=1e-12 , snake_case_ : Any=False , snake_case_ : Any=True , snake_case_ : Union[str, Any]=1 , snake_case_ : int=0 , snake_case_ : str=2 , **snake_case_ : Optional[int] , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) UpperCamelCase_: List[str] = vocab_size UpperCamelCase_: List[str] = max_position_embeddings UpperCamelCase_: List[str] = hidden_size UpperCamelCase_: List[str] = visual_embedding_dim UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: Tuple = num_attention_heads UpperCamelCase_: List[str] = intermediate_size UpperCamelCase_: str = hidden_act UpperCamelCase_: int = hidden_dropout_prob UpperCamelCase_: Optional[int] = attention_probs_dropout_prob UpperCamelCase_: Tuple = initializer_range UpperCamelCase_: List[Any] = type_vocab_size UpperCamelCase_: int = layer_norm_eps UpperCamelCase_: Union[str, Any] = bypass_transformer UpperCamelCase_: Optional[int] = special_visual_initialize
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ : Union[str, Any] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : Optional[Any] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
def A__ ( lowerCamelCase ) -> list: '''simple docstring''' def merge(lowerCamelCase , lowerCamelCase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCamelCase ) <= 1: return collection UpperCamelCase_: List[str] = len(lowerCamelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase_ : Any = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase_ : Optional[Any] = """Create a default config file for Accelerate with only a few flags set.""" def A__ ( lowerCamelCase="no" , lowerCamelCase = default_json_config_file , lowerCamelCase = False ) -> Union[str, Any]: UpperCamelCase_: Any = Path(lowerCamelCase ) path.parent.mkdir(parents=lowerCamelCase , exist_ok=lowerCamelCase ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCamelCase_: int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCamelCase_: int = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): UpperCamelCase_: Dict = torch.cuda.device_count() UpperCamelCase_: Any = num_gpus UpperCamelCase_: List[Any] = False if num_gpus > 1: UpperCamelCase_: List[Any] = """MULTI_GPU""" else: UpperCamelCase_: Tuple = """NO""" elif is_xpu_available() and use_xpu: UpperCamelCase_: Union[str, Any] = torch.xpu.device_count() UpperCamelCase_: Dict = num_xpus UpperCamelCase_: List[str] = False if num_xpus > 1: UpperCamelCase_: int = """MULTI_XPU""" else: UpperCamelCase_: Optional[Any] = """NO""" elif is_npu_available(): UpperCamelCase_: List[str] = torch.npu.device_count() UpperCamelCase_: List[str] = num_npus UpperCamelCase_: Tuple = False if num_npus > 1: UpperCamelCase_: Union[str, Any] = """MULTI_NPU""" else: UpperCamelCase_: Union[str, Any] = """NO""" else: UpperCamelCase_: str = 0 UpperCamelCase_: Dict = True UpperCamelCase_: str = 1 UpperCamelCase_: Dict = """NO""" UpperCamelCase_: Union[str, Any] = ClusterConfig(**lowerCamelCase ) config.to_json_file(lowerCamelCase ) return path def A__ ( lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: Optional[Any] = parser.add_parser("""default""" , parents=lowerCamelCase , help=lowerCamelCase , formatter_class=lowerCamelCase ) parser.add_argument( """--config_file""" , default=lowerCamelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowerCamelCase , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowerCamelCase ) return parser def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase_ : Union[str, Any] = """src/transformers""" lowerCamelCase_ : Union[str, Any] = """docs/source/en""" lowerCamelCase_ : Union[str, Any] = """.""" def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: with open(lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase_: Tuple = f.readlines() # Find the start prompt. UpperCamelCase_: Tuple = 0 while not lines[start_index].startswith(lowerCamelCase ): start_index += 1 start_index += 1 UpperCamelCase_: Dict = start_index while not lines[end_index].startswith(lowerCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase_ : Any = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. lowerCamelCase_ : str = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowerCamelCase_ : Optional[int] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase_ : Any = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: Optional[int] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCamelCase ) return [m.group(0 ) for m in matches] def A__ ( lowerCamelCase , lowerCamelCase ) -> List[Any]: UpperCamelCase_: List[str] = 2 if text == """✅""" or text == """❌""" else len(lowerCamelCase ) UpperCamelCase_: int = (width - text_length) // 2 UpperCamelCase_: List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def A__ ( ) -> Tuple: UpperCamelCase_: Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCamelCase_: Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } UpperCamelCase_: Optional[int] = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. UpperCamelCase_: List[Any] = collections.defaultdict(lowerCamelCase ) UpperCamelCase_: List[str] = collections.defaultdict(lowerCamelCase ) UpperCamelCase_: List[str] = collections.defaultdict(lowerCamelCase ) UpperCamelCase_: List[str] = collections.defaultdict(lowerCamelCase ) UpperCamelCase_: List[str] = collections.defaultdict(lowerCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase ): UpperCamelCase_: int = None if attr_name.endswith("""Tokenizer""" ): UpperCamelCase_: int = slow_tokenizers UpperCamelCase_: Dict = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): UpperCamelCase_: Union[str, Any] = fast_tokenizers UpperCamelCase_: str = attr_name[:-13] elif _re_tf_models.match(lowerCamelCase ) is not None: UpperCamelCase_: Optional[Any] = tf_models UpperCamelCase_: List[str] = _re_tf_models.match(lowerCamelCase ).groups()[0] elif _re_flax_models.match(lowerCamelCase ) is not None: UpperCamelCase_: List[str] = flax_models UpperCamelCase_: List[Any] = _re_flax_models.match(lowerCamelCase ).groups()[0] elif _re_pt_models.match(lowerCamelCase ) is not None: UpperCamelCase_: str = pt_models UpperCamelCase_: int = _re_pt_models.match(lowerCamelCase ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): UpperCamelCase_: List[Any] = True break # Try again after removing the last word in the name UpperCamelCase_: str = """""".join(camel_case_split(lowerCamelCase )[:-1] ) # Let's build that table! UpperCamelCase_: Optional[int] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) UpperCamelCase_: List[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). UpperCamelCase_: Tuple = [len(lowerCamelCase ) + 2 for c in columns] UpperCamelCase_: List[Any] = max([len(lowerCamelCase ) for name in model_names] ) + 2 # Build the table per se UpperCamelCase_: int = """|""" + """|""".join([_center_text(lowerCamelCase , lowerCamelCase ) for c, w in zip(lowerCamelCase , lowerCamelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" UpperCamelCase_: Optional[Any] = {True: """✅""", False: """❌"""} for name in model_names: UpperCamelCase_: int = model_name_to_prefix[name] UpperCamelCase_: str = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase , lowerCamelCase ) for l, w in zip(lowerCamelCase , lowerCamelCase )] ) + "|\n" return table def A__ ( lowerCamelCase=False ) -> Dict: UpperCamelCase_: Dict = _find_text_in_file( filename=os.path.join(lowerCamelCase , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) UpperCamelCase_: Tuple = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCamelCase_ : Dict = parser.parse_args() check_model_table(args.fix_and_overwrite)
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import itertools import string from collections.abc import Generator, Iterable def A__ ( lowerCamelCase , lowerCamelCase ) -> Generator[tuple[str, ...], None, None]: UpperCamelCase_: Tuple = iter(lowerCamelCase ) while True: UpperCamelCase_: Optional[int] = tuple(itertools.islice(lowerCamelCase , lowerCamelCase ) ) if not chunk: return yield chunk def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: int = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCamelCase_: Tuple = """""" if len(lowerCamelCase ) < 2: return dirty for i in range(len(lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCamelCase ) & 1: clean += "X" return clean def A__ ( lowerCamelCase ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) UpperCamelCase_: Tuple = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCamelCase_: str = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCamelCase ) return table def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: int = generate_table(lowerCamelCase ) UpperCamelCase_: Optional[Any] = prepare_input(lowerCamelCase ) UpperCamelCase_: int = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): UpperCamelCase_: List[Any] = divmod(table.index(lowerCamelCase ) , 5 ) UpperCamelCase_: Any = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Union[str, Any] = generate_table(lowerCamelCase ) UpperCamelCase_: Dict = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): UpperCamelCase_: str = divmod(table.index(lowerCamelCase ) , 5 ) UpperCamelCase_: Optional[Any] = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCamelCase_ : Optional[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCamelCase_ : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def A__ ( lowerCamelCase , lowerCamelCase ) -> VectorOut: return np.sqrt(np.sum((np.asarray(lowerCamelCase ) - np.asarray(lowerCamelCase )) ** 2 ) ) def A__ ( lowerCamelCase , lowerCamelCase ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(lowerCamelCase , lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def A__ ( ) -> None: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) benchmark()
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : int = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = """deformable_detr""" __UpperCamelCase : List[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : int , snake_case_ : int=True , snake_case_ : Dict=None , snake_case_ : Optional[int]=3 , snake_case_ : List[Any]=300 , snake_case_ : Tuple=1024 , snake_case_ : Tuple=6 , snake_case_ : Union[str, Any]=1024 , snake_case_ : List[Any]=8 , snake_case_ : Dict=6 , snake_case_ : int=1024 , snake_case_ : str=8 , snake_case_ : List[str]=0.0 , snake_case_ : int=True , snake_case_ : Any="relu" , snake_case_ : str=256 , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : str=1.0 , snake_case_ : Any=True , snake_case_ : str=False , snake_case_ : List[str]="sine" , snake_case_ : List[Any]="resnet50" , snake_case_ : int=True , snake_case_ : str=False , snake_case_ : Tuple=4 , snake_case_ : Optional[Any]=4 , snake_case_ : Tuple=4 , snake_case_ : Optional[int]=False , snake_case_ : Tuple=300 , snake_case_ : Optional[int]=False , snake_case_ : Dict=1 , snake_case_ : Optional[Any]=5 , snake_case_ : Union[str, Any]=2 , snake_case_ : Optional[int]=1 , snake_case_ : int=1 , snake_case_ : List[Any]=5 , snake_case_ : Optional[int]=2 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.25 , snake_case_ : Union[str, Any]=False , **snake_case_ : List[str] , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase_: str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Tuple = backbone_config.get("""model_type""" ) UpperCamelCase_: Dict = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_: List[Any] = config_class.from_dict(snake_case_ ) UpperCamelCase_: Optional[int] = use_timm_backbone UpperCamelCase_: Optional[Any] = backbone_config UpperCamelCase_: str = num_channels UpperCamelCase_: str = num_queries UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: str = d_model UpperCamelCase_: Union[str, Any] = encoder_ffn_dim UpperCamelCase_: int = encoder_layers UpperCamelCase_: Tuple = encoder_attention_heads UpperCamelCase_: List[str] = decoder_ffn_dim UpperCamelCase_: List[Any] = decoder_layers UpperCamelCase_: Dict = decoder_attention_heads UpperCamelCase_: Any = dropout UpperCamelCase_: List[Any] = attention_dropout UpperCamelCase_: str = activation_dropout UpperCamelCase_: List[Any] = activation_function UpperCamelCase_: Tuple = init_std UpperCamelCase_: Union[str, Any] = init_xavier_std UpperCamelCase_: Dict = encoder_layerdrop UpperCamelCase_: List[Any] = auxiliary_loss UpperCamelCase_: Optional[int] = position_embedding_type UpperCamelCase_: Dict = backbone UpperCamelCase_: Optional[int] = use_pretrained_backbone UpperCamelCase_: List[Any] = dilation # deformable attributes UpperCamelCase_: Optional[int] = num_feature_levels UpperCamelCase_: Dict = encoder_n_points UpperCamelCase_: str = decoder_n_points UpperCamelCase_: int = two_stage UpperCamelCase_: List[Any] = two_stage_num_proposals UpperCamelCase_: str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase_: List[Any] = class_cost UpperCamelCase_: List[Any] = bbox_cost UpperCamelCase_: List[Any] = giou_cost # Loss coefficients UpperCamelCase_: List[str] = mask_loss_coefficient UpperCamelCase_: Union[str, Any] = dice_loss_coefficient UpperCamelCase_: int = bbox_loss_coefficient UpperCamelCase_: str = giou_loss_coefficient UpperCamelCase_: Any = eos_coefficient UpperCamelCase_: int = focal_alpha UpperCamelCase_: str = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : int ): return self.encoder_attention_heads @property def lowerCAmelCase__ ( self : List[str] ): return self.d_model def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase_: List[Any] = self.backbone_config.to_dict() UpperCamelCase_: List[str] = self.__class__.model_type return output
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : str = {"""vocab_file""": """vocab.txt"""} lowerCamelCase_ : List[Any] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } lowerCamelCase_ : Tuple = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } lowerCamelCase_ : List[Any] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[Any] = ConvBertTokenizer def __init__( self : Dict , snake_case_ : str=None , snake_case_ : int=None , snake_case_ : List[Any]=True , snake_case_ : List[Any]="[UNK]" , snake_case_ : List[Any]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : List[Any]="[CLS]" , snake_case_ : Any="[MASK]" , snake_case_ : Optional[int]=True , snake_case_ : Dict=None , **snake_case_ : Dict , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) UpperCamelCase_: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): UpperCamelCase_: int = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) UpperCamelCase_: List[str] = do_lower_case UpperCamelCase_: Any = strip_accents UpperCamelCase_: Any = tokenize_chinese_chars UpperCamelCase_: Tuple = normalizer_class(**snake_case_ ) UpperCamelCase_: Dict = do_lower_case def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Dict=None ): UpperCamelCase_: Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : List[str] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: Dict = [self.sep_token_id] UpperCamelCase_: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : Tuple , snake_case_ : str , snake_case_ : Optional[str] = None ): UpperCamelCase_: Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
from decimal import Decimal, getcontext from math import ceil, factorial def A__ ( lowerCamelCase ) -> str: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) UpperCamelCase_: Dict = precision UpperCamelCase_: List[Any] = ceil(precision / 14 ) UpperCamelCase_: List[Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Optional[Any] = 13_59_14_09 UpperCamelCase_: List[str] = Decimal(lowerCamelCase ) for k in range(1 , lowerCamelCase ): UpperCamelCase_: List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCamelCase ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase_ : Dict = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Any = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
def A__ ( lowerCamelCase ) -> bool: return str(lowerCamelCase ) == str(lowerCamelCase )[::-1] def A__ ( lowerCamelCase ) -> int: return int(lowerCamelCase ) + int(str(lowerCamelCase )[::-1] ) def A__ ( lowerCamelCase = 1_00_00 ) -> int: UpperCamelCase_: Optional[int] = [] for num in range(1 , lowerCamelCase ): UpperCamelCase_: int = 0 UpperCamelCase_: Any = num while iterations < 50: UpperCamelCase_: Any = sum_reverse(lowerCamelCase ) iterations += 1 if is_palindrome(lowerCamelCase ): break else: lychrel_nums.append(lowerCamelCase ) return len(lowerCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = {"""vocab_file""": """spiece.model"""} lowerCamelCase_ : List[str] = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : Any , snake_case_ : int=False , snake_case_ : int=True , snake_case_ : Tuple=False , snake_case_ : List[Any]="<s>" , snake_case_ : Optional[Any]="</s>" , snake_case_ : Union[str, Any]="<unk>" , snake_case_ : Union[str, Any]="<sep>" , snake_case_ : str="<pad>" , snake_case_ : List[Any]="<cls>" , snake_case_ : Optional[int]="<mask>" , snake_case_ : int=["<eop>", "<eod>"] , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Optional[int] , ): UpperCamelCase_: Optional[int] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token UpperCamelCase_: Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) UpperCamelCase_: Optional[Any] = 3 UpperCamelCase_: int = do_lower_case UpperCamelCase_: Union[str, Any] = remove_space UpperCamelCase_: List[Any] = keep_accents UpperCamelCase_: Any = vocab_file UpperCamelCase_: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) UpperCamelCase_: List[Any] = jieba UpperCamelCase_: Dict = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase__ ( self : Dict ): return len(self.sp_model ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Any = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): UpperCamelCase_: Any = self.__dict__.copy() UpperCamelCase_: Optional[int] = None return state def __setstate__( self : List[str] , snake_case_ : List[Any] ): UpperCamelCase_: int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase_: Tuple = {} UpperCamelCase_: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self : str , snake_case_ : Union[str, Any] ): if self.remove_space: UpperCamelCase_: List[Any] = """ """.join(inputs.strip().split() ) else: UpperCamelCase_: List[Any] = inputs UpperCamelCase_: str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCamelCase_: List[Any] = unicodedata.normalize("""NFKD""" , snake_case_ ) UpperCamelCase_: Any = """""".join([c for c in outputs if not unicodedata.combining(snake_case_ )] ) if self.do_lower_case: UpperCamelCase_: int = outputs.lower() return outputs def lowerCAmelCase__ ( self : List[str] , snake_case_ : str ): UpperCamelCase_: str = self.preprocess_text(snake_case_ ) UpperCamelCase_: Optional[int] = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) UpperCamelCase_: Dict = [] for piece in pieces: if len(snake_case_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCamelCase_: Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase_: List[Any] = cur_pieces[1:] else: UpperCamelCase_: List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case_ ) else: new_pieces.append(snake_case_ ) return new_pieces def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Optional[Any] ): return self.sp_model.PieceToId(snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : str ): return self.sp_model.IdToPiece(snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : Optional[int] ): UpperCamelCase_: List[Any] = """""".join(snake_case_ ).replace(snake_case_ , """ """ ).strip() return out_string def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: List[Any] = [self.sep_token_id] UpperCamelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is not None: return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1, 1] return ([0] * len(snake_case_ )) + [1, 1] def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: str = [self.sep_token_id] UpperCamelCase_: Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase__ ( self : str , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_: Optional[Any] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , """wb""" ) as fi: UpperCamelCase_: Any = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def lowerCAmelCase__ ( self : Union[str, Any] , *snake_case_ : List[Any] , **snake_case_ : List[str] ): UpperCamelCase_: List[str] = super()._decode(*snake_case_ , **snake_case_ ) UpperCamelCase_: Tuple = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: if height >= 1: move_tower(height - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) move_disk(lowerCamelCase , lowerCamelCase ) move_tower(height - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]: print("""moving disk from""" , lowerCamelCase , """to""" , lowerCamelCase ) def A__ ( ) -> str: UpperCamelCase_: List[str] = int(input("""Height of hanoi: """ ).strip() ) move_tower(lowerCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : List[Any] = random.Random() def A__ ( lowerCamelCase , lowerCamelCase=1.0 , lowerCamelCase=None , lowerCamelCase=None ) -> int: if rng is None: UpperCamelCase_: int = global_rng UpperCamelCase_: Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , snake_case_ : Dict , snake_case_ : int=7 , snake_case_ : Any=400 , snake_case_ : Any=2000 , snake_case_ : Any=10 , snake_case_ : List[Any]=160 , snake_case_ : int=8 , snake_case_ : Optional[int]=0.0 , snake_case_ : Optional[Any]=4000 , snake_case_ : str=False , snake_case_ : int=True , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: List[Any] = batch_size UpperCamelCase_: Optional[int] = min_seq_length UpperCamelCase_: List[Any] = max_seq_length UpperCamelCase_: Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_: int = padding_value UpperCamelCase_: Optional[Any] = sampling_rate UpperCamelCase_: List[Any] = return_attention_mask UpperCamelCase_: Any = do_normalize UpperCamelCase_: str = feature_size UpperCamelCase_: List[str] = chunk_length UpperCamelCase_: int = hop_length def lowerCAmelCase__ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self : str , snake_case_ : Union[str, Any]=False , snake_case_ : Tuple=False ): def _flatten(snake_case_ : Union[str, Any] ): return list(itertools.chain(*snake_case_ ) ) if equal_length: UpperCamelCase_: Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_: Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_: Tuple = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[str] = WhisperFeatureExtractionTester(self ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: Dict = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) UpperCamelCase_: str = self.feature_extraction_class.from_pretrained(snake_case_ ) UpperCamelCase_: Union[str, Any] = feat_extract_first.to_dict() UpperCamelCase_: Optional[Any] = feat_extract_second.to_dict() UpperCamelCase_: Tuple = feat_extract_first.mel_filters UpperCamelCase_: Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case_ ) UpperCamelCase_: int = self.feature_extraction_class.from_json_file(snake_case_ ) UpperCamelCase_: int = feat_extract_first.to_dict() UpperCamelCase_: Any = feat_extract_second.to_dict() UpperCamelCase_: Union[str, Any] = feat_extract_first.mel_filters UpperCamelCase_: Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : str ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase_: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_: Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_: Dict = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase_: List[str] = feature_extractor(snake_case_ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase_: Dict = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features UpperCamelCase_: Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test batched UpperCamelCase_: Union[str, Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features UpperCamelCase_: Tuple = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_: List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_: Union[str, Any] = np.asarray(snake_case_ ) UpperCamelCase_: Optional[int] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features UpperCamelCase_: int = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test truncation required UpperCamelCase_: int = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCamelCase_: Optional[int] = [np.asarray(snake_case_ ) for speech_input in speech_inputs] UpperCamelCase_: Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase_: Optional[Any] = [np.asarray(snake_case_ ) for speech_input in speech_inputs_truncated] UpperCamelCase_: Optional[int] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features UpperCamelCase_: str = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) def lowerCAmelCase__ ( self : int ): import torch UpperCamelCase_: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_: Any = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase_: Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_: List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase_: Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str ): UpperCamelCase_: Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCamelCase_: Tuple = ds.sort("""id""" ).select(range(snake_case_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self : Tuple ): # fmt: off UpperCamelCase_: List[Any] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on UpperCamelCase_: int = self._load_datasamples(1 ) UpperCamelCase_: Union[str, Any] = WhisperFeatureExtractor() UpperCamelCase_: List[Any] = feature_extractor(snake_case_ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case_ , atol=1e-4 ) ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_: Tuple = self._load_datasamples(1 )[0] UpperCamelCase_: Optional[int] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue UpperCamelCase_: Tuple = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case_ )[0] self.assertTrue(np.all(np.mean(snake_case_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ ) - 1 ) < 1e-3 ) )
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : str = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowerCamelCase_ : Any = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCamelCase_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCamelCase_ : List[str] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowerCamelCase_ : Tuple = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowerCamelCase_ : Optional[int] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowerCamelCase_ : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowerCamelCase_ : Dict = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowerCamelCase_ : Any = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowerCamelCase_ : List[str] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowerCamelCase_ : int = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowerCamelCase_ : Union[str, Any] = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowerCamelCase_ : Optional[int] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowerCamelCase_ : Optional[Any] = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowerCamelCase_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase_ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase_ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase_ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Tuple = FLAX_MODEL_MAPPING lowerCamelCase_ : str = auto_class_update(FlaxAutoModel) class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase_ : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Any = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase_ : Dict = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : int = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase_ : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase_ : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase_ : Dict = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Optional[int] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Dict = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase_ : List[str] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase_ : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : List[str] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase_ : Optional[int] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : List[str] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase_ : Dict = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase_ : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class _UpperCamelCase ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase : int = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase_ : Any = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""image_processor"""] __UpperCamelCase : Any = """SamImageProcessor""" def __init__( self : Tuple , snake_case_ : Dict ): super().__init__(snake_case_ ) UpperCamelCase_: int = self.image_processor UpperCamelCase_: Optional[Any] = -10 UpperCamelCase_: Optional[Any] = self.image_processor.size["""longest_edge"""] def __call__( self : Optional[int] , snake_case_ : Union[str, Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : List[str]=None , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : List[str] , ): UpperCamelCase_: Any = self.image_processor( snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # pop arguments that are not used in the foward but used nevertheless UpperCamelCase_: Optional[Any] = encoding_image_processor["""original_sizes"""] if hasattr(snake_case_ , """numpy""" ): # Checks if Torch or TF tensor UpperCamelCase_: Optional[int] = original_sizes.numpy() UpperCamelCase_: Optional[int] = self._check_and_preprocess_points( input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , ) UpperCamelCase_: Any = self._normalize_and_convert( snake_case_ , snake_case_ , input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , return_tensors=snake_case_ , ) return encoding_image_processor def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Optional[Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Dict="pt" , ): if input_points is not None: if len(snake_case_ ) != len(snake_case_ ): UpperCamelCase_: int = [ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] ) for point in input_points ] else: UpperCamelCase_: Dict = [ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ ) for point, original_size in zip(snake_case_ , snake_case_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: UpperCamelCase_: Union[str, Any] = self._pad_points_and_labels(snake_case_ , snake_case_ ) UpperCamelCase_: Optional[int] = np.array(snake_case_ ) if input_labels is not None: UpperCamelCase_: Tuple = np.array(snake_case_ ) if input_boxes is not None: if len(snake_case_ ) != len(snake_case_ ): UpperCamelCase_: int = [ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] , is_bounding_box=snake_case_ ) for box in input_boxes ] else: UpperCamelCase_: Dict = [ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ , is_bounding_box=snake_case_ ) for box, original_size in zip(snake_case_ , snake_case_ ) ] UpperCamelCase_: Tuple = np.array(snake_case_ ) if input_boxes is not None: if return_tensors == "pt": UpperCamelCase_: List[Any] = torch.from_numpy(snake_case_ ) # boxes batch size of 1 by default UpperCamelCase_: Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": UpperCamelCase_: Dict = tf.convert_to_tensor(snake_case_ ) # boxes batch size of 1 by default UpperCamelCase_: str = tf.expand_dims(snake_case_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": UpperCamelCase_: Optional[int] = torch.from_numpy(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: Union[str, Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": UpperCamelCase_: str = tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: Optional[Any] = tf.expand_dims(snake_case_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": UpperCamelCase_: Union[str, Any] = torch.from_numpy(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: str = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": UpperCamelCase_: List[Any] = tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default UpperCamelCase_: Optional[Any] = tf.expand_dims(snake_case_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCAmelCase__ ( self : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Tuple = max([point.shape[0] for point in input_points] ) UpperCamelCase_: int = [] for i, point in enumerate(snake_case_ ): if point.shape[0] != expected_nb_points: UpperCamelCase_: Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) UpperCamelCase_: int = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(snake_case_ ) UpperCamelCase_: List[Any] = processed_input_points return input_points, input_labels def lowerCAmelCase__ ( self : int , snake_case_ : int , snake_case_ : np.ndarray , snake_case_ : List[Any] , snake_case_ : Optional[int]=False ): UpperCamelCase_: Dict = original_size UpperCamelCase_: str = self.image_processor._get_preprocess_shape(snake_case_ , longest_edge=snake_case_ ) UpperCamelCase_: Tuple = deepcopy(snake_case_ ).astype(snake_case_ ) if is_bounding_box: UpperCamelCase_: Optional[Any] = coords.reshape(-1 , 2 , 2 ) UpperCamelCase_: List[str] = coords[..., 0] * (new_w / old_w) UpperCamelCase_: int = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCamelCase_: List[Any] = coords.reshape(-1 , 4 ) return coords def lowerCAmelCase__ ( self : int , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple=None , snake_case_ : Union[str, Any]=None , ): if input_points is not None: if hasattr(snake_case_ , """numpy""" ): # Checks for TF or Torch tensor UpperCamelCase_: str = input_points.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_points[0] , snake_case_ ): raise ValueError("""Input points must be a list of list of floating points.""" ) UpperCamelCase_: Tuple = [np.array(snake_case_ ) for input_point in input_points] else: UpperCamelCase_: int = None if input_labels is not None: if hasattr(snake_case_ , """numpy""" ): UpperCamelCase_: Any = input_labels.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_labels[0] , snake_case_ ): raise ValueError("""Input labels must be a list of list integers.""" ) UpperCamelCase_: Optional[Any] = [np.array(snake_case_ ) for label in input_labels] else: UpperCamelCase_: Optional[Any] = None if input_boxes is not None: if hasattr(snake_case_ , """numpy""" ): UpperCamelCase_: Union[str, Any] = input_boxes.numpy().tolist() if ( not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_boxes[0] , snake_case_ ) or not isinstance(input_boxes[0][0] , snake_case_ ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) UpperCamelCase_: List[Any] = [np.array(snake_case_ ).astype(np.floataa ) for box in input_boxes] else: UpperCamelCase_: Optional[Any] = None return input_points, input_labels, input_boxes @property def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = self.image_processor.model_input_names return list(dict.fromkeys(snake_case_ ) ) def lowerCAmelCase__ ( self : Optional[int] , *snake_case_ : Tuple , **snake_case_ : Tuple ): return self.image_processor.post_process_masks(*snake_case_ , **snake_case_ )
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version snake_case : Dict = get_logger(__name__) class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[Any] = """dummy_data""" __UpperCamelCase : List[Any] = """datasets""" __UpperCamelCase : Optional[Any] = False def __init__( self : Dict , snake_case_ : str , snake_case_ : str , snake_case_ : Union[Version, str] , snake_case_ : Optional[str] = None , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[List[Callable]] = None , ): UpperCamelCase_: Tuple = 0 UpperCamelCase_: int = dataset_name UpperCamelCase_: Optional[int] = cache_dir UpperCamelCase_: Optional[Any] = use_local_dummy_data UpperCamelCase_: List[str] = config # download_callbacks take a single url as input UpperCamelCase_: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root UpperCamelCase_: Optional[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general UpperCamelCase_: Optional[Any] = str(snake_case_ ) # to be downloaded UpperCamelCase_: Any = None UpperCamelCase_: Tuple = None @property def lowerCAmelCase__ ( self : Tuple ): if self._dummy_file is None: UpperCamelCase_: int = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self : List[Any] ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self : str ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) UpperCamelCase_: Optional[Any] = cached_path( snake_case_ , cache_dir=self.cache_dir , extract_compressed_file=snake_case_ , force_extract=snake_case_ ) return os.path.join(snake_case_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self : Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): if self._bucket_url is None: UpperCamelCase_: Union[str, Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self : int ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self : Any , snake_case_ : Optional[int] , *snake_case_ : Tuple ): if self.load_existing_dummy_data: # dummy data is downloaded and tested UpperCamelCase_: List[str] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned UpperCamelCase_: Dict = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case_ , snake_case_ ): return self.create_dummy_data_dict(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , (list, tuple) ): return self.create_dummy_data_list(snake_case_ , snake_case_ ) else: return self.create_dummy_data_single(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : int , *snake_case_ : List[str] ): return self.download_and_extract(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : List[Any] ): return self.download_and_extract(snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : Tuple , *snake_case_ : Dict , **snake_case_ : int ): return path def lowerCAmelCase__ ( self : Optional[Any] ): return {} def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Any , snake_case_ : Optional[int] ): UpperCamelCase_: List[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case_ , snake_case_ ): for single_url in single_urls: download_callback(snake_case_ ) else: UpperCamelCase_: List[str] = single_urls download_callback(snake_case_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Dict = [os.path.join(snake_case_ , urllib.parse.quote_plus(Path(snake_case_ ).name ) ) for x in single_urls] else: UpperCamelCase_: Tuple = single_urls UpperCamelCase_: str = os.path.join(snake_case_ , urllib.parse.quote_plus(Path(snake_case_ ).name ) ) UpperCamelCase_: List[Any] = value # make sure that values are unique if all(isinstance(snake_case_ , snake_case_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique UpperCamelCase_: str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self : int , snake_case_ : List[Any] , snake_case_ : Dict ): UpperCamelCase_: List[str] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one UpperCamelCase_: Dict = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , snake_case_ ) ) for url in data_url ) UpperCamelCase_: int = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): UpperCamelCase_: List[str] = [data_url[0]] * len(snake_case_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCamelCase_: List[str] = os.path.join(snake_case_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(snake_case_ ) return dummy_data_list def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict , snake_case_ : List[Any] ): for download_callback in self.download_callbacks: download_callback(snake_case_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCamelCase_: Optional[Any] = os.path.join(snake_case_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(snake_case_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self : Optional[Any] ): pass def lowerCAmelCase__ ( self : Optional[int] ): pass def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any] ): def _iter_archive_members(snake_case_ : Optional[Any] ): # this preserves the order of the members inside the ZIP archive UpperCamelCase_: Union[str, Any] = Path(self.dummy_file ).parent UpperCamelCase_: Union[str, Any] = path.relative_to(snake_case_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: UpperCamelCase_: Union[str, Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case_ ) UpperCamelCase_: Optional[int] = Path(snake_case_ ) UpperCamelCase_: int = _iter_archive_members(snake_case_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(snake_case_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self : Any , snake_case_ : Union[str, Any] ): if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: List[Any] = [paths] for path in paths: if os.path.isfile(snake_case_ ): if os.path.basename(snake_case_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case_ ): if os.path.basename(snake_case_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(snake_case_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(snake_case_ , snake_case_ )
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
import math def A__ ( lowerCamelCase , lowerCamelCase ) -> float: return math.pow(lowerCamelCase , 2 ) - a def A__ ( lowerCamelCase ) -> float: return 2 * x def A__ ( lowerCamelCase ) -> float: UpperCamelCase_: str = 2.0 while start <= a: UpperCamelCase_: Union[str, Any] = math.pow(lowerCamelCase , 2 ) return start def A__ ( lowerCamelCase , lowerCamelCase = 99_99 , lowerCamelCase = 0.00000000000001 ) -> float: if a < 0: raise ValueError("""math domain error""" ) UpperCamelCase_: Optional[int] = get_initial_point(lowerCamelCase ) for _ in range(lowerCamelCase ): UpperCamelCase_: Any = value UpperCamelCase_: List[Any] = value - fx(lowerCamelCase , lowerCamelCase ) / fx_derivative(lowerCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import numpy class _UpperCamelCase : '''simple docstring''' def __init__( self : str , snake_case_ : numpy.ndarray , snake_case_ : numpy.ndarray ): UpperCamelCase_: str = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCamelCase_: List[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCamelCase_: Any = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCamelCase_: List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCamelCase_: List[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCamelCase_: str = numpy.zeros(output_array.shape ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCamelCase_: Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCamelCase_: List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCamelCase_: Optional[int] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCamelCase_: Any = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase__ ( self : int , snake_case_ : numpy.ndarray , snake_case_ : int , snake_case_ : bool ): for iteration in range(1 , iterations + 1 ): UpperCamelCase_: Tuple = self.feedforward() self.back_propagation() if give_loss: UpperCamelCase_: int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : numpy.ndarray ): UpperCamelCase_: Optional[Any] = input_arr UpperCamelCase_: Tuple = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCamelCase_: Dict = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCamelCase_: List[str] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def A__ ( lowerCamelCase ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def A__ ( lowerCamelCase ) -> numpy.ndarray: return (value) * (1 - (value)) def A__ ( ) -> int: UpperCamelCase_: str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCamelCase_: Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. UpperCamelCase_: Optional[Any] = TwoHiddenLayerNeuralNetwork( input_array=lowerCamelCase , output_array=lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=lowerCamelCase , iterations=10 , give_loss=lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: # Load checkpoint UpperCamelCase_: List[Any] = torch.load(lowerCamelCase , map_location="""cpu""" ) UpperCamelCase_: Optional[int] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository UpperCamelCase_: List[str] = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase_: str = v else: UpperCamelCase_: Tuple = v UpperCamelCase_: Tuple = chkpt["""params"""] UpperCamelCase_: Any = {n: v for n, v in config.items() if not isinstance(lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase_: str = chkpt["""dico_word2id"""] UpperCamelCase_: str = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase_: Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase_: Optional[int] = pytorch_dump_folder_path + """/""" + CONFIG_NAME UpperCamelCase_: Any = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(lowerCamelCase , lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Tuple = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
def A__ ( lowerCamelCase ) -> int: if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: Optional[int] = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase ) if number < 1: UpperCamelCase_: Optional[Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCamelCase ) UpperCamelCase_: Optional[Any] = 1 for i in range(1 , lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = tempfile.mkdtemp() UpperCamelCase_: List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCamelCase_: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCamelCase_: Any = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : Optional[Any] ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Any , **snake_case_ : List[Any] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Any ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_: Tuple = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: Tuple = self.get_rust_tokenizer() UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Union[str, Any] = AlignProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case_ ) UpperCamelCase_: Optional[Any] = AlignProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case_ ) self.assertIsInstance(processor_fast.tokenizer , snake_case_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case_ ) self.assertIsInstance(processor_fast.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Tuple = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: int = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: Dict = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[int] = self.get_image_processor() UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: Tuple = AlignProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: str = self.prepare_image_inputs() UpperCamelCase_: int = image_processor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: List[Any] = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Dict = AlignProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: int = """lower newer""" UpperCamelCase_: Optional[int] = processor(text=snake_case_ ) UpperCamelCase_: Any = tokenizer(snake_case_ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_image_processor() UpperCamelCase_: List[Any] = self.get_tokenizer() UpperCamelCase_: Any = AlignProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Tuple = """lower newer""" UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: Union[str, Any] = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Dict = self.get_image_processor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Any = AlignProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Dict = processor.batch_decode(snake_case_ ) UpperCamelCase_: Tuple = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: int = self.get_image_processor() UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_: Any = AlignProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[Any] = """lower newer""" UpperCamelCase_: Dict = self.prepare_image_inputs() UpperCamelCase_: Optional[Any] = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
from __future__ import annotations import math def A__ ( lowerCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( lowerCamelCase ) -> list[int]: UpperCamelCase_: Optional[Any] = str(lowerCamelCase ) UpperCamelCase_: List[str] = [n] for i in range(1 , len(lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A__ ( lowerCamelCase ) -> bool: if len(str(lowerCamelCase ) ) > 3: if not is_prime(int(str(lowerCamelCase )[-3:] ) ) or not is_prime(int(str(lowerCamelCase )[:3] ) ): return False return True def A__ ( lowerCamelCase = 11 ) -> list[int]: UpperCamelCase_: list[int] = [] UpperCamelCase_: Dict = 13 while len(lowerCamelCase ) != count: if validate(lowerCamelCase ): UpperCamelCase_: Dict = list_truncated_nums(lowerCamelCase ) if all(is_prime(lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(lowerCamelCase ) num += 2 return list_truncated_primes def A__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
import torch from transformers import AutoModel class _UpperCamelCase ( torch.nn.Module ): def __init__( self : Optional[Any] , snake_case_ : int="sayef/fsner-bert-base-uncased" ): super(snake_case_ , self ).__init__() UpperCamelCase_: Optional[int] = AutoModel.from_pretrained(snake_case_ , return_dict=snake_case_ ) UpperCamelCase_: Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase_: int = torch.nn.Softmax(dim=1 ) def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : List[Any] ): return self.bert(**snake_case_ ).last_hidden_state def lowerCAmelCase__ ( self : Tuple , snake_case_ : List[str] ): return token_embeddings.sum(2 , keepdim=snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any]=1 ): return self.softmax(T * self.cos(snake_case_ , snake_case_ ) ) def lowerCAmelCase__ ( self : str , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): UpperCamelCase_: Any = W_supports["""sizes"""].tolist() UpperCamelCase_: Optional[Any] = W_supports["""start_token_id"""].item() UpperCamelCase_: Optional[int] = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase_: Optional[Any] = self.BERT(**snake_case_ ) UpperCamelCase_: Any = self.BERT(**snake_case_ ) UpperCamelCase_: List[Any] = None UpperCamelCase_: List[Any] = None UpperCamelCase_: List[Any] = W_supports["""input_ids"""] == start_token_id UpperCamelCase_: List[Any] = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(snake_case_ ): if i == 0: UpperCamelCase_: Dict = 0 else: UpperCamelCase_: Tuple = support_sizes[i - 1] UpperCamelCase_: Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase_: Dict = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase_: Optional[int] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase_: Optional[int] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase_: List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase_: Any = torch.vstack((p_ends, p_end) ) else: UpperCamelCase_: Optional[Any] = p_start UpperCamelCase_: Any = p_end return p_starts, p_ends
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import os from math import logaa def A__ ( lowerCamelCase = "base_exp.txt" ) -> int: UpperCamelCase_: float = 0 UpperCamelCase_: str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase ) , lowerCamelCase ) ) ): UpperCamelCase_: Union[str, Any] = list(map(lowerCamelCase , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase ) > largest: UpperCamelCase_: Dict = x * logaa(lowerCamelCase ) UpperCamelCase_: Tuple = i + 1 return result if __name__ == "__main__": print(solution())
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
from __future__ import annotations from typing import TypedDict class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : str __UpperCamelCase : int def A__ ( lowerCamelCase ) -> list[str]: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(lowerCamelCase ) )] def A__ ( lowerCamelCase ) -> BWTTransformDict: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) UpperCamelCase_: str = all_rotations(lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCamelCase_: BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowerCamelCase ), } return response def A__ ( lowerCamelCase , lowerCamelCase ) -> str: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: UpperCamelCase_: int = int(lowerCamelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(lowerCamelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) UpperCamelCase_: List[Any] = [""""""] * len(lowerCamelCase ) for _ in range(len(lowerCamelCase ) ): for i in range(len(lowerCamelCase ) ): UpperCamelCase_: List[str] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase_ : Any = """Provide a string that I will generate its BWT transform: """ lowerCamelCase_ : int = input(entry_msg).strip() lowerCamelCase_ : Union[str, Any] = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result['bwt_string']}'""" ) lowerCamelCase_ : str = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ F"""we get original string '{original_string}'""" )
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0