code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase_ : str = 3 def A__ ( lowerCamelCase ) -> int: print("""Generating primitive root of p""" ) while True: UpperCamelCase_: Any = random.randrange(3 , lowerCamelCase ) if pow(lowerCamelCase , 2 , lowerCamelCase ) == 1: continue if pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) == 1: continue return g def A__ ( lowerCamelCase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) UpperCamelCase_: Any = rabin_miller.generate_large_prime(lowerCamelCase ) # select large prime number. UpperCamelCase_: List[Any] = primitive_root(lowerCamelCase ) # one primitive root on modulo p. UpperCamelCase_: int = random.randrange(3 , lowerCamelCase ) # private_key -> have to be greater than 2 for safety. UpperCamelCase_: int = cryptomath.find_mod_inverse(pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) UpperCamelCase_: Optional[Any] = (key_size, e_a, e_a, p) UpperCamelCase_: Optional[int] = (key_size, d) return public_key, private_key def A__ ( lowerCamelCase , lowerCamelCase ) -> None: if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() UpperCamelCase_: str = generate_key(lowerCamelCase ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , """w""" ) as fo: fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , """w""" ) as fo: fo.write(F'''{private_key[0]},{private_key[1]}''' ) def A__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" , 20_48 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() UpperCamelCase_: int = nn.ModuleList(snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : torch.FloatTensor , snake_case_ : Union[torch.Tensor, float, int] , snake_case_ : torch.Tensor , snake_case_ : List[torch.tensor] , snake_case_ : List[float] , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : bool = False , snake_case_ : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(snake_case_ , snake_case_ , self.nets ) ): UpperCamelCase_: Any = controlnet( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # merge samples if i == 0: UpperCamelCase_: List[Any] = down_samples, mid_sample else: UpperCamelCase_: Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(snake_case_ , snake_case_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Union[str, os.PathLike] , snake_case_ : bool = True , snake_case_ : Callable = None , snake_case_ : bool = False , snake_case_ : Optional[str] = None , ): UpperCamelCase_: Any = 0 UpperCamelCase_: Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( snake_case_ , is_main_process=snake_case_ , save_function=snake_case_ , safe_serialization=snake_case_ , variant=snake_case_ , ) idx += 1 UpperCamelCase_: List[Any] = model_path_to_save + f'''_{idx}''' @classmethod def lowerCAmelCase__ ( cls : List[str] , snake_case_ : Optional[Union[str, os.PathLike]] , **snake_case_ : Any ): UpperCamelCase_: Tuple = 0 UpperCamelCase_: Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCamelCase_: Union[str, Any] = pretrained_model_path while os.path.isdir(snake_case_ ): UpperCamelCase_: List[Any] = ControlNetModel.from_pretrained(snake_case_ , **snake_case_ ) controlnets.append(snake_case_ ) idx += 1 UpperCamelCase_: List[Any] = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(snake_case_ )} controlnets loaded from {pretrained_model_path}.''' ) if len(snake_case_ ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(snake_case_ )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(snake_case_ )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCamelCase_ : Optional[int] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } lowerCamelCase_ : int = { """facebook/blenderbot_small-90M""": 5_12, } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = BlenderbotSmallTokenizer def __init__( self : Any , snake_case_ : Optional[int]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Dict="<|endoftext|>" , snake_case_ : Optional[int]="<|endoftext|>" , snake_case_ : Dict="<|endoftext|>" , snake_case_ : Tuple=False , snake_case_ : Optional[Any]=True , **snake_case_ : str , ): super().__init__( ByteLevelBPETokenizer( vocab=snake_case_ , merges=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , ) , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , **snake_case_ , ) UpperCamelCase_: str = add_prefix_space def lowerCAmelCase__ ( self : str , snake_case_ : List[str] , snake_case_ : str=None ): UpperCamelCase_: Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: Optional[Any] = [self.sep_token_id] UpperCamelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
import argparse import os import re lowerCamelCase_ : int = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase_ : str = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings lowerCamelCase_ : Optional[Any] = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def A__ ( lowerCamelCase , lowerCamelCase = False ) -> List[str]: with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase_: int = f.read() UpperCamelCase_: Union[str, Any] = content.split("""\n""" ) UpperCamelCase_: Tuple = [] UpperCamelCase_: List[str] = 0 while line_idx < len(lowerCamelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCamelCase_: Union[str, Any] = len(re.search(r"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCamelCase_: Tuple = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCamelCase_: Optional[Any] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCamelCase_: Tuple = sorted(lowerCamelCase , key=lambda lowerCamelCase : _re_identifier.search(lowerCamelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowerCamelCase ) ) elif "\n".join(lowerCamelCase ) != content: return True def A__ ( lowerCamelCase = False ) -> Union[str, Any]: UpperCamelCase_: Optional[int] = [os.path.join(lowerCamelCase , lowerCamelCase ) for f in os.listdir(lowerCamelCase ) if f.endswith(""".py""" )] UpperCamelCase_: Dict = [sort_auto_mapping(lowerCamelCase , overwrite=lowerCamelCase ) for fname in fnames] if not overwrite and any(lowerCamelCase ): UpperCamelCase_: Any = [f for f, d in zip(lowerCamelCase , lowerCamelCase ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {", ".join(lowerCamelCase )}. Run `make style` to fix''' """ this.""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCamelCase_ : str = parser.parse_args() sort_all_auto_mappings(not args.check_only)
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = """▁""" lowerCamelCase_ : List[str] = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCamelCase_ : Optional[Any] = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } lowerCamelCase_ : Union[str, Any] = { """facebook/m2m100_418M""": 10_24, } # fmt: off lowerCamelCase_ : str = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = ["""input_ids""", """attention_mask"""] __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self : List[Any] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : List[Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]="<s>" , snake_case_ : int="</s>" , snake_case_ : Tuple="</s>" , snake_case_ : Optional[int]="<pad>" , snake_case_ : Tuple="<unk>" , snake_case_ : Dict="m2m100" , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : Tuple=8 , **snake_case_ : Optional[int] , ): UpperCamelCase_: Tuple = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase_: str = language_codes UpperCamelCase_: int = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCamelCase_: Optional[int] = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCamelCase_: Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) UpperCamelCase_: Any = vocab_file UpperCamelCase_: Optional[Any] = load_json(snake_case_ ) UpperCamelCase_: List[str] = {v: k for k, v in self.encoder.items()} UpperCamelCase_: Optional[Any] = spm_file UpperCamelCase_: str = load_spm(snake_case_ , self.sp_model_kwargs ) UpperCamelCase_: Union[str, Any] = len(self.encoder ) UpperCamelCase_: Optional[int] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } UpperCamelCase_: Tuple = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} UpperCamelCase_: Tuple = {v: k for k, v in self.lang_token_to_id.items()} UpperCamelCase_: int = src_lang if src_lang is not None else """en""" UpperCamelCase_: Optional[Any] = tgt_lang UpperCamelCase_: str = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCamelCase_: Optional[Any] = num_madeup_words @property def lowerCAmelCase__ ( self : Union[str, Any] ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase__ ( self : int ): return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : str ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Tuple ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def lowerCAmelCase__ ( self : Any , snake_case_ : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Any ): UpperCamelCase_: Any = [] UpperCamelCase_: Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase_: Optional[int] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) UpperCamelCase_: Union[str, Any] = [1] * len(self.prefix_tokens ) UpperCamelCase_: str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): UpperCamelCase_: Any = self.__dict__.copy() UpperCamelCase_: Any = None return state def __setstate__( self : Union[str, Any] , snake_case_ : Dict ): UpperCamelCase_: List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase_: List[Any] = {} UpperCamelCase_: Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__ ( self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): UpperCamelCase_: Tuple = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) UpperCamelCase_: str = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) UpperCamelCase_: Dict = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: UpperCamelCase_: Any = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def lowerCAmelCase__ ( self : Tuple , snake_case_ : List[str] , snake_case_ : str = "en" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "ro" , **snake_case_ : Dict , ): UpperCamelCase_: Tuple = src_lang UpperCamelCase_: str = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Any , snake_case_ : Dict , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : Union[str, Any] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCamelCase_: str = src_lang UpperCamelCase_: Optional[Any] = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) UpperCamelCase_: Tuple = self.get_lang_id(snake_case_ ) UpperCamelCase_: str = tgt_lang_id return inputs def lowerCAmelCase__ ( self : List[Any] ): self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self : Union[str, Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): UpperCamelCase_: int = self.get_lang_token(snake_case_ ) UpperCamelCase_: Dict = self.lang_token_to_id[lang_token] UpperCamelCase_: List[str] = [self.cur_lang_id] UpperCamelCase_: Dict = [self.eos_token_id] def lowerCAmelCase__ ( self : Any , snake_case_ : str ): UpperCamelCase_: List[str] = self.get_lang_token(snake_case_ ) UpperCamelCase_: Any = self.lang_token_to_id[lang_token] UpperCamelCase_: Tuple = [self.cur_lang_id] UpperCamelCase_: int = [self.eos_token_id] def lowerCAmelCase__ ( self : List[Any] , snake_case_ : str ): return self.lang_code_to_token[lang] def lowerCAmelCase__ ( self : Tuple , snake_case_ : str ): UpperCamelCase_: Optional[int] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def A__ ( lowerCamelCase , lowerCamelCase ) -> sentencepiece.SentencePieceProcessor: UpperCamelCase_: Dict = sentencepiece.SentencePieceProcessor(**lowerCamelCase ) spm.Load(str(lowerCamelCase ) ) return spm def A__ ( lowerCamelCase ) -> Union[Dict, List]: with open(lowerCamelCase , """r""" ) as f: return json.load(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> None: with open(lowerCamelCase , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase , indent=2 )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
700
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : str = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
0
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: if index == number_of_items: return 0 UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: Union[str, Any] = knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , index + 1 ) if weights[index] <= max_weight: UpperCamelCase_: int = values[index] + knapsack( lowerCamelCase , lowerCamelCase , lowerCamelCase , max_weight - weights[index] , index + 1 ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
703
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = ViTImageProcessor if is_vision_available() else None @property def lowerCAmelCase__ ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = (3, 32, 128) UpperCamelCase_: Optional[Any] = tempfile.mkdtemp() # fmt: off UpperCamelCase_: Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCamelCase_: Optional[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase_: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) UpperCamelCase_: List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } UpperCamelCase_: Any = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : List[Any] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : str ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: int = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) UpperCamelCase_: Any = Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) return image_input def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Any = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: List[str] = self.get_image_processor() UpperCamelCase_: List[str] = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Optional[Any] = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self.get_image_processor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: Optional[int] = image_processor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: Union[str, Any] = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: str = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Dict = """test""" UpperCamelCase_: Dict = processor(text=snake_case_ ) UpperCamelCase_: Any = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[Any] = self.get_image_processor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: int = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Tuple = """test""" UpperCamelCase_: int = self.prepare_image_inputs() UpperCamelCase_: str = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = self.get_image_processor() UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: Any = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Union[str, Any] = processor.char_decode(snake_case_ ) UpperCamelCase_: int = tokenizer.batch_decode(snake_case_ ) UpperCamelCase_: int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Dict = self.get_tokenizer() UpperCamelCase_: Dict = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Optional[Any] = None UpperCamelCase_: Optional[int] = self.prepare_image_inputs() UpperCamelCase_: List[str] = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = self.get_image_processor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase_: Any = torch.randn(1 , 27 , 38 ) UpperCamelCase_: int = torch.randn(1 , 27 , 5_0257 ) UpperCamelCase_: Optional[int] = torch.randn(1 , 27 , 3_0522 ) UpperCamelCase_: List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Optional[int] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase_: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = logging.get_verbosity() UpperCamelCase_: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Union[str, Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self : Optional[int] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: str = os.getenv("""TRANSFORMERS_VERBOSITY""" , snake_case_ ) UpperCamelCase_: Any = logging.log_levels[env_level_str] UpperCamelCase_: Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase_: str = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: str = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() UpperCamelCase_: List[str] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) UpperCamelCase_: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + """\n""" ) def A__ ( ) -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
670
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging snake_case : Tuple = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Dict = """linear""" __UpperCamelCase : List[Any] = """cosine""" __UpperCamelCase : int = """cosine_with_restarts""" __UpperCamelCase : List[str] = """polynomial""" __UpperCamelCase : Any = """constant""" __UpperCamelCase : List[str] = """constant_with_warmup""" __UpperCamelCase : str = """piecewise_constant""" def A__ ( lowerCamelCase , lowerCamelCase = -1 ) -> Any: return LambdaLR(lowerCamelCase , lambda lowerCamelCase : 1 , last_epoch=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = -1 ) -> Dict: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1.0 , lowerCamelCase ) ) return 1.0 return LambdaLR(lowerCamelCase , lowerCamelCase , last_epoch=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = -1 ) -> Optional[int]: UpperCamelCase_: Dict = {} UpperCamelCase_: List[str] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: UpperCamelCase_: Tuple = rule_str.split(""":""" ) UpperCamelCase_: Dict = int(lowerCamelCase ) UpperCamelCase_: Dict = float(lowerCamelCase ) UpperCamelCase_: Any = value UpperCamelCase_: Optional[int] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase , lowerCamelCase ): def rule_func(lowerCamelCase ) -> float: UpperCamelCase_: Dict = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCamelCase_: Optional[Any] = create_rules_function(lowerCamelCase , lowerCamelCase ) return LambdaLR(lowerCamelCase , lowerCamelCase , last_epoch=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=-1 ) -> Optional[Any]: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.5 , lowerCamelCase = -1 ) -> Dict: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) UpperCamelCase_: Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = -1 ) -> Optional[Any]: def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) UpperCamelCase_: Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=1E-7 , lowerCamelCase=1.0 , lowerCamelCase=-1 ) -> List[str]: UpperCamelCase_: List[Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(lowerCamelCase ): if current_step < num_warmup_steps: return float(lowerCamelCase ) / float(max(1 , lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCamelCase_: Optional[int] = lr_init - lr_end UpperCamelCase_: Optional[Any] = num_training_steps - num_warmup_steps UpperCamelCase_: Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps UpperCamelCase_: Optional[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 1.0 , lowerCamelCase = -1 , ) -> Optional[int]: UpperCamelCase_: List[Any] = SchedulerType(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase , last_epoch=lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase , step_rules=lowerCamelCase , last_epoch=lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase , num_warmup_steps=lowerCamelCase , last_epoch=lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase , num_warmup_steps=lowerCamelCase , num_training_steps=lowerCamelCase , num_cycles=lowerCamelCase , last_epoch=lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase , num_warmup_steps=lowerCamelCase , num_training_steps=lowerCamelCase , power=lowerCamelCase , last_epoch=lowerCamelCase , ) return schedule_func( lowerCamelCase , num_warmup_steps=lowerCamelCase , num_training_steps=lowerCamelCase , last_epoch=lowerCamelCase )
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
import math import unittest def A__ ( lowerCamelCase ) -> bool: assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowerCAmelCase__ ( self : Tuple ): with self.assertRaises(snake_case_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
import requests def A__ ( lowerCamelCase , lowerCamelCase ) -> None: UpperCamelCase_: Union[str, Any] = {"""Content-Type""": """application/json"""} UpperCamelCase_: List[Any] = requests.post(lowerCamelCase , json={"""text""": message_body} , headers=lowerCamelCase ) if response.status_code != 2_00: UpperCamelCase_: Optional[Any] = ( """Request to slack returned an error """ F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(lowerCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : Tuple = """ViltImageProcessor""" __UpperCamelCase : Any = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] , snake_case_ : str=None , snake_case_ : Optional[int]=None , **snake_case_ : str ): UpperCamelCase_: List[str] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case_ , ) UpperCamelCase_: List[str] = kwargs.pop("""feature_extractor""" ) UpperCamelCase_: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case_ , snake_case_ ) UpperCamelCase_: int = self.image_processor def __call__( self : Tuple , snake_case_ : List[str] , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : int , ): UpperCamelCase_: Any = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask UpperCamelCase_: Any = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def lowerCAmelCase__ ( self : Optional[Any] , *snake_case_ : Dict , **snake_case_ : Tuple ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: int = self.tokenizer.model_input_names UpperCamelCase_: Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self : List[Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , snake_case_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : int ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , snake_case_ , ) return self.image_processor
709
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
0
def A__ ( lowerCamelCase ) -> int: if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] UpperCamelCase_: Optional[Any] = grid[0] for row_n in range(1 , len(lowerCamelCase ) ): UpperCamelCase_: Dict = grid[row_n] UpperCamelCase_: int = fill_row(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = grid[row_n] return grid[-1][-1] def A__ ( lowerCamelCase , lowerCamelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(lowerCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
710
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_, UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
670
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
711
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Union[str, Any] = logging.getLogger() lowerCamelCase_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Dict ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCamelCase_: int = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase_: Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case_ , f'''{split}.{field}''' ) , """w""" ) as f: f.write(snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : int , snake_case_ : str = "pytorch" ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = os.path.join(snake_case_ , """output""" ) UpperCamelCase_: Any = os.path.join(snake_case_ , """data""" ) self._create_dummy_data(data_dir=snake_case_ ) UpperCamelCase_: Union[str, Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase_: Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case_ , env=self.get_env() ) UpperCamelCase_: Optional[int] = os.path.join(snake_case_ , """metrics.json""" ) with open(snake_case_ ) as f: UpperCamelCase_: Any = json.load(snake_case_ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
670
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCamelCase_ : Dict = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls : str ): UpperCamelCase_: Any = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def lowerCAmelCase__ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase_: Dict = FlaxBertModel(snake_case_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCamelCase_: Dict = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ , repo_id="""test-model-flax""" , push_to_hub=snake_case_ , use_auth_token=self._token ) UpperCamelCase_: Tuple = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase_: int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase_: Dict = FlaxBertModel(snake_case_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCamelCase_: Any = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase_: List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=snake_case_ , use_auth_token=self._token ) UpperCamelCase_: str = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = True UpperCamelCase_: Optional[Any] = flatten_dict(modela.params ) UpperCamelCase_: int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase_: Union[str, Any] = False return models_are_equal @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase_: int = FlaxBertModel(snake_case_ ) UpperCamelCase_: Any = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) ) with self.assertRaises(snake_case_ ): UpperCamelCase_: List[Any] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: Any = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase_: Tuple = FlaxBertModel(snake_case_ ) UpperCamelCase_: Tuple = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) , max_shard_size="""10KB""" ) with self.assertRaises(snake_case_ ): UpperCamelCase_: Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: List[str] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = """bert""" UpperCamelCase_: Optional[int] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(snake_case_ ): UpperCamelCase_: int = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: List[str] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = """bert""" UpperCamelCase_: str = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(snake_case_ ): UpperCamelCase_: Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: int = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ )
712
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCamelCase_ : Tuple = logging.getLogger(__name__) class _UpperCamelCase ( _A ): __UpperCamelCase : Any = """token-classification""" def __init__( self : List[Any] , snake_case_ : int ): if type(snake_case_ ) == dict: UpperCamelCase_: List[str] = Namespace(**snake_case_ ) UpperCamelCase_: Any = import_module("""tasks""" ) try: UpperCamelCase_: List[Any] = getattr(snake_case_ , hparams.task_type ) UpperCamelCase_: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCamelCase_: Tuple = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase_: Tuple = CrossEntropyLoss().ignore_index super().__init__(snake_case_ , len(self.labels ) , self.mode ) def lowerCAmelCase__ ( self : List[Any] , **snake_case_ : str ): return self.model(**snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase_: Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase_: Union[str, Any] = self(**snake_case_ ) UpperCamelCase_: List[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: List[str] = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase_: str = self._feature_file(snake_case_ ) if os.path.exists(snake_case_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , snake_case_ ) UpperCamelCase_: Optional[int] = torch.load(snake_case_ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) UpperCamelCase_: Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , snake_case_ ) UpperCamelCase_: Tuple = self.token_classification_task.convert_examples_to_features( snake_case_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=snake_case_ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , snake_case_ ) torch.save(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : int , snake_case_ : int , snake_case_ : bool = False ): UpperCamelCase_: int = self._feature_file(snake_case_ ) logger.info("""Loading features from cached file %s""" , snake_case_ ) UpperCamelCase_: Optional[int] = torch.load(snake_case_ ) UpperCamelCase_: Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase_: Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase_: str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase_: Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase_: List[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , batch_size=snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ): """Compute validation""" "" UpperCamelCase_: str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase_: Optional[Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase_: int = self(**snake_case_ ) UpperCamelCase_: Optional[int] = outputs[:2] UpperCamelCase_: Tuple = logits.detach().cpu().numpy() UpperCamelCase_: List[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): UpperCamelCase_: int = torch.stack([x["""val_loss"""] for x in outputs] ).mean() UpperCamelCase_: List[Any] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) UpperCamelCase_: List[Any] = np.argmax(snake_case_ , axis=2 ) UpperCamelCase_: List[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) UpperCamelCase_: List[Any] = dict(enumerate(self.labels ) ) UpperCamelCase_: Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase_: int = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase_: Dict = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(snake_case_ , snake_case_ ), """precision""": precision_score(snake_case_ , snake_case_ ), """recall""": recall_score(snake_case_ , snake_case_ ), """f1""": fa_score(snake_case_ , snake_case_ ), } UpperCamelCase_: List[str] = dict(results.items() ) UpperCamelCase_: List[str] = results return ret, preds_list, out_label_list def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[Any] ): # when stable UpperCamelCase_: Dict = self._eval_end(snake_case_ ) UpperCamelCase_: Tuple = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase__ ( self : Dict , snake_case_ : Union[str, Any] ): # updating to test_epoch_end instead of deprecated test_end UpperCamelCase_: Union[str, Any] = self._eval_end(snake_case_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase_: Dict = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase__ ( snake_case_ : List[Any] , snake_case_ : Optional[int] ): # Add NER specific options BaseTransformer.add_model_specific_args(snake_case_ , snake_case_ ) parser.add_argument( """--task_type""" , default="""NER""" , type=snake_case_ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=snake_case_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=snake_case_ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=snake_case_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": lowerCamelCase_ : List[str] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCamelCase_ : str = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCamelCase_ : Optional[int] = parser.parse_args() lowerCamelCase_ : List[Any] = NERTransformer(args) lowerCamelCase_ : Dict = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCamelCase_ : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) lowerCamelCase_ : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
713
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase_ : List[str] = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 13_10_72, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, } def A__ ( lowerCamelCase , lowerCamelCase ) -> Any: return torch.atana(lowerCamelCase , lowerCamelCase ) / math.pi * 2 def A__ ( lowerCamelCase ) -> List[str]: UpperCamelCase_: int = torch.sin(t * math.pi / 2 ) ** 2 UpperCamelCase_: Optional[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase , lowerCamelCase ) class _UpperCamelCase ( _A ): '''simple docstring''' pass class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , snake_case_ : Any ): super().__init__() UpperCamelCase_: Dict = DiffusionAttnUnetaD(snake_case_ , n_attn_layers=4 ) UpperCamelCase_: List[str] = deepcopy(self.diffusion ) UpperCamelCase_: int = torch.quasirandom.SobolEngine(1 , scramble=snake_case_ ) def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: Union[str, Any] = MODELS_MAP[model_name]["""url"""] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCamelCase_ : str = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } lowerCamelCase_ : List[Any] = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } lowerCamelCase_ : Tuple = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } lowerCamelCase_ : List[Any] = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } lowerCamelCase_ : int = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } lowerCamelCase_ : Tuple = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def A__ ( lowerCamelCase ) -> str: if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A__ ( lowerCamelCase ) -> Dict: for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase ) and not isinstance(lowerCamelCase , lowerCamelCase ): return name.replace(lowerCamelCase , lowerCamelCase ) elif name.startswith(lowerCamelCase ): return [name.replace(lowerCamelCase , lowerCamelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def A__ ( lowerCamelCase , lowerCamelCase=13 ) -> Tuple: UpperCamelCase_: Optional[Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) UpperCamelCase_: str = 0 if string.startswith("""net.3.""" ): depth += 1 UpperCamelCase_: List[str] = string[6:] elif string.startswith("""net.""" ): UpperCamelCase_: int = string[4:] while string.startswith("""main.7.""" ): depth += 1 UpperCamelCase_: Dict = string[7:] if string.startswith("""main.""" ): UpperCamelCase_: str = string[5:] # mid block if string[:2].isdigit(): UpperCamelCase_: List[Any] = string[:2] UpperCamelCase_: Optional[int] = string[2:] else: UpperCamelCase_: Union[str, Any] = string[0] UpperCamelCase_: List[Any] = string[1:] if depth == max_depth: UpperCamelCase_: Tuple = MID_NUM_TO_LAYER[layer_num] UpperCamelCase_: Optional[int] = """mid_block""" elif depth > 0 and int(lowerCamelCase ) < 7: UpperCamelCase_: str = DOWN_NUM_TO_LAYER[layer_num] UpperCamelCase_: Tuple = F'''down_blocks.{depth}''' elif depth > 0 and int(lowerCamelCase ) > 7: UpperCamelCase_: Dict = UP_NUM_TO_LAYER[layer_num] UpperCamelCase_: List[Any] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: UpperCamelCase_: List[Any] = DEPTH_0_TO_LAYER[layer_num] UpperCamelCase_: int = F'''up_blocks.{max_depth - 1}''' if int(lowerCamelCase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) UpperCamelCase_: int = string_left[1:] if "resnets" in new_layer: UpperCamelCase_: int = convert_resconv_naming(lowerCamelCase ) elif "attentions" in new_layer: UpperCamelCase_: str = convert_attn_naming(lowerCamelCase ) UpperCamelCase_: List[Any] = new_string_left if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: int = prefix + """.""" + new_layer + """.""" + string_left else: UpperCamelCase_: Tuple = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Tuple = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue UpperCamelCase_: int = rename(lowerCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: int = transform_conv_attns(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: UpperCamelCase_: Dict = v return new_state_dict def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: if len(lowerCamelCase ) == 1: if len(v.shape ) == 3: # weight UpperCamelCase_: Any = v[:, :, 0] else: # bias UpperCamelCase_: Any = v else: # qkv matrices UpperCamelCase_: int = v.shape[0] UpperCamelCase_: Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCamelCase_: List[Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCamelCase_: List[str] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A__ ( lowerCamelCase ) -> Tuple: UpperCamelCase_: Union[str, Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCamelCase_: str = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' UpperCamelCase_: Any = download(lowerCamelCase ) UpperCamelCase_: List[Any] = MODELS_MAP[model_name]["""sample_rate"""] UpperCamelCase_: Union[str, Any] = MODELS_MAP[model_name]["""sample_size"""] UpperCamelCase_: Union[str, Any] = Object() UpperCamelCase_: str = sample_size UpperCamelCase_: Optional[int] = sample_rate UpperCamelCase_: int = 0 UpperCamelCase_: int = UNetaDModel(sample_size=lowerCamelCase , sample_rate=lowerCamelCase ) UpperCamelCase_: Tuple = diffusers_model.state_dict() UpperCamelCase_: Any = DiffusionUncond(lowerCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase )["""state_dict"""] ) UpperCamelCase_: Union[str, Any] = orig_model.diffusion_ema.eval() UpperCamelCase_: Dict = orig_model.state_dict() UpperCamelCase_: Union[str, Any] = rename_orig_weights(lowerCamelCase ) UpperCamelCase_: int = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCamelCase_: str = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("""kernel""" ) for k in list(lowerCamelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": UpperCamelCase_: Tuple = value.squeeze() UpperCamelCase_: Optional[int] = value diffusers_model.load_state_dict(lowerCamelCase ) UpperCamelCase_: str = 1_00 UpperCamelCase_: Optional[Any] = 33 UpperCamelCase_: List[str] = IPNDMScheduler(num_train_timesteps=lowerCamelCase ) UpperCamelCase_: Union[str, Any] = torch.manual_seed(lowerCamelCase ) UpperCamelCase_: List[str] = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase ).to(lowerCamelCase ) UpperCamelCase_: int = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase )[:-1] UpperCamelCase_: Dict = get_crash_schedule(lowerCamelCase ) UpperCamelCase_: List[str] = DanceDiffusionPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) UpperCamelCase_: str = torch.manual_seed(33 ) UpperCamelCase_: Any = pipe(num_inference_steps=lowerCamelCase , generator=lowerCamelCase ).audios UpperCamelCase_: str = sampling.iplms_sample(lowerCamelCase , lowerCamelCase , lowerCamelCase , {} ) UpperCamelCase_: int = generated.clamp(-1 , 1 ) UpperCamelCase_: str = (generated - audio).abs().sum() UpperCamelCase_: Dict = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , lowerCamelCase ) print("""Diff max""" , lowerCamelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCamelCase_ : Dict = parser.parse_args() main(args)
714
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
def A__ ( lowerCamelCase = 50 ) -> int: UpperCamelCase_: List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
670
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCamelCase ( _A , _A ): '''simple docstring''' @register_to_config def __init__( self : List[str] , snake_case_ : int = 128 , snake_case_ : int = 256 , snake_case_ : float = 2000.0 , snake_case_ : int = 768 , snake_case_ : int = 12 , snake_case_ : int = 12 , snake_case_ : int = 64 , snake_case_ : int = 2048 , snake_case_ : float = 0.1 , ): super().__init__() UpperCamelCase_: Tuple = nn.Sequential( nn.Linear(snake_case_ , d_model * 4 , bias=snake_case_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=snake_case_ ) , nn.SiLU() , ) UpperCamelCase_: Any = nn.Embedding(snake_case_ , snake_case_ ) UpperCamelCase_: Tuple = False UpperCamelCase_: Optional[int] = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCamelCase_: Tuple = nn.Dropout(p=snake_case_ ) UpperCamelCase_: int = nn.ModuleList() for lyr_num in range(snake_case_ ): # FiLM conditional T5 decoder UpperCamelCase_: str = DecoderLayer(d_model=snake_case_ , d_kv=snake_case_ , num_heads=snake_case_ , d_ff=snake_case_ , dropout_rate=snake_case_ ) self.decoders.append(snake_case_ ) UpperCamelCase_: Union[str, Any] = TaLayerNorm(snake_case_ ) UpperCamelCase_: Tuple = nn.Dropout(p=snake_case_ ) UpperCamelCase_: Any = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ): UpperCamelCase_: List[str] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : int ): UpperCamelCase_: str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCamelCase_: Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCamelCase_: str = self.conditioning_emb(snake_case_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCamelCase_: Optional[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCamelCase_: Union[str, Any] = torch.broadcast_to( torch.arange(snake_case_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCamelCase_: List[str] = self.position_encoding(snake_case_ ) UpperCamelCase_: List[Any] = self.continuous_inputs_projection(snake_case_ ) inputs += position_encodings UpperCamelCase_: Union[str, Any] = self.dropout(snake_case_ ) # decoder: No padding present. UpperCamelCase_: List[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCamelCase_: Tuple = [(x, self.encoder_decoder_mask(snake_case_ , snake_case_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCamelCase_: List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCamelCase_: int = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCamelCase_: Union[str, Any] = lyr( snake_case_ , conditioning_emb=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , )[0] UpperCamelCase_: Any = self.decoder_norm(snake_case_ ) UpperCamelCase_: Union[str, Any] = self.post_dropout(snake_case_ ) UpperCamelCase_: List[Any] = self.spec_out(snake_case_ ) return spec_out class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : List[str]=1e-6 ): super().__init__() UpperCamelCase_: Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=snake_case_ , d_kv=snake_case_ , num_heads=snake_case_ , dropout_rate=snake_case_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=snake_case_ , d_kv=snake_case_ , num_heads=snake_case_ , dropout_rate=snake_case_ , layer_norm_epsilon=snake_case_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=snake_case_ , d_ff=snake_case_ , dropout_rate=snake_case_ , layer_norm_epsilon=snake_case_ ) ) def lowerCAmelCase__ ( self : Any , snake_case_ : Any , snake_case_ : int=None , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : str=None , snake_case_ : Union[str, Any]=None , ): UpperCamelCase_: str = self.layer[0]( snake_case_ , conditioning_emb=snake_case_ , attention_mask=snake_case_ , ) if encoder_hidden_states is not None: UpperCamelCase_: Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) UpperCamelCase_: Any = self.layer[1]( snake_case_ , key_value_states=snake_case_ , attention_mask=snake_case_ , ) # Apply Film Conditional Feed Forward layer UpperCamelCase_: Tuple = self.layer[-1](snake_case_ , snake_case_ ) return (hidden_states,) class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any ): super().__init__() UpperCamelCase_: Optional[Any] = TaLayerNorm(snake_case_ ) UpperCamelCase_: Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case_ ) UpperCamelCase_: Dict = Attention(query_dim=snake_case_ , heads=snake_case_ , dim_head=snake_case_ , out_bias=snake_case_ , scale_qk=snake_case_ ) UpperCamelCase_: int = nn.Dropout(snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : List[Any]=None , ): # pre_self_attention_layer_norm UpperCamelCase_: Union[str, Any] = self.layer_norm(snake_case_ ) if conditioning_emb is not None: UpperCamelCase_: List[str] = self.FiLMLayer(snake_case_ , snake_case_ ) # Self-attention block UpperCamelCase_: Optional[int] = self.attention(snake_case_ ) UpperCamelCase_: List[str] = hidden_states + self.dropout(snake_case_ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Tuple ): super().__init__() UpperCamelCase_: Any = Attention(query_dim=snake_case_ , heads=snake_case_ , dim_head=snake_case_ , out_bias=snake_case_ , scale_qk=snake_case_ ) UpperCamelCase_: int = TaLayerNorm(snake_case_ , eps=snake_case_ ) UpperCamelCase_: List[Any] = nn.Dropout(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , ): UpperCamelCase_: Optional[Any] = self.layer_norm(snake_case_ ) UpperCamelCase_: str = self.attention( snake_case_ , encoder_hidden_states=snake_case_ , attention_mask=attention_mask.squeeze(1 ) , ) UpperCamelCase_: List[str] = hidden_states + self.dropout(snake_case_ ) return layer_output class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] ): super().__init__() UpperCamelCase_: Optional[int] = TaDenseGatedActDense(d_model=snake_case_ , d_ff=snake_case_ , dropout_rate=snake_case_ ) UpperCamelCase_: Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case_ ) UpperCamelCase_: Optional[Any] = TaLayerNorm(snake_case_ , eps=snake_case_ ) UpperCamelCase_: int = nn.Dropout(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : int , snake_case_ : Any=None ): UpperCamelCase_: Dict = self.layer_norm(snake_case_ ) if conditioning_emb is not None: UpperCamelCase_: List[Any] = self.film(snake_case_ , snake_case_ ) UpperCamelCase_: Union[str, Any] = self.DenseReluDense(snake_case_ ) UpperCamelCase_: Optional[int] = hidden_states + self.dropout(snake_case_ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[int] ): super().__init__() UpperCamelCase_: List[Any] = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCamelCase_: Tuple = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCamelCase_: Tuple = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCamelCase_: Optional[Any] = nn.Dropout(snake_case_ ) UpperCamelCase_: int = NewGELUActivation() def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[Any] ): UpperCamelCase_: int = self.act(self.wi_a(snake_case_ ) ) UpperCamelCase_: Union[str, Any] = self.wi_a(snake_case_ ) UpperCamelCase_: Dict = hidden_gelu * hidden_linear UpperCamelCase_: Any = self.dropout(snake_case_ ) UpperCamelCase_: Union[str, Any] = self.wo(snake_case_ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any]=1e-6 ): super().__init__() UpperCamelCase_: List[Any] = nn.Parameter(torch.ones(snake_case_ ) ) UpperCamelCase_: List[Any] = eps def lowerCAmelCase__ ( self : Tuple , snake_case_ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCamelCase_: Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=snake_case_ ) UpperCamelCase_: Optional[int] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCamelCase_: Dict = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(snake_case_ , 3.0 )) )) class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : Dict , snake_case_ : int ): super().__init__() UpperCamelCase_: int = nn.Linear(snake_case_ , out_features * 2 , bias=snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Dict ): UpperCamelCase_: Optional[Any] = self.scale_bias(snake_case_ ) UpperCamelCase_: List[str] = torch.chunk(snake_case_ , 2 , -1 ) UpperCamelCase_: Tuple = x * (1 + scale) + shift return x
716
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[str] = """deit""" def __init__( self : str , snake_case_ : Tuple=768 , snake_case_ : str=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Optional[int]=3072 , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : str=0.02 , snake_case_ : Optional[int]=1e-12 , snake_case_ : Optional[Any]=224 , snake_case_ : Any=16 , snake_case_ : str=3 , snake_case_ : Dict=True , snake_case_ : str=16 , **snake_case_ : List[Any] , ): super().__init__(**snake_case_ ) UpperCamelCase_: List[Any] = hidden_size UpperCamelCase_: List[str] = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: Any = intermediate_size UpperCamelCase_: List[str] = hidden_act UpperCamelCase_: Any = hidden_dropout_prob UpperCamelCase_: Dict = attention_probs_dropout_prob UpperCamelCase_: str = initializer_range UpperCamelCase_: List[str] = layer_norm_eps UpperCamelCase_: Any = image_size UpperCamelCase_: Dict = patch_size UpperCamelCase_: int = num_channels UpperCamelCase_: List[str] = qkv_bias UpperCamelCase_: Optional[int] = encoder_stride class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = version.parse("""1.11""" ) @property def lowerCAmelCase__ ( self : List[str] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self : str ): return 1e-4
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : List[str] = logging.get_logger(__name__) lowerCamelCase_ : str = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = """switch_transformers""" __UpperCamelCase : Dict = ["""past_key_values"""] __UpperCamelCase : List[Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=3_2128 , snake_case_ : List[str]=768 , snake_case_ : int=64 , snake_case_ : Optional[int]=2048 , snake_case_ : Dict=64 , snake_case_ : Dict=12 , snake_case_ : Optional[int]=3 , snake_case_ : str=12 , snake_case_ : Tuple=3 , snake_case_ : Optional[int]=12 , snake_case_ : Union[str, Any]=8 , snake_case_ : List[Any]=False , snake_case_ : List[str]=0.01 , snake_case_ : Tuple="float32" , snake_case_ : Union[str, Any]=False , snake_case_ : Union[str, Any]=32 , snake_case_ : Union[str, Any]=128 , snake_case_ : Any=0.1 , snake_case_ : int=1e-6 , snake_case_ : List[str]=0.001 , snake_case_ : List[str]=0.001 , snake_case_ : Union[str, Any]=1.0 , snake_case_ : str="relu" , snake_case_ : int=True , snake_case_ : Dict=False , snake_case_ : Optional[Any]=True , snake_case_ : Dict=0 , snake_case_ : Tuple=1 , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Any = d_model UpperCamelCase_: Any = d_kv UpperCamelCase_: Union[str, Any] = d_ff UpperCamelCase_: Optional[Any] = num_sparse_encoder_layers UpperCamelCase_: Tuple = num_layers UpperCamelCase_: List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase_: str = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCamelCase_: Any = self.num_layers // self.num_sparse_encoder_layers else: UpperCamelCase_: Dict = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCamelCase_: Tuple = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCamelCase_: Optional[int] = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Optional[int] = num_experts UpperCamelCase_: Union[str, Any] = expert_capacity UpperCamelCase_: Tuple = router_bias UpperCamelCase_: str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) UpperCamelCase_: Tuple = router_dtype UpperCamelCase_: Optional[int] = router_ignore_padding_tokens UpperCamelCase_: Optional[Any] = relative_attention_num_buckets UpperCamelCase_: List[Any] = relative_attention_max_distance UpperCamelCase_: List[Any] = dropout_rate UpperCamelCase_: Optional[int] = layer_norm_epsilon UpperCamelCase_: Any = initializer_factor UpperCamelCase_: Optional[int] = feed_forward_proj UpperCamelCase_: Tuple = use_cache UpperCamelCase_: Tuple = add_router_probs UpperCamelCase_: Union[str, Any] = router_z_loss_coef UpperCamelCase_: Tuple = router_aux_loss_coef UpperCamelCase_: Tuple = self.feed_forward_proj.split("""-""" ) UpperCamelCase_: str = act_info[-1] UpperCamelCase_: Dict = act_info[0] == """gated""" if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCamelCase_: Any = """gelu_new""" super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , )
718
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = """encoder-decoder""" __UpperCamelCase : Dict = True def __init__( self : Tuple , **snake_case_ : Tuple ): super().__init__(**snake_case_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCamelCase_: List[Any] = kwargs.pop("""encoder""" ) UpperCamelCase_: Union[str, Any] = encoder_config.pop("""model_type""" ) UpperCamelCase_: Optional[int] = kwargs.pop("""decoder""" ) UpperCamelCase_: str = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig UpperCamelCase_: List[Any] = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: List[Any] = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: Dict = True @classmethod def lowerCAmelCase__ ( cls : Any , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , **snake_case_ : Optional[Any] ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase_: List[str] = True UpperCamelCase_: str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: int = copy.deepcopy(self.__dict__ ) UpperCamelCase_: Optional[Any] = self.encoder.to_dict() UpperCamelCase_: Optional[int] = self.decoder.to_dict() UpperCamelCase_: List[str] = self.__class__.model_type return output
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : Optional[Any] = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : Any = """Pix2StructImageProcessor""" __UpperCamelCase : Union[str, Any] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Optional[Any] = False super().__init__(snake_case_ , snake_case_ ) def __call__( self : Optional[Any] , snake_case_ : List[Any]=None , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = 2048 , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : Any , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: UpperCamelCase_: str = self.tokenizer UpperCamelCase_: Tuple = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values UpperCamelCase_: Tuple = self.image_processor( snake_case_ , return_tensors=snake_case_ , max_patches=snake_case_ , **snake_case_ ) else: # add pixel_values and bbox UpperCamelCase_: Tuple = self.image_processor( snake_case_ , return_tensors=snake_case_ , max_patches=snake_case_ , header_text=snake_case_ , **snake_case_ ) if text is not None and not self.image_processor.is_vqa: UpperCamelCase_: str = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if "attention_mask" in text_encoding: UpperCamelCase_: Any = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: UpperCamelCase_: str = text_encoding.pop("""input_ids""" ) else: UpperCamelCase_: int = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def lowerCAmelCase__ ( self : List[Any] , *snake_case_ : Tuple , **snake_case_ : List[str] ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Dict , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Union[str, Any] = self.tokenizer.model_input_names UpperCamelCase_: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
0
from math import ceil def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = list(range(0 , lowerCamelCase_ ) ) lowercase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase__ = [] for i in device_map_blocks: if device_map_blocks.count(lowerCamelCase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCamelCase_ ) # Missing blocks lowercase__ = [i for i in blocks if i not in device_map_blocks] lowercase__ = [i for i in device_map_blocks if i not in blocks] if len(lowerCamelCase_ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(lowerCamelCase_ ) ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = list(range(lowerCamelCase_ ) ) lowercase__ = int(ceil(n_layers / len(lowerCamelCase_ ) ) ) lowercase__ = [layers[i : i + n_blocks] for i in range(0 , lowerCamelCase_ , lowerCamelCase_ )] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
671
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() lowercase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], **lowerCamelCase : List[str] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Any, **lowerCamelCase : int ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Dict, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase, padding='''max_length''', max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """yolos""" def __init__( self : Any, lowerCamelCase : Tuple=768, lowerCamelCase : Optional[Any]=12, lowerCamelCase : Any=12, lowerCamelCase : Any=3_072, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[Any]=0.0, lowerCamelCase : List[str]=0.0, lowerCamelCase : List[Any]=0.02, lowerCamelCase : str=1E-12, lowerCamelCase : List[Any]=[512, 864], lowerCamelCase : Any=16, lowerCamelCase : List[str]=3, lowerCamelCase : int=True, lowerCamelCase : Optional[int]=100, lowerCamelCase : Optional[int]=True, lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[Any]=1, lowerCamelCase : List[str]=5, lowerCamelCase : List[Any]=2, lowerCamelCase : List[Any]=5, lowerCamelCase : Any=2, lowerCamelCase : Dict=0.1, **lowerCamelCase : int, ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = num_detection_tokens lowercase__ = use_mid_position_embeddings lowercase__ = auxiliary_loss # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = version.parse("""1.11""" ) @property def lowercase__ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Any ): '''simple docstring''' return 1E-4 @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return 12
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Tuple = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """xlm-prophetnet""" lowercase__ = ["""past_key_values"""] lowercase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : List[Any], lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[Union[str, Callable]] = "gelu", lowerCamelCase : Optional[int] = 30_522, lowerCamelCase : Optional[int] = 1_024, lowerCamelCase : Optional[int] = 4_096, lowerCamelCase : Optional[int] = 12, lowerCamelCase : Optional[int] = 16, lowerCamelCase : Optional[int] = 4_096, lowerCamelCase : Optional[int] = 12, lowerCamelCase : Optional[int] = 16, lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[int] = 512, lowerCamelCase : Optional[float] = 0.02, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[int] = 0, lowerCamelCase : Optional[int] = 2, lowerCamelCase : Optional[int] = 32, lowerCamelCase : Optional[int] = 128, lowerCamelCase : Optional[bool] = False, lowerCamelCase : Optional[float] = 0.0, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[int] = 0, lowerCamelCase : Optional[int] = 1, lowerCamelCase : Optional[int] = 2, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = encoder_ffn_dim lowercase__ = num_encoder_layers lowercase__ = num_encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = num_decoder_layers lowercase__ = num_decoder_attention_heads lowercase__ = max_position_embeddings lowercase__ = init_std # Normal(0, this parameter) lowercase__ = activation_function # parameters for xlmprophetnet lowercase__ = ngram lowercase__ = num_buckets lowercase__ = relative_max_distance lowercase__ = disable_ngram_loss lowercase__ = eps # 3 Types of Dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = dropout lowercase__ = use_cache super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, add_cross_attention=lowerCamelCase, decoder_start_token_id=lowerCamelCase, **lowerCamelCase, ) @property def lowercase__ ( self : str ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any] ): '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
671
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : str, lowerCamelCase : float ): '''simple docstring''' return 0.0 def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = 512 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(lowerCamelCase_ ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.abs(np.fft.fft(lowerCamelCase_ ) ) lowercase__ = 20 * np.logaa(lowerCamelCase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowercase__ = get_bounds(lowerCamelCase_ , lowerCamelCase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowerCamelCase_ ) plt.show() def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = 512 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(lowerCamelCase_ ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.angle(np.fft.fft(lowerCamelCase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowerCamelCase_ , -2 * pi ) ) plt.show()
671
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
1
import argparse import datetime def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } lowercase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase_ ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month lowercase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) lowercase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day lowercase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator lowercase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year lowercase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation lowercase__ = datetime.date(int(lowerCamelCase_ ) , int(lowerCamelCase_ ) , int(lowerCamelCase_ ) ) # Start math if m <= 2: lowercase__ = y - 1 lowercase__ = m + 12 # maths var lowercase__ = int(str(lowerCamelCase_ )[:2] ) lowercase__ = int(str(lowerCamelCase_ )[2:] ) lowercase__ = int(2.6 * m - 5.39 ) lowercase__ = int(c / 4 ) lowercase__ = int(k / 4 ) lowercase__ = int(d + k ) lowercase__ = int(t + u + v + x ) lowercase__ = int(z - (2 * c) ) lowercase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response lowercase__ = F"""Your date {date_input}, is a {days[str(lowerCamelCase_ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() A__ : str = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) A__ : Any = parser.parse_args() zeller(args.date_input)
671
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
1
from math import sqrt def a ( lowerCamelCase_ = 100_0000 ): '''simple docstring''' lowercase__ = 0 lowercase__ = 0 lowercase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
671
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = StableDiffusionInstructPixaPixPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) lowercase__ = CLIPTextModel(lowerCamelCase ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase__ ( self : Optional[Any], lowerCamelCase : List[Any], lowerCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = image.cpu().permute(0, 2, 3, 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ) if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = sd_pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = '''french fries''' lowercase__ = sd_pipe(**lowerCamelCase, negative_prompt=lowerCamelCase ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = [inputs['''prompt''']] * 2 lowercase__ = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 lowercase__ = torch.from_numpy(lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) lowercase__ = image / 2 + 0.5 lowercase__ = image.permute(0, 3, 1, 2 ) lowercase__ = image.repeat(2, 1, 1, 1 ) lowercase__ = sd_pipe(**lowerCamelCase ).images lowercase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''' ) lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = sd_pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [round(lowerCamelCase, 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = VaeImageProcessor(do_resize=lowerCamelCase, do_normalize=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase, input_image_type='''pt''' ) )[0] lowercase__ = components['''vae'''] lowercase__ = self.get_dummy_inputs_by_type(lowerCamelCase, input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase__ = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase__ = pipe(**lowerCamelCase )[0] lowercase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase, 1E-4, '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) lowercase__ = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase ) lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = 0 def callback_fn(lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor ) -> None: lowercase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase__ = False lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase, torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() pipe(**lowerCamelCase, callback=lowerCamelCase, callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase, torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ = inputs['''image'''].resize((504, 504) ) lowercase__ = '''timbrooks/instruct-pix2pix''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = pipe(**lowerCamelCase ) lowercase__ = output.images[0] lowercase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = torch.nn.Linear(10, 10 ) lowercase__ = torch.optim.SGD(model.parameters(), 0.1 ) lowercase__ = Accelerator() lowercase__ = accelerator.prepare(lowerCamelCase ) try: pickle.loads(pickle.dumps(lowerCamelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # Load configuration defined in the metadata file with open(lowerCamelCase_ ) as metadata_file: lowercase__ = json.load(lowerCamelCase_ ) lowercase__ = LukeConfig(use_entity_aware_attention=lowerCamelCase_ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''module'''] # Load the entity vocab file lowercase__ = load_original_entity_vocab(lowerCamelCase_ ) # add an entry for [MASK2] lowercase__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase__ = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks lowercase__ = AddedToken('''<ent>''' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) lowercase__ = AddedToken('''<ent2>''' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , '''r''' ) as f: lowercase__ = json.load(lowerCamelCase_ ) lowercase__ = '''MLukeTokenizer''' with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = MLukeTokenizer.from_pretrained(lowerCamelCase_ ) # Initialize the embeddings of the special tokens lowercase__ = tokenizer.convert_tokens_to_ids(['''@'''] )[0] lowercase__ = tokenizer.convert_tokens_to_ids(['''#'''] )[0] lowercase__ = state_dict['''embeddings.word_embeddings.weight'''] lowercase__ = word_emb[ent_init_index].unsqueeze(0 ) lowercase__ = word_emb[enta_init_index].unsqueeze(0 ) lowercase__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase__ = state_dict[bias_name] lowercase__ = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase__ = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase__ = F"""encoder.layer.{layer_index}.attention.self.""" lowercase__ = state_dict[prefix + matrix_name] lowercase__ = state_dict[prefix + matrix_name] lowercase__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase__ = state_dict['''entity_embeddings.entity_embeddings.weight'''] lowercase__ = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowercase__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase__ = state_dict['''entity_predictions.bias'''] lowercase__ = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowercase__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase__ = LukeForMaskedLM(config=lowerCamelCase_ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) lowercase__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): lowercase__ = state_dict[key] else: lowercase__ = state_dict[key] lowercase__ , lowercase__ = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) if set(lowerCamelCase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowerCamelCase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase__ = MLukeTokenizer.from_pretrained(lowerCamelCase_ , task='''entity_classification''' ) lowercase__ = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' lowercase__ = (0, 9) lowercase__ = tokenizer(lowerCamelCase_ , entity_spans=[span] , return_tensors='''pt''' ) lowercase__ = model(**lowerCamelCase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ = torch.Size((1, 33, 768) ) lowercase__ = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ = torch.Size((1, 1, 768) ) lowercase__ = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowercase__ = MLukeTokenizer.from_pretrained(lowerCamelCase_ ) lowercase__ = '''Tokyo is the capital of <mask>.''' lowercase__ = (24, 30) lowercase__ = tokenizer(lowerCamelCase_ , entity_spans=[span] , return_tensors='''pt''' ) lowercase__ = model(**lowerCamelCase_ ) lowercase__ = encoding['''input_ids'''][0].tolist() lowercase__ = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) lowercase__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCamelCase_ ) lowercase__ = outputs.entity_logits[0][0].argmax().item() lowercase__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowerCamelCase_ ) ) model.save_pretrained(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] lowercase__ = [json.loads(lowerCamelCase_ ) for line in open(lowerCamelCase_ )] lowercase__ = {} for entry in data: lowercase__ = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase__ = entity_id break lowercase__ = F"""{language}:{entity_name}""" lowercase__ = entity_id return new_mapping if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) A__ : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
671
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
1
import os def a ( ): '''simple docstring''' lowercase__ = os.path.dirname(os.path.realpath(lowerCamelCase_ ) ) lowercase__ = os.path.join(lowerCamelCase_ , '''triangle.txt''' ) with open(lowerCamelCase_ ) as f: lowercase__ = f.readlines() lowercase__ = [] for line in triangle: lowercase__ = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(lowerCamelCase_ ) ) a.append(lowerCamelCase_ ) for i in range(1 , len(lowerCamelCase_ ) ): for j in range(len(a[i] ) ): lowercase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowercase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase_ , lowerCamelCase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
671
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: A__ : int = None A__ : Dict = logging.get_logger(__name__) A__ : int = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } A__ : Dict = { 'camembert-base': 5_12, } A__ : Any = '▁' class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = CamembertTokenizer def __init__( self : Tuple, lowerCamelCase : str=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : int="<s>", lowerCamelCase : Union[str, Any]="</s>", lowerCamelCase : Any="</s>", lowerCamelCase : Optional[Any]="<s>", lowerCamelCase : int="<unk>", lowerCamelCase : Any="<pad>", lowerCamelCase : Optional[int]="<mask>", lowerCamelCase : Any=["<s>NOTUSED", "</s>NOTUSED"], **lowerCamelCase : str, ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, unk_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowercase__ ( self : Any, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Optional[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Tuple, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file, lowerCamelCase ) return (out_vocab_file,)
671
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : int, lowerCamelCase : Dict=13, lowerCamelCase : Optional[Any]=7, lowerCamelCase : Optional[int]=6, lowerCamelCase : List[Any]=17, lowerCamelCase : Optional[Any]=23, lowerCamelCase : Any=11, lowerCamelCase : List[Any]=True, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = act_dim lowercase__ = state_dim lowercase__ = hidden_size lowercase__ = max_length lowercase__ = is_training def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = ids_tensor((self.batch_size, self.seq_length), vocab_size=1_000 ) lowercase__ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowercase__ ( self : str ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size, seq_length=self.seq_length, act_dim=self.act_dim, state_dim=self.state_dim, hidden_size=self.hidden_size, max_length=self.max_length, ) def lowercase__ ( self : int, lowerCamelCase : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = DecisionTransformerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) self.parent.assertEqual(result.state_preds.shape, states.shape ) self.parent.assertEqual(result.action_preds.shape, actions.shape ) self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (DecisionTransformerModel,) if is_torch_available() else () lowercase__ = () lowercase__ = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = DecisionTransformerModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = DecisionTransformerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(lowerCamelCase )], lowerCamelCase ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = 2 # number of steps of autoregressive prediction we will perform lowercase__ = 10 # defined by the RL environment, may be normalized lowercase__ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = model.config torch.manual_seed(0 ) lowercase__ = torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase, dtype=torch.floataa ) # env.reset() lowercase__ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]], device=lowerCamelCase ) lowercase__ = torch.tensor(lowerCamelCase, device=lowerCamelCase, dtype=torch.floataa ).reshape(1, 1, 1 ) lowercase__ = state lowercase__ = torch.zeros(1, 0, config.act_dim, device=lowerCamelCase, dtype=torch.floataa ) lowercase__ = torch.zeros(1, 0, device=lowerCamelCase, dtype=torch.floataa ) lowercase__ = torch.tensor(0, device=lowerCamelCase, dtype=torch.long ).reshape(1, 1 ) for step in range(lowerCamelCase ): lowercase__ = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=lowerCamelCase )], dim=1 ) lowercase__ = torch.cat([rewards, torch.zeros(1, 1, device=lowerCamelCase )], dim=1 ) lowercase__ = torch.ones(1, states.shape[1] ).to(dtype=torch.long, device=states.device ) with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ = model( states=lowerCamelCase, actions=lowerCamelCase, rewards=lowerCamelCase, returns_to_go=lowerCamelCase, timesteps=lowerCamelCase, attention_mask=lowerCamelCase, return_dict=lowerCamelCase, ) self.assertEqual(action_pred.shape, actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1E-4 ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = ( # env.step(action) torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase, dtype=torch.floataa ), 1.0, False, {}, ) lowercase__ = action_pred[0, -1] lowercase__ = torch.cat([states, state], dim=1 ) lowercase__ = returns_to_go[0, -1] - reward lowercase__ = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1 )], dim=1 ) lowercase__ = torch.cat( [timesteps, torch.ones((1, 1), device=lowerCamelCase, dtype=torch.long ) * (step + 1)], dim=1 )
671
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
1
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
1
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() # edges = list of graph's edges lowercase__ = get_edges(lowerCamelCase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowercase__ , lowercase__ = edges.pop() chosen_vertices.add(lowerCamelCase_ ) chosen_vertices.add(lowerCamelCase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCamelCase_ ) return chosen_vertices def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
671
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor A__ : Optional[Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def a ( lowerCamelCase_ ): '''simple docstring''' if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): lowercase__ = [image] lowercase__ = [trans(img.convert('''RGB''' ) ) for img in image] lowercase__ = torch.stack(lowerCamelCase_ ) return image class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowercase__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase ) def lowercase__ ( self : Optional[Any], lowerCamelCase : str ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowercase__ ( self : Tuple, lowerCamelCase : Tuple, lowerCamelCase : Dict, lowerCamelCase : Any ): '''simple docstring''' # get the original timestep using init_timestep lowercase__ = min(int(num_inference_steps * strength ), lowerCamelCase ) lowercase__ = max(num_inference_steps - init_timestep, 0 ) lowercase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : List[Any]=None ): '''simple docstring''' if not isinstance(lowerCamelCase, (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase )}""" ) lowercase__ = image.to(device=lowerCamelCase, dtype=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) and len(lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase__ = init_latents.shape lowercase__ = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase ) # get latents print('''add noise to latents at timestep''', lowerCamelCase ) lowercase__ = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = init_latents return latents @torch.no_grad() def __call__( self : List[str], lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None, lowerCamelCase : float = 0.8, lowerCamelCase : int = 1, lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCamelCase : float = 0.0, lowerCamelCase : int = 50, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, ): '''simple docstring''' self.check_inputs(lowerCamelCase ) # 2. Preprocess image lowercase__ = preprocess(lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase, device=self.device ) lowercase__ , lowercase__ = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device ) lowercase__ = timesteps[:1].repeat(lowerCamelCase ) # 4. Prepare latent variables lowercase__ = self.prepare_latents(lowerCamelCase, lowerCamelCase, lowerCamelCase, self.unet.dtype, self.device, lowerCamelCase ) lowercase__ = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase ): # 1. predict noise model_output lowercase__ = self.unet(lowerCamelCase, lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase__ = self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, eta=lowerCamelCase, use_clipped_model_output=lowerCamelCase, generator=lowerCamelCase, ).prev_sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) lowercase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase )
671
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
1
import math def a ( lowerCamelCase_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( lowerCamelCase_ = 1_0001 ): '''simple docstring''' try: lowercase__ = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) lowercase__ = [] lowercase__ = 2 while len(lowerCamelCase_ ) < nth: if is_prime(lowerCamelCase_ ): primes.append(lowerCamelCase_ ) num += 1 else: num += 1 return primes[len(lowerCamelCase_ ) - 1] if __name__ == "__main__": print(F"{solution() = }")
671
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig A__ : Dict = logging.get_logger(__name__) # General docstring A__ : List[Any] = 'RegNetConfig' # Base docstring A__ : Any = 'facebook/regnet-y-040' A__ : Union[str, Any] = [1, 10_88, 7, 7] # Image classification docstring A__ : Tuple = 'facebook/regnet-y-040' A__ : Optional[int] = 'tabby, tabby cat' A__ : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int, lowerCamelCase : int, lowerCamelCase : int = 3, lowerCamelCase : int = 1, lowerCamelCase : int = 1, lowerCamelCase : Optional[str] = "relu", **lowerCamelCase : Optional[Any], ): '''simple docstring''' super().__init__(**lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase__ = tf.keras.layers.ConvaD( filters=lowerCamelCase, kernel_size=lowerCamelCase, strides=lowerCamelCase, padding='''VALID''', groups=lowerCamelCase, use_bias=lowerCamelCase, name='''convolution''', ) lowercase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5, momentum=0.9, name='''normalization''' ) lowercase__ = ACTaFN[activation] if activation is not None else tf.identity def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.convolution(self.padding(lowerCamelCase ) ) lowercase__ = self.normalization(lowerCamelCase ) lowercase__ = self.activation(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int, lowerCamelCase : RegNetConfig, **lowerCamelCase : Dict ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = config.num_channels lowercase__ = TFRegNetConvLayer( out_channels=config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act, name='''embedder''', ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = shape_list(lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase__ = tf.transpose(lowerCamelCase, perm=(0, 2, 3, 1) ) lowercase__ = self.embedder(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int, lowerCamelCase : int, lowerCamelCase : int = 2, **lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = tf.keras.layers.ConvaD( filters=lowerCamelCase, kernel_size=1, strides=lowerCamelCase, use_bias=lowerCamelCase, name='''convolution''' ) lowercase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5, momentum=0.9, name='''normalization''' ) def lowercase__ ( self : int, lowerCamelCase : tf.Tensor, lowerCamelCase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase ), training=lowerCamelCase ) class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str, lowerCamelCase : int, lowerCamelCase : int, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase, name='''pooler''' ) lowercase__ = [ tf.keras.layers.ConvaD(filters=lowerCamelCase, kernel_size=1, activation='''relu''', name='''attention.0''' ), tf.keras.layers.ConvaD(filters=lowerCamelCase, kernel_size=1, activation='''sigmoid''', name='''attention.2''' ), ] def lowercase__ ( self : Any, lowerCamelCase : List[Any] ): '''simple docstring''' # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowercase__ = self.pooler(lowerCamelCase ) for layer_module in self.attention: lowercase__ = layer_module(lowerCamelCase ) lowercase__ = hidden_state * pooled return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : RegNetConfig, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int = 1, **lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1, out_channels // config.groups_width ) lowercase__ = ( TFRegNetShortCut(lowerCamelCase, stride=lowerCamelCase, name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''', name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase__ = [ TFRegNetConvLayer(lowerCamelCase, kernel_size=1, activation=config.hidden_act, name='''layer.0''' ), TFRegNetConvLayer( lowerCamelCase, stride=lowerCamelCase, groups=lowerCamelCase, activation=config.hidden_act, name='''layer.1''' ), TFRegNetConvLayer(lowerCamelCase, kernel_size=1, activation=lowerCamelCase, name='''layer.2''' ), ] lowercase__ = ACTaFN[config.hidden_act] def lowercase__ ( self : Any, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = hidden_state for layer_module in self.layers: lowercase__ = layer_module(lowerCamelCase ) lowercase__ = self.shortcut(lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : RegNetConfig, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int = 1, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1, out_channels // config.groups_width ) lowercase__ = ( TFRegNetShortCut(lowerCamelCase, stride=lowerCamelCase, name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''', name='''shortcut''' ) ) lowercase__ = [ TFRegNetConvLayer(lowerCamelCase, kernel_size=1, activation=config.hidden_act, name='''layer.0''' ), TFRegNetConvLayer( lowerCamelCase, stride=lowerCamelCase, groups=lowerCamelCase, activation=config.hidden_act, name='''layer.1''' ), TFRegNetSELayer(lowerCamelCase, reduced_channels=int(round(in_channels / 4 ) ), name='''layer.2''' ), TFRegNetConvLayer(lowerCamelCase, kernel_size=1, activation=lowerCamelCase, name='''layer.3''' ), ] lowercase__ = ACTaFN[config.hidden_act] def lowercase__ ( self : Optional[int], lowerCamelCase : str ): '''simple docstring''' lowercase__ = hidden_state for layer_module in self.layers: lowercase__ = layer_module(lowerCamelCase ) lowercase__ = self.shortcut(lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : RegNetConfig, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int = 2, lowerCamelCase : int = 2, **lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer lowercase__ = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase, lowerCamelCase, lowerCamelCase, stride=lowerCamelCase, name='''layers.0''' ), *[layer(lowerCamelCase, lowerCamelCase, lowerCamelCase, name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' for layer_module in self.layers: lowercase__ = layer_module(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : RegNetConfig, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], name='''stages.0''', ) ) lowercase__ = zip(config.hidden_sizes, config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase, config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase, lowerCamelCase, lowerCamelCase, depth=lowerCamelCase, name=F"""stages.{i+1}""" ) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : tf.Tensor, lowerCamelCase : bool = False, lowerCamelCase : bool = True ): '''simple docstring''' lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(lowerCamelCase ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase, hidden_states=lowerCamelCase ) @keras_serializable class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" lowercase__ = RegNetConfig def __init__( self : str, lowerCamelCase : int, **lowerCamelCase : Any ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = config lowercase__ = TFRegNetEmbeddings(lowerCamelCase, name='''embedder''' ) lowercase__ = TFRegNetEncoder(lowerCamelCase, name='''encoder''' ) lowercase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase, name='''pooler''' ) @unpack_inputs def lowercase__ ( self : Any, lowerCamelCase : tf.Tensor, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, ): '''simple docstring''' lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(lowerCamelCase, training=lowerCamelCase ) lowercase__ = self.encoder( lowerCamelCase, output_hidden_states=lowerCamelCase, return_dict=lowerCamelCase, training=lowerCamelCase ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(lowerCamelCase ) # Change to NCHW output format have uniformity in the modules lowercase__ = tf.transpose(lowerCamelCase, perm=(0, 3, 1, 2) ) lowercase__ = tf.transpose(lowerCamelCase, perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase__ = tuple([tf.transpose(lowerCamelCase, perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase, pooler_output=lowerCamelCase, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = RegNetConfig lowercase__ = """regnet""" lowercase__ = """pixel_values""" @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.floataa )} A__ : List[str] = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' A__ : Dict = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,A__ ,) class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : RegNetConfig, *lowerCamelCase : List[str], **lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(lowerCamelCase, *lowerCamelCase, **lowerCamelCase ) lowercase__ = TFRegNetMainLayer(lowerCamelCase, name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=lowerCamelCase, config_class=_CONFIG_FOR_DOC, modality='''vision''', expected_output=_EXPECTED_OUTPUT_SHAPE, ) def lowercase__ ( self : str, lowerCamelCase : tf.Tensor, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Tuple=False, ): '''simple docstring''' lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet( pixel_values=lowerCamelCase, output_hidden_states=lowerCamelCase, return_dict=lowerCamelCase, training=lowerCamelCase, ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,A__ ,) class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : RegNetConfig, *lowerCamelCase : Dict, **lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(lowerCamelCase, *lowerCamelCase, **lowerCamelCase ) lowercase__ = config.num_labels lowercase__ = TFRegNetMainLayer(lowerCamelCase, name='''regnet''' ) # classification head lowercase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels, name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=lowerCamelCase, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def lowercase__ ( self : List[Any], lowerCamelCase : tf.Tensor = None, lowerCamelCase : tf.Tensor = None, lowerCamelCase : bool = None, lowerCamelCase : bool = None, lowerCamelCase : Tuple=False, ): '''simple docstring''' lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet( lowerCamelCase, output_hidden_states=lowerCamelCase, return_dict=lowerCamelCase, training=lowerCamelCase ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier[0](lowerCamelCase ) lowercase__ = self.classifier[1](lowerCamelCase ) lowercase__ = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase, logits=lowerCamelCase ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase, logits=lowerCamelCase, hidden_states=outputs.hidden_states )
671
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : int, lowerCamelCase : int, lowerCamelCase : Any=13, lowerCamelCase : Dict=7, lowerCamelCase : str=True, lowerCamelCase : Any=True, lowerCamelCase : Any=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : List[str]=True, lowerCamelCase : Tuple=False, lowerCamelCase : Tuple=False, lowerCamelCase : Optional[int]=False, lowerCamelCase : Tuple=2, lowerCamelCase : Union[str, Any]=99, lowerCamelCase : str=0, lowerCamelCase : Optional[int]=32, lowerCamelCase : Union[str, Any]=5, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Any=0.1, lowerCamelCase : Optional[Any]=512, lowerCamelCase : Tuple=12, lowerCamelCase : List[Any]=2, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : Union[str, Any]=3, lowerCamelCase : Any=4, lowerCamelCase : Tuple="last", lowerCamelCase : Optional[int]=None, lowerCamelCase : Optional[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], 2 ).float() lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def lowercase__ ( self : str, lowerCamelCase : str, lowerCamelCase : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Any, ): '''simple docstring''' lowercase__ = FlaubertModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, lengths=lowerCamelCase, langs=lowerCamelCase ) lowercase__ = model(lowerCamelCase, langs=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = FlaubertWithLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = FlaubertForQuestionAnsweringSimple(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : str, ): '''simple docstring''' lowercase__ = FlaubertForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, p_mask=lowerCamelCase, ) lowercase__ = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = FlaubertForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : Any, lowerCamelCase : Tuple, lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[Any], ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[Any], lowerCamelCase : Dict, lowerCamelCase : Tuple, lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : int, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : List[Any], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Any, lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase ) return inputs_dict def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, emb_dim=37 ) def lowercase__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCamelCase ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @slow @require_torch_gpu def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=lowerCamelCase ) lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase ) lowercase__ = torch.jit.trace( lowerCamelCase, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCamelCase, os.path.join(lowerCamelCase, '''traced_model.pt''' ) ) lowercase__ = torch.jit.load(os.path.join(lowerCamelCase, '''traced_model.pt''' ), map_location=lowerCamelCase ) loaded(inputs_dict['''input_ids'''].to(lowerCamelCase ), inputs_dict['''attention_mask'''].to(lowerCamelCase ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowercase__ = model(lowerCamelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) )
671
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
1
import functools def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = len(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ , lowerCamelCase_ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
671
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
1
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Dict = None A__ : int = logging.get_logger(__name__) A__ : int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A__ : str = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } A__ : Any = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } A__ : Optional[int] = '▁' # Segments (not really needed) A__ : Tuple = 0 A__ : Tuple = 1 A__ : Dict = 2 A__ : Any = 3 A__ : Any = 4 class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = """left""" lowercase__ = XLNetTokenizer def __init__( self : Optional[Any], lowerCamelCase : Tuple=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Tuple=False, lowerCamelCase : List[Any]=True, lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[int]="<s>", lowerCamelCase : Any="</s>", lowerCamelCase : Dict="<unk>", lowerCamelCase : Optional[Any]="<sep>", lowerCamelCase : Optional[Any]="<pad>", lowerCamelCase : List[Any]="<cls>", lowerCamelCase : Optional[int]="<mask>", lowerCamelCase : List[Any]=["<eop>", "<eod>"], **lowerCamelCase : List[str], ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token super().__init__( vocab_file=lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, remove_space=lowerCamelCase, keep_accents=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) lowercase__ = 3 lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self : Optional[int], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file, lowerCamelCase ) return (out_vocab_file,)
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : str = '▁' A__ : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} A__ : int = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } A__ : int = { 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off A__ : Optional[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] lowercase__ = [] def __init__( self : Optional[Any], lowerCamelCase : int, lowerCamelCase : Optional[int]="<s>", lowerCamelCase : List[Any]="</s>", lowerCamelCase : Optional[Any]="</s>", lowerCamelCase : str="<s>", lowerCamelCase : Any="<unk>", lowerCamelCase : Dict="<pad>", lowerCamelCase : int="<mask>", lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : int=None, lowerCamelCase : Optional[Dict[str, Any]] = None, lowerCamelCase : List[Any]=None, lowerCamelCase : List[str]=False, **lowerCamelCase : str, ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = legacy_behaviour super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, tokenizer_file=lowerCamelCase, src_lang=lowerCamelCase, tgt_lang=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, legacy_behaviour=lowerCamelCase, **lowerCamelCase, ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ = 1 lowercase__ = len(self.sp_model ) lowercase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase ) } lowercase__ = {v: k for k, v in self.lang_code_to_id.items()} lowercase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase__ = src_lang if src_lang is not None else '''eng_Latn''' lowercase__ = self.lang_code_to_id[self._src_lang] lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : str, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : int ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def lowercase__ ( self : Optional[Any], lowerCamelCase : str ): '''simple docstring''' lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase )) + ([0] * len(lowerCamelCase )) + suffix_ones def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : int, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : str, lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[str], lowerCamelCase : Optional[str], **lowerCamelCase : int ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase__ = src_lang lowercase__ = self(lowerCamelCase, add_special_tokens=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase ) lowercase__ = self.convert_tokens_to_ids(lowerCamelCase ) lowercase__ = tgt_lang_id return inputs def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int], lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : int, lowerCamelCase : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = ''''''.join(lowerCamelCase ).replace(lowerCamelCase, ''' ''' ).strip() return out_string def lowercase__ ( self : Tuple, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def lowercase__ ( self : int, lowerCamelCase : List[str], lowerCamelCase : str = "eng_Latn", lowerCamelCase : Optional[List[str]] = None, lowerCamelCase : str = "fra_Latn", **lowerCamelCase : Tuple, ): '''simple docstring''' lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase, lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Any ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id] def lowercase__ ( self : Tuple, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id]
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
1
import random def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = a[left_index] lowercase__ = left_index + 1 for j in range(left_index + 1 , lowerCamelCase_ ): if a[j] < pivot: lowercase__ , lowercase__ = a[i], a[j] i += 1 lowercase__ , lowercase__ = a[i - 1], a[left_index] return i - 1 def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if left < right: lowercase__ = random.randint(lowerCamelCase_ , right - 1 ) lowercase__ , lowercase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowercase__ = partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) quick_sort_random( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCamelCase_ , pivot_index + 1 , lowerCamelCase_ ) # recursive quicksort to the right of the pivot point def a ( ): '''simple docstring''' lowercase__ = input('''Enter numbers separated by a comma:\n''' ).strip() lowercase__ = [int(lowerCamelCase_ ) for item in user_input.split(''',''' )] quick_sort_random(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) ) print(lowerCamelCase_ ) if __name__ == "__main__": main()
671
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
1
A__ : Optional[int] = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) A__ : str = frozenset(['prompt', 'negative_prompt']) A__ : Tuple = frozenset([]) A__ : Optional[Any] = frozenset(['image']) A__ : Union[str, Any] = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) A__ : Tuple = frozenset(['image']) A__ : Any = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) A__ : Union[str, Any] = frozenset(['prompt', 'image', 'negative_prompt']) A__ : Optional[Any] = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) A__ : List[str] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) A__ : Dict = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) A__ : Tuple = frozenset(['image', 'mask_image']) A__ : Optional[int] = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) A__ : List[str] = frozenset(['example_image', 'image', 'mask_image']) A__ : str = frozenset(['class_labels']) A__ : List[str] = frozenset(['class_labels']) A__ : Dict = frozenset(['batch_size']) A__ : int = frozenset([]) A__ : Dict = frozenset(['batch_size']) A__ : Optional[Any] = frozenset([]) A__ : str = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) A__ : Union[str, Any] = frozenset(['prompt', 'negative_prompt']) A__ : Union[str, Any] = frozenset(['input_tokens']) A__ : int = frozenset(['input_tokens'])
671
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
1
from collections import defaultdict from math import ceil, sqrt def a ( lowerCamelCase_ = 100_0000 , lowerCamelCase_ = 10 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowercase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowercase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCamelCase_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
671
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A__ : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # Initialise PyTorch model lowercase__ = BertConfig.from_json_file(lowerCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__ = BertForPreTraining(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A__ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
1
class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = val lowercase__ = None lowercase__ = None def lowercase__ ( self : Union[str, Any], lowerCamelCase : str ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: lowercase__ = Node(lowerCamelCase ) else: self.left.insert(lowerCamelCase ) elif val > self.val: if self.right is None: lowercase__ = Node(lowerCamelCase ) else: self.right.insert(lowerCamelCase ) else: lowercase__ = val def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # Recursive traversal if root: inorder(root.left , lowerCamelCase_ ) res.append(root.val ) inorder(root.right , lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # Build BST if len(lowerCamelCase_ ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(lowerCamelCase_ ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(lowerCamelCase_ , lowerCamelCase_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
A__ : int = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() # keep track of all the paths to be checked lowercase__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase__ = queue.pop(0 ) # get the last node from the path lowercase__ = path[-1] if node not in explored: lowercase__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase__ = list(lowerCamelCase_ ) new_path.append(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCamelCase_ ) # in case there's no path between the 2 nodes return [] def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase__ = [start] lowercase__ = set(lowerCamelCase_ ) # Keep tab on distances from `start` node. lowercase__ = {start: 0, target: -1} while queue: lowercase__ = queue.pop(0 ) if node == target: lowercase__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) lowercase__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
671
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Union[str, Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A__ : Tuple = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : Any ): '''simple docstring''' super().__init__() lowercase__ = torchvision.models.resnetaaa(pretrained=lowerCamelCase ) lowercase__ = list(model.children() )[:-2] lowercase__ = nn.Sequential(*lowerCamelCase ) lowercase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowercase__ ( self : Any, lowerCamelCase : Optional[Any] ): '''simple docstring''' # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowercase__ = self.pool(self.model(lowerCamelCase ) ) lowercase__ = torch.flatten(lowerCamelCase, start_dim=2 ) lowercase__ = out.transpose(1, 2 ).contiguous() return out # BxNx2048 class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : int, lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Any, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = [json.loads(lowerCamelCase ) for l in open(lowerCamelCase )] lowercase__ = os.path.dirname(lowerCamelCase ) lowercase__ = tokenizer lowercase__ = labels lowercase__ = len(lowerCamelCase ) lowercase__ = max_seq_length lowercase__ = transforms def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self.data ) def __getitem__( self : int, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''], add_special_tokens=lowerCamelCase ) ) lowercase__ , lowercase__ , lowercase__ = sentence[0], sentence[1:-1], sentence[-1] lowercase__ = sentence[: self.max_seq_length] lowercase__ = torch.zeros(self.n_classes ) lowercase__ = 1 lowercase__ = Image.open(os.path.join(self.data_dir, self.data[index]['''img'''] ) ).convert('''RGB''' ) lowercase__ = self.transforms(lowerCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [len(row['''sentence'''] ) for row in batch] lowercase__ , lowercase__ = len(lowerCamelCase_ ), max(lowerCamelCase_ ) lowercase__ = torch.zeros(lowerCamelCase_ , lowerCamelCase_ , dtype=torch.long ) lowercase__ = torch.zeros(lowerCamelCase_ , lowerCamelCase_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): lowercase__ = input_row['''sentence'''] lowercase__ = 1 lowercase__ = torch.stack([row['''image'''] for row in batch] ) lowercase__ = torch.stack([row['''label'''] for row in batch] ) lowercase__ = torch.stack([row['''image_start_token'''] for row in batch] ) lowercase__ = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def a ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def a ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
671
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
1
from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""onnx"""] def __init__( self : Optional[Any], *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, ['''onnx'''] ) @classmethod def lowercase__ ( cls : Any, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls, ['''onnx'''] ) @classmethod def lowercase__ ( cls : Union[str, Any], *lowerCamelCase : Any, **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''onnx'''] )
671
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : Tuple = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
1
import os import re import shutil import sys import tempfile import unittest import black A__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. A__ : int = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, '''models/bert/''' ) ) lowercase__ = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase, '''src/transformers/models/bert/modeling_bert.py''' ), os.path.join(self.transformer_dir, '''models/bert/modeling_bert.py''' ), ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' lowercase__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase__ = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) lowercase__ = black.format_str(lowerCamelCase, mode=lowerCamelCase ) lowercase__ = os.path.join(self.transformer_dir, '''new_code.py''' ) with open(lowerCamelCase, '''w''', newline='''\n''' ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=lowerCamelCase ) with open(lowerCamelCase, '''r''' ) as f: self.assertTrue(f.read(), lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', REFERENCE_CODE + '''\n''', ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', lowerCamelCase, ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', re.sub('''Bert''', '''TestModel''', lowerCamelCase ), ) # Copy consistency with a really long name lowercase__ = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""", F"""{long_class_name}LMPredictionHead""", re.sub('''Bert''', lowerCamelCase, lowerCamelCase ), ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', lowerCamelCase, overwrite_result=re.sub('''Bert''', '''TestModel''', lowerCamelCase ), ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) self.assertFalse(lowerCamelCase ) self.assertEqual(lowerCamelCase, lowerCamelCase ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase, lowerCamelCase )
671
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = botoa.client('''iam''' ) lowercase__ = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCamelCase_ , AssumeRolePolicyDocument=json.dumps(lowerCamelCase_ , indent=2 ) ) lowercase__ = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCamelCase_ , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(lowerCamelCase_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = botoa.client('''iam''' ) return iam_client.get_role(RoleName=lowerCamelCase_ )["Role"]["Arn"] def a ( ): '''simple docstring''' lowercase__ = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , lowerCamelCase_ , ) lowercase__ = None if credentials_configuration == 0: lowercase__ = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) lowercase__ = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) lowercase__ = _ask_field('''AWS Access Key ID: ''' ) lowercase__ = aws_access_key_id lowercase__ = _ask_field('''AWS Secret Access Key: ''' ) lowercase__ = aws_secret_access_key lowercase__ = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) lowercase__ = aws_region lowercase__ = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , lowerCamelCase_ , ) if role_management == 0: lowercase__ = _ask_field('''Enter your IAM role name: ''' ) else: lowercase__ = '''accelerate_sagemaker_execution_role''' print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(lowerCamelCase_ ) lowercase__ = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCamelCase_ , error_message='''Please enter yes or no.''' , ) lowercase__ = None if is_custom_docker_image: lowercase__ = _ask_field('''Enter your Docker image: ''' , lambda lowerCamelCase_ : str(lowerCamelCase_ ).lower() ) lowercase__ = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCamelCase_ , error_message='''Please enter yes or no.''' , ) lowercase__ = None if is_sagemaker_inputs_enabled: lowercase__ = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda lowerCamelCase_ : str(lowerCamelCase_ ).lower() , ) lowercase__ = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCamelCase_ , error_message='''Please enter yes or no.''' , ) lowercase__ = None if is_sagemaker_metrics_enabled: lowercase__ = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda lowerCamelCase_ : str(lowerCamelCase_ ).lower() , ) lowercase__ = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) lowercase__ = {} lowercase__ = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=lowerCamelCase_ , error_message='''Please enter yes or no.''' , ) if use_dynamo: lowercase__ = '''dynamo_''' lowercase__ = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowercase__ = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCamelCase_ , error_message='''Please enter yes or no.''' , ) if use_custom_options: lowercase__ = _ask_options( '''Which mode do you want to use?''' , lowerCamelCase_ , lambda lowerCamelCase_ : TORCH_DYNAMO_MODES[int(lowerCamelCase_ )] , default='''default''' , ) lowercase__ = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCamelCase_ , error_message='''Please enter yes or no.''' , ) lowercase__ = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=lowerCamelCase_ , error_message='''Please enter yes or no.''' , ) lowercase__ = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: lowercase__ = _ask_options( lowerCamelCase_ , lowerCamelCase_ , lambda lowerCamelCase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCamelCase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase__ = _ask_field(lowerCamelCase_ , lambda lowerCamelCase_ : str(lowerCamelCase_ ).lower() , default='''ml.p3.2xlarge''' ) lowercase__ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase__ = _ask_field( '''How many machines do you want use? [1]: ''' , lowerCamelCase_ , default=1 , ) lowercase__ = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=lowerCamelCase_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowerCamelCase_ , use_cpu=lowerCamelCase_ , dynamo_config=lowerCamelCase_ , eca_instance_type=lowerCamelCase_ , profile=lowerCamelCase_ , region=lowerCamelCase_ , iam_role_name=lowerCamelCase_ , mixed_precision=lowerCamelCase_ , num_machines=lowerCamelCase_ , sagemaker_inputs_file=lowerCamelCase_ , sagemaker_metrics_file=lowerCamelCase_ , )
671
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
1
import collections import os import re from pathlib import Path A__ : Optional[Any] = 'src/transformers' # Matches is_xxx_available() A__ : List[str] = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} A__ : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A__ : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available A__ : Optional[int] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") A__ : Dict = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A__ : Any = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", A__ : Dict = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], A__ : Tuple = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo A__ : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: A__ : Any = re.compile(r'^\s*try:') # Catches a line with else: A__ : Optional[Any] = re.compile(r'^\s*else:') def a ( lowerCamelCase_ ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None lowercase__ = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase__ = f.readlines() lowercase__ = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowercase__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowercase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): lowercase__ = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] lowercase__ = re.findall(r'''\[([^\]]+)\]''' , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowercase__ = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: lowercase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowercase__ = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: lowercase__ = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: lowercase__ = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowercase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase__ = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' def find_duplicates(lowerCamelCase_ ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase__ = [] for key in import_dict_objects.keys(): lowercase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowercase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase__ = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def a ( ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = os.path.join(lowerCamelCase_ , '''__init__.py''' ) lowercase__ = parse_init(lowerCamelCase_ ) if objects is not None: lowercase__ = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowercase__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError('''\n\n'''.join(lowerCamelCase_ ) ) def a ( ): '''simple docstring''' lowercase__ = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob('''*.py''' ) ) ) == 0: continue lowercase__ = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) lowercase__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowercase__ = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) lowercase__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules A__ : List[str] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def a ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowercase__ = direct_transformers_import(lowerCamelCase_ ) lowercase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , '''r''' ) as f: lowercase__ = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , lowerCamelCase_ ) ) ) lowercase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: lowercase__ = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
671
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase__ = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''', safety_checker=lowerCamelCase, cache_dir=lowerCamelCase ) lowercase__ = [t[-1] for t in os.walk(os.path.join(lowerCamelCase, os.listdir(lowerCamelCase )[0], '''snapshots''' ) )] lowercase__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''', safety_checker=lowerCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 4 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 lowercase__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase ) == num_samples def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''flax''', safety_checker=lowerCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, safety_checker=lowerCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = FlaxDDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', set_alpha_to_one=lowerCamelCase, steps_offset=1, ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, scheduler=lowerCamelCase, safety_checker=lowerCamelCase, ) lowercase__ = scheduler.create_state() lowercase__ = scheduler_state lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, safety_checker=lowerCamelCase, ) lowercase__ = replicate(lowerCamelCase ) lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, safety_checker=lowerCamelCase, use_memory_efficient_attention=lowerCamelCase, ) lowercase__ = replicate(lowerCamelCase ) lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
671
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = AutoConfig.from_pretrained(lowerCamelCase_ ) lowercase__ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCamelCase_ ) lowercase__ = checkpoints.load_tax_checkpoint(lowerCamelCase_ ) lowercase__ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": lowercase__ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): lowercase__ = F"""layers_{str(lowerCamelCase_ )}""" # Self-Attention lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase__ = flax_model.params['''encoder''']['''block'''][str(lowerCamelCase_ )]['''layer'''] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_global_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = tax_mlp_layer_norm lowercase__ = flax_model_encoder_layer_block # Only for layer 0: lowercase__ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_encoder_global_rel_embedding # Assigning lowercase__ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] lowercase__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase__ = F"""layers_{str(lowerCamelCase_ )}""" # Self-Attention lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] lowercase__ = tax_enc_dec_attention_module['''key''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''out''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''query''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase__ = flax_model.params['''decoder''']['''block'''][str(lowerCamelCase_ )]['''layer'''] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_pre_attention_layer_norm lowercase__ = tax_enc_dec_attention_key lowercase__ = tax_enc_dec_attention_out lowercase__ = tax_enc_dec_attention_query lowercase__ = tax_enc_dec_attention_value lowercase__ = tax_cross_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = txa_mlp_layer_norm lowercase__ = flax_model_decoder_layer_block # Decoder Normalization lowercase__ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] lowercase__ = txa_decoder_norm # Only for layer 0: lowercase__ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_decoder_rel_embedding # Token Embeddings lowercase__ = tax_model['''target''']['''token_embedder''']['''embedding'''] lowercase__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(lowerCamelCase_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) A__ : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
671
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
1
from __future__ import annotations from math import ceil, floor, sqrt def a ( lowerCamelCase_ = 200_0000 ): '''simple docstring''' lowercase__ = [0] lowercase__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowercase__ = 0 # the area corresponding to the grid that gives the product closest to target lowercase__ = 0 # an estimate of b, using the quadratic formula lowercase__ = 42 # the largest integer less than b_estimate lowercase__ = 42 # the largest integer less than b_estimate lowercase__ = 42 # the triangle number corresponding to b_floor lowercase__ = 42 # the triangle number corresponding to b_ceil lowercase__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowercase__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowercase__ = floor(lowerCamelCase_ ) lowercase__ = ceil(lowerCamelCase_ ) lowercase__ = triangle_numbers[b_floor] lowercase__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowercase__ = triangle_b_first_guess * triangle_a lowercase__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowercase__ = triangle_b_second_guess * triangle_a lowercase__ = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
671
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
1
from __future__ import annotations A__ : Tuple = tuple[int, int, int] A__ : List[str] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase A__ : Union[str, Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- A__ : List[str] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' A__ : List[Any] = 'FOBHMDKEXQNRAULPGSJVTYICZW' A__ : Any = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- A__ : Optional[Any] = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- A__ : Optional[Any] = 'RMDJXFUWGISLHVTCQNKYPBEZOA' A__ : Any = 'SGLCPQWZHKXAREONTFBVIYJUDM' A__ : Dict = 'HVSICLTYKQUBXDWAJZOMFGPREN' A__ : List[Any] = 'RZWQHFMVDBKICJLNTUXAGYPSOE' A__ : Any = 'LFKIJODBEGAMQPXVUHYSTCZRWN' A__ : str = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # Checks if there are 3 unique rotors if (unique_rotsel := len(set(lowerCamelCase_ ) )) < 3: lowercase__ = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowerCamelCase_ ) # Checks if rotor positions are valid lowercase__ , lowercase__ , lowercase__ = rotpos if not 0 < rotorposa <= len(lowerCamelCase_ ): lowercase__ = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowerCamelCase_ ) if not 0 < rotorposa <= len(lowerCamelCase_ ): lowercase__ = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCamelCase_ ) if not 0 < rotorposa <= len(lowerCamelCase_ ): lowercase__ = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCamelCase_ ) # Validates string and returns dict lowercase__ = _plugboard(lowerCamelCase_ ) return rotpos, rotsel, pbdict def a ( lowerCamelCase_ ): '''simple docstring''' # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = F"""Plugboard setting isn't type string ({type(lowerCamelCase_ )})""" raise TypeError(lowerCamelCase_ ) elif len(lowerCamelCase_ ) % 2 != 0: lowercase__ = F"""Odd number of symbols ({len(lowerCamelCase_ )})""" raise Exception(lowerCamelCase_ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique lowercase__ = set() for i in pbstring: if i not in abc: lowercase__ = F"""'{i}' not in list of symbols""" raise Exception(lowerCamelCase_ ) elif i in tmppbl: lowercase__ = F"""Duplicate symbol ({i})""" raise Exception(lowerCamelCase_ ) else: tmppbl.add(lowerCamelCase_ ) del tmppbl # Created the dictionary lowercase__ = {} for j in range(0 , len(lowerCamelCase_ ) - 1 , 2 ): lowercase__ = pbstring[j + 1] lowercase__ = pbstring[j] return pb def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = (rotora, rotora, rotora) , lowerCamelCase_ = "" , ): '''simple docstring''' lowercase__ = text.upper() lowercase__ , lowercase__ , lowercase__ = _validator( lowerCamelCase_ , lowerCamelCase_ , plugb.upper() ) lowercase__ , lowercase__ , lowercase__ = rotor_position lowercase__ , lowercase__ , lowercase__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase__ = plugboard[symbol] # rotor ra -------------------------- lowercase__ = abc.index(lowerCamelCase_ ) + rotorposa lowercase__ = rotora[index % len(lowerCamelCase_ )] # rotor rb -------------------------- lowercase__ = abc.index(lowerCamelCase_ ) + rotorposa lowercase__ = rotora[index % len(lowerCamelCase_ )] # rotor rc -------------------------- lowercase__ = abc.index(lowerCamelCase_ ) + rotorposa lowercase__ = rotora[index % len(lowerCamelCase_ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase__ = reflector[symbol] # 2nd rotors lowercase__ = abc[rotora.index(lowerCamelCase_ ) - rotorposa] lowercase__ = abc[rotora.index(lowerCamelCase_ ) - rotorposa] lowercase__ = abc[rotora.index(lowerCamelCase_ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCamelCase_ ): lowercase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCamelCase_ ): lowercase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCamelCase_ ): lowercase__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCamelCase_ ) return "".join(lowerCamelCase_ ) if __name__ == "__main__": A__ : Tuple = 'This is my Python script that emulates the Enigma machine from WWII.' A__ : Dict = (1, 1, 1) A__ : Optional[int] = 'pictures' A__ : Dict = (rotora, rotora, rotora) A__ : Union[str, Any] = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
671
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[str] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
1
import logging import os import threading import time try: import warnings except ImportError: A__ : str = None try: import msvcrt except ImportError: A__ : Any = None try: import fcntl except ImportError: A__ : Dict = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: A__ : Any = OSError # Data # ------------------------------------------------ A__ : int = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] A__ : int = '3.0.12' A__ : List[str] = None def a ( ): '''simple docstring''' global _logger lowercase__ = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = lock_file return None def __str__( self : Dict ): '''simple docstring''' lowercase__ = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : int ): '''simple docstring''' lowercase__ = lock return None def __enter__( self : Tuple ): '''simple docstring''' return self.lock def __exit__( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : Dict, lowerCamelCase : str=-1, lowerCamelCase : str=None ): '''simple docstring''' lowercase__ = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowercase__ = self.hash_filename_if_too_long(lowerCamelCase, lowerCamelCase ) # The path to the lock file. lowercase__ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase__ = None # The default timeout value. lowercase__ = timeout # We use this lock primarily for the lock counter. lowercase__ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase__ = 0 return None @property def lowercase__ ( self : Any ): '''simple docstring''' return self._lock_file @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self._timeout @timeout.setter def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = float(lowerCamelCase ) return None def lowercase__ ( self : Tuple ): '''simple docstring''' raise NotImplementedError() def lowercase__ ( self : Tuple ): '''simple docstring''' raise NotImplementedError() @property def lowercase__ ( self : int ): '''simple docstring''' return self._lock_file_fd is not None def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : List[Any]=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: lowercase__ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase__ = id(self ) lowercase__ = self._lock_file lowercase__ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowerCamelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase__ = max(0, self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowercase__ ( self : Tuple, lowerCamelCase : Any=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase__ = id(self ) lowercase__ = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() lowercase__ = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Dict ): '''simple docstring''' self.acquire() return self def __exit__( self : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : List[Any], lowerCamelCase : str ): '''simple docstring''' self.release() return None def __del__( self : Tuple ): '''simple docstring''' self.release(force=lowerCamelCase ) return None def lowercase__ ( self : Tuple, lowerCamelCase : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = os.path.basename(lowerCamelCase ) if len(lowerCamelCase ) > max_length and max_length > 0: lowercase__ = os.path.dirname(lowerCamelCase ) lowercase__ = str(hash(lowerCamelCase ) ) lowercase__ = filename[: max_length - len(lowerCamelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase, lowerCamelCase ) else: return path class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any]=-1, lowerCamelCase : Any=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase, timeout=lowerCamelCase, max_filename_length=lowerCamelCase ) lowercase__ = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase__ = os.open(self._lock_file, lowerCamelCase ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase, msvcrt.LK_NBLCK, 1 ) except OSError: os.close(lowerCamelCase ) else: lowercase__ = fd return None def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self._lock_file_fd lowercase__ = None msvcrt.locking(lowerCamelCase, msvcrt.LK_UNLCK, 1 ) os.close(lowerCamelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : str=-1, lowerCamelCase : Optional[Any]=None ): '''simple docstring''' lowercase__ = os.statvfs(os.path.dirname(lowerCamelCase ) ).f_namemax super().__init__(lowerCamelCase, timeout=lowerCamelCase, max_filename_length=lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase__ = os.open(self._lock_file, lowerCamelCase ) try: fcntl.flock(lowerCamelCase, fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase ) else: lowercase__ = fd return None def lowercase__ ( self : int ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowercase__ = self._lock_file_fd lowercase__ = None fcntl.flock(lowerCamelCase, fcntl.LOCK_UN ) os.close(lowerCamelCase ) return None class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase__ = os.open(self._lock_file, lowerCamelCase ) except OSError: pass else: lowercase__ = fd return None def lowercase__ ( self : List[Any] ): '''simple docstring''' os.close(self._lock_file_fd ) lowercase__ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None A__ : str = None if msvcrt: A__ : Union[str, Any] = WindowsFileLock elif fcntl: A__ : List[Any] = UnixFileLock else: A__ : Dict = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Optional[int] = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any], lowerCamelCase : Path, lowerCamelCase : Union[str, None] = None, lowerCamelCase : Union[List[str], None] = None, lowerCamelCase : Union[str, List[str], None] = None, lowerCamelCase : bool = True, ): '''simple docstring''' lowercase__ = [file for file in os.listdir(lowerCamelCase ) if os.path.isfile(os.path.join(lowerCamelCase, lowerCamelCase ) )] if identifier is not None: lowercase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase, lowerCamelCase ): for n_ in n_identifier: lowercase__ = [file for file in files if n_ not in file] else: lowercase__ = [file for file in files if n_identifier not in file] lowercase__ = ignore_files or [] ignore_files.append('''__init__.py''' ) lowercase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''', lowerCamelCase ) if only_modules: lowercase__ = file.split('''.''' )[0] try: lowercase__ = getattr(lowerCamelCase, lowerCamelCase ) lowercase__ = doctest.DocTestSuite(lowerCamelCase ) lowercase__ = unittest.TextTestRunner().run(lowerCamelCase ) self.assertIs(len(result.failures ), 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: lowercase__ = doctest.testfile(str('''..''' / directory / file ), optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed, 0 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = Path('''src/transformers''' ) lowercase__ = '''modeling''' lowercase__ = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(lowerCamelCase, identifier=lowerCamelCase, ignore_files=lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = Path('''src/transformers''' ) lowercase__ = '''tokenization''' self.analyze_directory(lowerCamelCase, identifier=lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = Path('''src/transformers''' ) lowercase__ = '''configuration''' self.analyze_directory(lowerCamelCase, identifier=lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = Path('''src/transformers''' ) lowercase__ = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(lowerCamelCase, n_identifier=lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = Path('''docs/source''' ) lowercase__ = ['''favicon.ico'''] self.analyze_directory(lowerCamelCase, ignore_files=lowerCamelCase, only_modules=lowerCamelCase )
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
1
from datetime import datetime as dt import os from github import Github A__ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def a ( ): '''simple docstring''' lowercase__ = Github(os.environ['''GITHUB_TOKEN'''] ) lowercase__ = g.get_repo('''huggingface/transformers''' ) lowercase__ = repo.get_issues(state='''open''' ) for issue in open_issues: lowercase__ = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) lowercase__ = comments[0] if len(lowerCamelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
671
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
1
from collections.abc import Callable import numpy as np def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(np.ceil((x_end - xa) / step_size ) ) lowercase__ = np.zeros((n + 1,) ) lowercase__ = ya lowercase__ = xa for k in range(lowerCamelCase_ ): lowercase__ = y[k] + step_size * ode_func(lowerCamelCase_ , y[k] ) lowercase__ = y[k] + ( (step_size / 2) * (ode_func(lowerCamelCase_ , y[k] ) + ode_func(x + step_size , lowerCamelCase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
671
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
1
def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
671
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Dict=13, lowerCamelCase : Dict=64, lowerCamelCase : Any=3, lowerCamelCase : List[Any]=[16, 48, 96], lowerCamelCase : List[Any]=[1, 3, 6], lowerCamelCase : List[str]=[1, 2, 10], lowerCamelCase : Optional[Any]=[7, 3, 3], lowerCamelCase : Tuple=[4, 2, 2], lowerCamelCase : Union[str, Any]=[2, 1, 1], lowerCamelCase : Tuple=[2, 2, 2], lowerCamelCase : Optional[int]=[False, False, True], lowerCamelCase : Optional[int]=[0.0, 0.0, 0.0], lowerCamelCase : Tuple=0.02, lowerCamelCase : Any=1E-12, lowerCamelCase : int=True, lowerCamelCase : str=True, lowerCamelCase : List[str]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = stride_kv lowercase__ = depth lowercase__ = cls_token lowercase__ = attention_drop_rate lowercase__ = initializer_range lowercase__ = layer_norm_eps def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: # create a random int32 tensor of given shape lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ): '''simple docstring''' return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = TFCvtModel(config=lowerCamelCase ) lowercase__ = model(lowerCamelCase, training=lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFCvtForImageClassification(lowerCamelCase ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase, training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = TFCvtModelTester(self ) lowercase__ = TFCvtConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def lowercase__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) def lowercase__ ( self : List[Any] ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(lowerCamelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): lowercase__ = model_class(lowerCamelCase ) lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Any ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFCvtModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''tf''' ) # forward pass lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), lowerCamelCase, atol=1E-4 ) )
671
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowerCamelCase ) for k, v in self.__dict__.items()} )
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
1
def a ( lowerCamelCase_ ): '''simple docstring''' try: lowercase__ = float(lowerCamelCase_ ) except ValueError: raise ValueError('''Please enter a valid number''' ) lowercase__ = decimal - int(lowerCamelCase_ ) if fractional_part == 0: return int(lowerCamelCase_ ), 1 else: lowercase__ = len(str(lowerCamelCase_ ).split('''.''' )[1] ) lowercase__ = int(decimal * (10**number_of_frac_digits) ) lowercase__ = 10**number_of_frac_digits lowercase__ , lowercase__ = denominator, numerator while True: lowercase__ = dividend % divisor if remainder == 0: break lowercase__ , lowercase__ = divisor, remainder lowercase__ , lowercase__ = numerator / divisor, denominator / divisor return int(lowerCamelCase_ ), int(lowerCamelCase_ ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowercase__ = """CIDAS/clipseg-rd64-refined""" lowercase__ = """image_segmenter""" lowercase__ = CLIPSegForImageSegmentation lowercase__ = ["""image""", """text"""] lowercase__ = ["""image"""] def __init__( self : Optional[Any], *lowerCamelCase : Tuple, **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(self, ['''vision'''] ) super().__init__(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Optional[Any], lowerCamelCase : "Image", lowerCamelCase : str ): '''simple docstring''' return self.pre_processor(text=[label], images=[image], padding=lowerCamelCase, return_tensors='''pt''' ) def lowercase__ ( self : Any, lowerCamelCase : Optional[int] ): '''simple docstring''' with torch.no_grad(): lowercase__ = self.model(**lowerCamelCase ).logits return logits def lowercase__ ( self : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = outputs.cpu().detach().numpy() lowercase__ = 0 lowercase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
671
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict, lowerCamelCase : str, lowerCamelCase : List[Any]=13, lowerCamelCase : List[str]=7, lowerCamelCase : Optional[Any]=True, lowerCamelCase : str=True, lowerCamelCase : List[str]=True, lowerCamelCase : Dict=True, lowerCamelCase : Tuple=99, lowerCamelCase : Optional[int]=32, lowerCamelCase : Any=5, lowerCamelCase : Dict=4, lowerCamelCase : str=37, lowerCamelCase : int="gelu", lowerCamelCase : List[Any]=0.1, lowerCamelCase : List[str]=0.1, lowerCamelCase : Tuple=512, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : List[str]=2, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : Dict=3, lowerCamelCase : Dict=4, lowerCamelCase : Dict=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Any ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) def lowercase__ ( self : Dict, lowerCamelCase : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : Any, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = NystromformerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase ) lowercase__ = model(lowerCamelCase, token_type_ids=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : str, lowerCamelCase : Dict, lowerCamelCase : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = NystromformerForMaskedLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Dict, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = NystromformerForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = NystromformerForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = NystromformerForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Tuple, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Tuple, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = NystromformerForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = NystromformerModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = NystromformerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) lowercase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowercase__ = model(lowerCamelCase )[0] lowercase__ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''the [MASK] of Belgium is Brussels''' lowercase__ = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) lowercase__ = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) lowercase__ = tokenizer(lowerCamelCase, return_tensors='''pt''' ) with torch.no_grad(): lowercase__ = model(encoding.input_ids ).logits lowercase__ = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(lowerCamelCase ), '''capital''' )
671
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
1
def a ( ): '''simple docstring''' return 1 def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCamelCase_ ) def a ( lowerCamelCase_ = 200 ): '''simple docstring''' return two_pound(lowerCamelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
671
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
1
def a ( lowerCamelCase_ ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowercase__ = False if num < 0: lowercase__ = True lowercase__ = -num lowercase__ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(lowerCamelCase_ ) for e in binary ) return "0b" + "".join(str(lowerCamelCase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
671
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def a ( lowerCamelCase_ ): '''simple docstring''' return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def a ( ): '''simple docstring''' lowercase__ = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=lowerCamelCase_ ) lowercase__ = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) TestCommand.register_subcommand(lowerCamelCase_ ) RunBeamCommand.register_subcommand(lowerCamelCase_ ) DummyDataCommand.register_subcommand(lowerCamelCase_ ) # Parse args lowercase__ , lowercase__ = parser.parse_known_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) lowercase__ = parse_unknown_args(lowerCamelCase_ ) # Run lowercase__ = args.func(lowerCamelCase_ , **lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
671
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
1
def a ( lowerCamelCase_ ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(lowerCamelCase_ ) ) lowercase__ = [list(lowerCamelCase_ ) for char in range(len(lowerCamelCase_ ) )] for index in range(len(lowerCamelCase_ ) ): num_transpositions[index].pop(lowerCamelCase_ ) return max( int(''''''.join(list(lowerCamelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
671
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
1
from __future__ import annotations def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(lowerCamelCase_ ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
671
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Any = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A__ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') A__ : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) A__ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , '''rb''' ) as f: lowercase__ = Image.open(lowerCamelCase_ ) return im.convert('''RGB''' ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default=A__ ,metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """A folder containing the training data."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """A folder containing the validation data."""} ) lowercase__ = field( default=0.15 ,metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase__ = field( default=A__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) def lowercase__ ( self : Any ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default="""google/vit-base-patch16-224-in21k""" ,metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(A__ )} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase__ = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) lowercase__ = field(default=A__ ,metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase__ = field( default=A__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} ,) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def a ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowerCamelCase_ , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase__ = {} if data_args.train_dir is not None: lowercase__ = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: lowercase__ = os.path.join(data_args.validation_dir , '''**''' ) lowercase__ = load_dataset( '''imagefolder''' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase_ ) and data_args.train_val_split > 0.0: lowercase__ = dataset['''train'''].train_test_split(data_args.train_val_split ) lowercase__ = split['''train'''] lowercase__ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase__ = dataset['''train'''].features['''labels'''].names lowercase__ , lowercase__ = {}, {} for i, label in enumerate(lowerCamelCase_ ): lowercase__ = str(lowerCamelCase_ ) lowercase__ = label # Load the accuracy metric from the datasets package lowercase__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel=lowerCamelCase_ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase__ = image_processor.size['''shortest_edge'''] else: lowercase__ = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase__ = Compose( [ RandomResizedCrop(lowerCamelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase__ = Compose( [ Resize(lowerCamelCase_ ), CenterCrop(lowerCamelCase_ ), ToTensor(), normalize, ] ) def train_transforms(lowerCamelCase_ ): lowercase__ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowerCamelCase_ ): lowercase__ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCamelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCamelCase_ ) # Initalize our trainer lowercase__ = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCamelCase_ ) trainer.save_metrics('''eval''' , lowerCamelCase_ ) # Write model card and (optionally) push to hub lowercase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) if __name__ == "__main__": main()
671
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = (DPMSolverSinglestepScheduler,) lowercase__ = (("""num_inference_steps""", 25),) def lowercase__ ( self : List[Any], **lowerCamelCase : str ): '''simple docstring''' lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**lowerCamelCase ) return config def lowercase__ ( self : str, lowerCamelCase : str=0, **lowerCamelCase : int ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ , lowercase__ = sample, sample for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1 ): lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int]=0, **lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str]=None, **lowerCamelCase : Optional[Any] ): '''simple docstring''' if scheduler is None: lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample return sample def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase__ = 50 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def lowercase__ ( self : Tuple ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase__ = self.full_loop(scheduler=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 lowercase__ = DEISMultistepScheduler.from_config(scheduler.config ) lowercase__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase__ = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase__ = self.full_loop(scheduler=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, algorithm_type='''dpmsolver++''', solver_order=lowerCamelCase, solver_type=lowerCamelCase, ) def lowercase__ ( self : Dict ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) lowercase__ = self.full_loop( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) assert not torch.isnan(lowerCamelCase ).any(), "Samples have nan numbers" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase ) self.check_over_configs(lower_order_final=lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowercase__ ( self : Any ): '''simple docstring''' self.check_over_configs(variance_type=lowerCamelCase ) self.check_over_configs(variance_type='''learned_range''' ) def lowercase__ ( self : Dict ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.full_loop(use_karras_sigmas=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.full_loop(prediction_type='''v_prediction''' ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.full_loop(prediction_type='''v_prediction''', use_karras_sigmas=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0 ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
671
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : List[str] = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = ['DeiTFeatureExtractor'] A__ : str = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
1
import math def a ( lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 ): '''simple docstring''' lowercase__ = end or len(lowerCamelCase_ ) for i in range(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = i lowercase__ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowercase__ = array[temp_index - 1] temp_index -= 1 lowercase__ = temp_index_value return array def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): # Max Heap '''simple docstring''' lowercase__ = index lowercase__ = 2 * index + 1 # Left Node lowercase__ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowercase__ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowercase__ = right_index if largest != index: lowercase__ , lowercase__ = array[largest], array[index] heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = len(lowerCamelCase_ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for i in range(n - 1 , 0 , -1 ): lowercase__ , lowercase__ = array[0], array[i] heapify(lowerCamelCase_ , 0 , lowerCamelCase_ ) return array def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = low lowercase__ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowercase__ , lowercase__ = array[j], array[i] i += 1 def a ( lowerCamelCase_ ): '''simple docstring''' if len(lowerCamelCase_ ) == 0: return array lowercase__ = 2 * math.ceil(math.loga(len(lowerCamelCase_ ) ) ) lowercase__ = 16 return intro_sort(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase_ ) max_depth -= 1 lowercase__ = median_of_a(lowerCamelCase_ , lowerCamelCase_ , start + ((end - start) // 2) + 1 , end - 1 ) lowercase__ = partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) intro_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = p return insertion_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() A__ : Tuple = input('Enter numbers separated by a comma : ').strip() A__ : Union[str, Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
1
from jiwer import compute_measures import datasets A__ : Tuple = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' A__ : List[str] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' A__ : Any = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/jitsi/jiwer/'''], reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ], ) def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str]=None, lowerCamelCase : List[Any]=None, lowerCamelCase : Optional[Any]=False ): '''simple docstring''' if concatenate_texts: return compute_measures(lowerCamelCase, lowerCamelCase )["wer"] else: lowercase__ = 0 lowercase__ = 0 for prediction, reference in zip(lowerCamelCase, lowerCamelCase ): lowercase__ = compute_measures(lowerCamelCase, lowerCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : Optional[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer A__ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Union[str, Any] = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } A__ : int = { 'unc-nlp/lxmert-base-uncased': 5_12, } A__ : List[Any] = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LxmertTokenizer def __init__( self : str, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Tuple=None, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : int="[UNK]", lowerCamelCase : Optional[int]="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Dict="[CLS]", lowerCamelCase : List[str]="[MASK]", lowerCamelCase : Union[str, Any]=True, lowerCamelCase : List[Any]=None, **lowerCamelCase : List[Any], ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : int, lowerCamelCase : Optional[Any], lowerCamelCase : Any=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : int, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = XCLIPTextConfig() # derive patch size from model name lowercase__ = model_name.find('''patch''' ) lowercase__ = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) lowercase__ = XCLIPVisionConfig(patch_size=lowerCamelCase_ , num_frames=lowerCamelCase_ ) if "large" in model_name: lowercase__ = 768 lowercase__ = 3072 lowercase__ = 12 lowercase__ = 1024 lowercase__ = 4096 lowercase__ = 16 lowercase__ = 24 lowercase__ = 768 lowercase__ = 3072 if model_name == "xclip-large-patch14-16-frames": lowercase__ = 336 lowercase__ = XCLIPConfig.from_text_vision_configs(lowerCamelCase_ , lowerCamelCase_ ) if "large" in model_name: lowercase__ = 768 return config def a ( lowerCamelCase_ ): '''simple docstring''' # text encoder if name == "token_embedding.weight": lowercase__ = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": lowercase__ = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: lowercase__ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: lowercase__ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: lowercase__ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: lowercase__ = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): lowercase__ = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: lowercase__ = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: lowercase__ = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": lowercase__ = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": lowercase__ = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): lowercase__ = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: lowercase__ = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: lowercase__ = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: lowercase__ = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: lowercase__ = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: lowercase__ = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: lowercase__ = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: lowercase__ = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": lowercase__ = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): lowercase__ = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): lowercase__ = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(lowerCamelCase_ ) if "attn.in_proj" in key: lowercase__ = key.split('''.''' ) if key.startswith('''visual''' ): lowercase__ = key_split[3] lowercase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowercase__ = val[ :dim, : ] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[ -dim:, : ] else: lowercase__ = val[ :dim ] lowercase__ = val[ dim : dim * 2 ] lowercase__ = val[ -dim: ] else: if "weight" in key: lowercase__ = val[ :dim, : ] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[ -dim:, : ] else: lowercase__ = val[:dim] lowercase__ = val[ dim : dim * 2 ] lowercase__ = val[-dim:] elif key.startswith('''mit''' ): lowercase__ = key_split[2] lowercase__ = config.vision_config.mit_hidden_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] else: lowercase__ = key_split[2] lowercase__ = config.text_config.hidden_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[ dim : dim * 2 ] lowercase__ = val[-dim:] else: lowercase__ = rename_key(lowerCamelCase_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowercase__ = val.T lowercase__ = val return orig_state_dict def a ( lowerCamelCase_ ): '''simple docstring''' if num_frames == 8: lowercase__ = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: lowercase__ = '''eating_spaghetti.npy''' elif num_frames == 32: lowercase__ = '''eating_spaghetti_32_frames.npy''' lowercase__ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=lowerCamelCase_ , repo_type='''dataset''' , ) lowercase__ = np.load(lowerCamelCase_ ) return list(lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False ): '''simple docstring''' lowercase__ = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } lowercase__ = model_to_url[model_name] lowercase__ = 8 if "16-frames" in model_name: lowercase__ = 16 elif "shot" in model_name: lowercase__ = 32 lowercase__ = get_xclip_config(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = XCLIPModel(lowerCamelCase_ ) model.eval() if "drive" in checkpoint_url: lowercase__ = '''pytorch_model.bin''' gdown.cached_download(lowerCamelCase_ , lowerCamelCase_ , quiet=lowerCamelCase_ ) lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] else: lowercase__ = torch.hub.load_state_dict_from_url(lowerCamelCase_ )['''model'''] lowercase__ = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = XCLIPModel(lowerCamelCase_ ) lowercase__ , lowercase__ = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowercase__ = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 lowercase__ = VideoMAEImageProcessor(size=lowerCamelCase_ ) lowercase__ = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) lowercase__ = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) lowercase__ = XCLIPProcessor(image_processor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) lowercase__ = prepare_video(lowerCamelCase_ ) lowercase__ = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): lowercase__ = model(**lowerCamelCase_ ) # Verify outputs lowercase__ = outputs.logits_per_video lowercase__ = logits_per_video.softmax(dim=1 ) print('''Probs:''' , lowerCamelCase_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowercase__ = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": lowercase__ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowercase__ = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": lowercase__ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowercase__ = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": lowercase__ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowercase__ = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowercase__ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowercase__ = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowercase__ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowercase__ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowercase__ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowercase__ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowercase__ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowercase__ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowercase__ = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowercase__ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowercase__ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase_ ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(lowerCamelCase_ , organization='''nielsr''' ) processor.push_to_hub(lowerCamelCase_ , organization='''nielsr''' ) slow_tokenizer.push_to_hub(lowerCamelCase_ , organization='''nielsr''' ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : Optional[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
671
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
1