code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
671
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A__ : Any = logging.get_logger(__name__) A__ : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : List[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Optional[int] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Optional[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : str = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } A__ : List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } A__ : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } A__ : int = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A__ : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A__ : int = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ : List[Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A__ : int = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A__ : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(A__ ) class _UpperCAmelCase : """simple docstring""" def __call__( self : int, lowerCamelCase : Tuple, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Union[bool, str] = False, lowerCamelCase : Union[bool, str] = False, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : Optional[bool] = None, **lowerCamelCase : List[str], ): '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = titles if not isinstance(lowerCamelCase, lowerCamelCase ) else [titles] lowercase__ = texts if not isinstance(lowerCamelCase, lowerCamelCase ) else [texts] lowercase__ = len(lowerCamelCase ) lowercase__ = questions if not isinstance(lowerCamelCase, lowerCamelCase ) else [questions] * n_passages if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( F"""There should be as many titles than texts but got {len(lowerCamelCase )} titles and {len(lowerCamelCase )} texts.""" ) lowercase__ = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase )['''input_ids'''] lowercase__ = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase )['''input_ids'''] lowercase__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase ) def lowercase__ ( self : Tuple, lowerCamelCase : BatchEncoding, lowerCamelCase : DPRReaderOutput, lowerCamelCase : int = 16, lowerCamelCase : int = 64, lowerCamelCase : int = 4, ): '''simple docstring''' lowercase__ = reader_input['''input_ids'''] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(lowerCamelCase ) lowercase__ = sorted(range(lowerCamelCase ), reverse=lowerCamelCase, key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(lowerCamelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : List[int], lowerCamelCase : int, lowerCamelCase : int, ): '''simple docstring''' lowercase__ = [] for start_index, start_score in enumerate(lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(lowerCamelCase, key=lambda lowerCamelCase : x[1], reverse=lowerCamelCase ) lowercase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) lowercase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = READER_PRETRAINED_INIT_CONFIGURATION lowercase__ = ["""input_ids""", """attention_mask"""]
671
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) A__ : Optional[int] = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) lowercase__ = field(default=A__ ,metadata={"""help""": """Whether tp freeze the encoder."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowercase__ = field( default="""summarization""" ,metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} ,) lowercase__ = field( default=1_024 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=128 ,metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=142 ,metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } ,) lowercase__ = field( default=142 ,metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field(default=-1 ,metadata={"""help""": """# training examples. -1 means use all."""} ) lowercase__ = field(default=-1 ,metadata={"""help""": """# validation examples. -1 means use all."""} ) lowercase__ = field(default=-1 ,metadata={"""help""": """# test examples. -1 means use all."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """Source language id for translation."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """Target language id for translation."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """# num_beams to use for evaluation."""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} ,) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , F"""{split}_results.json""" ) ) def a ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() check_output_dir(lowerCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): assert hasattr(lowerCamelCase_ , lowerCamelCase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase__ = SeqaSeqDataset # Get datasets lowercase__ = ( dataset_class( lowerCamelCase_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase__ = ( dataset_class( lowerCamelCase_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase__ = ( dataset_class( lowerCamelCase_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase__ = ( build_compute_metrics_fn(data_args.task , lowerCamelCase_ ) if training_args.predict_with_generate else None ) lowercase__ = SeqaSeqTrainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , data_collator=SeqaSeqDataCollator( lowerCamelCase_ , lowerCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , ) lowercase__ = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase__ = train_result.metrics lowercase__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , lowerCamelCase_ , training_args.output_dir ) all_metrics.update(lowerCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate(metric_key_prefix='''val''' ) lowercase__ = data_args.n_val lowercase__ = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , lowerCamelCase_ , training_args.output_dir ) all_metrics.update(lowerCamelCase_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase__ = trainer.predict(test_dataset=lowerCamelCase_ , metric_key_prefix='''test''' ) lowercase__ = test_output.metrics lowercase__ = data_args.n_test if trainer.is_world_process_zero(): lowercase__ = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , lowerCamelCase_ , training_args.output_dir ) all_metrics.update(lowerCamelCase_ ) if training_args.predict_with_generate: lowercase__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) lowercase__ = lmap(str.strip , lowerCamelCase_ ) write_txt_file(lowerCamelCase_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(lowerCamelCase_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def a ( lowerCamelCase_ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
671
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BridgeTowerImageProcessor""" lowercase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : List[str], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(lowerCamelCase, lowerCamelCase ) def __call__( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : str, ): '''simple docstring''' lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) # add pixel_values + pixel_mask lowercase__ = self.image_processor( lowerCamelCase, return_tensors=lowerCamelCase, do_normalize=lowerCamelCase, do_center_crop=lowerCamelCase, **lowerCamelCase ) encoding.update(lowerCamelCase ) return encoding def lowercase__ ( self : str, *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[Any], *lowerCamelCase : Optional[int], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
671
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
1
from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Any, *lowerCamelCase : Optional[Any], **lowerCamelCase : int ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : Union[str, Any], *lowerCamelCase : Any, **lowerCamelCase : int ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : Optional[int], *lowerCamelCase : Optional[Any], **lowerCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : List[str], *lowerCamelCase : List[Any], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : Any, *lowerCamelCase : str, **lowerCamelCase : int ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : Optional[Any], *lowerCamelCase : List[Any], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Union[str, Any], *lowerCamelCase : Tuple, **lowerCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : int, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : str, *lowerCamelCase : int, **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : List[str], *lowerCamelCase : Optional[int], **lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : Optional[Any], *lowerCamelCase : Dict, **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : List[Any], *lowerCamelCase : Dict, **lowerCamelCase : int ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Tuple, *lowerCamelCase : List[str], **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : Any, *lowerCamelCase : Tuple, **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : Union[str, Any], *lowerCamelCase : Tuple, **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : int, *lowerCamelCase : int, **lowerCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : List[str], *lowerCamelCase : List[Any], **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : int, *lowerCamelCase : Any, **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Any, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Tuple ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : str, *lowerCamelCase : Dict, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : int, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Any ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Union[str, Any], *lowerCamelCase : Optional[Any], **lowerCamelCase : str ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : List[str], *lowerCamelCase : Dict, **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : Tuple, *lowerCamelCase : List[str], **lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Optional[Any], *lowerCamelCase : Optional[int], **lowerCamelCase : int ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : Optional[int], *lowerCamelCase : str, **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : Dict, *lowerCamelCase : int, **lowerCamelCase : Any ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Dict, *lowerCamelCase : str, **lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : List[Any], *lowerCamelCase : List[Any], **lowerCamelCase : Tuple ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : Tuple, *lowerCamelCase : str, **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : int, *lowerCamelCase : Dict, **lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : int, *lowerCamelCase : Tuple, **lowerCamelCase : Tuple ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : int, *lowerCamelCase : Any, **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : Union[str, Any], *lowerCamelCase : Optional[int], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : Tuple, *lowerCamelCase : List[str], **lowerCamelCase : Tuple ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : str, *lowerCamelCase : Any, **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) class _UpperCAmelCase ( metaclass=A__ ): """simple docstring""" lowercase__ = ["""flax"""] def __init__( self : int, *lowerCamelCase : List[str], **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls : List[Any], *lowerCamelCase : Union[str, Any], **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls : List[str], *lowerCamelCase : List[Any], **lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls, ['''flax'''] )
671
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
1
def a ( lowerCamelCase_ ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) lowercase__ = sorted(string.lower() ) return len(lowerCamelCase_ ) == len(set(lowerCamelCase_ ) ) if __name__ == "__main__": A__ : int = input('Enter a string ').strip() A__ : Optional[Any] = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
1
from __future__ import annotations from scipy.special import comb # type: ignore class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : list[tuple[float, float]] ): '''simple docstring''' lowercase__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase__ = len(lowerCamelCase ) - 1 def lowercase__ ( self : Any, lowerCamelCase : float ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCamelCase ), 5 ) == 1 return output_values def lowercase__ ( self : str, lowerCamelCase : float ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase__ = self.basis_function(lowerCamelCase ) lowercase__ = 0.0 lowercase__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowercase__ ( self : List[Any], lowerCamelCase : float = 0.01 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore lowercase__ = [] # x coordinates of points to plot lowercase__ = [] # y coordinates of points to plot lowercase__ = 0.0 while t <= 1: lowercase__ = self.bezier_curve_function(lowerCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase__ = [i[0] for i in self.list_of_points] lowercase__ = [i[1] for i in self.list_of_points] plt.plot( lowerCamelCase, lowerCamelCase, color='''blue''', label='''Curve of Degree ''' + str(self.degree ), ) plt.scatter(lowerCamelCase, lowerCamelCase, color='''red''', label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process A__ : Tuple = logging.getLogger(__name__) A__ : Any = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) A__ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default=A__ ,metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(A__ )} ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} ,) lowercase__ = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) def lowercase__ ( self : Tuple ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default=A__ ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowercase__ = field( default=5 ,metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,) lowercase__ = field( default=0.15 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowercase__ = field( default=A__ ,metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } ,) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' if self.train_file is not None: lowercase__ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase__ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = [json.loads(lowerCamelCase_ ) for line in f.read().splitlines() if (len(lowerCamelCase_ ) > 0 and not line.isspace())] assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) lowercase__ = {c: dataset[c] for c in dataset.column_names} lowercase__ = refs return Dataset.from_dict(lowerCamelCase_ ) def a ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: lowercase__ = {} if data_args.train_file is not None: lowercase__ = data_args.train_file if data_args.validation_file is not None: lowercase__ = data_args.validation_file lowercase__ = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowercase__ = '''text''' lowercase__ = load_dataset(lowerCamelCase_ , data_files=lowerCamelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ = AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase_ ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) lowercase__ = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase_ ) elif model_args.model_name_or_path: lowercase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ = AutoModelForMaskedLM.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase__ = datasets['''train'''].column_names else: lowercase__ = datasets['''validation'''].column_names lowercase__ = '''text''' if '''text''' in column_names else column_names[0] lowercase__ = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase_ ): # Remove empty lines lowercase__ = [line for line in examples['''text'''] if len(lowerCamelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=data_args.max_seq_length ) lowercase__ = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase__ = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase__ = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase__ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase__ = False # Data collator # This one will take care of randomly masking the tokens. lowercase__ = DataCollatorForWholeWordMask(tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase__ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase__ = model_args.model_name_or_path else: lowercase__ = None lowercase__ = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase__ = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate() lowercase__ = math.exp(eval_output['''eval_loss'''] ) lowercase__ = perplexity lowercase__ = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a ( lowerCamelCase_ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A__ : List[Any] = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A__ : Dict = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A__ : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A__ : int = sorted(arg_to_scheduler.keys()) A__ : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class _UpperCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : int, lowerCamelCase : argparse.Namespace, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Union[str, Any]="base", lowerCamelCase : List[str]=None, lowerCamelCase : Any=None, lowerCamelCase : str=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCamelCase ) lowercase__ = 0 lowercase__ = Path(self.hparams.output_dir ) lowercase__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowercase__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({'''num_labels''': num_labels} if num_labels is not None else {}), cache_dir=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = config lowercase__ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams, lowerCamelCase, lowerCamelCase ): assert hasattr(self.config, lowerCamelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config, lowerCamelCase, getattr(self.hparams, lowerCamelCase ) ) if tokenizer is None: lowercase__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=lowerCamelCase, ) else: lowercase__ = tokenizer lowercase__ = MODEL_MODES[mode] if model is None: lowercase__ = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ), config=self.config, cache_dir=lowerCamelCase, ) else: lowercase__ = model def lowercase__ ( self : Dict, *lowerCamelCase : List[str], **lowerCamelCase : Any ): '''simple docstring''' lowercase__ = self.model_type.from_pretrained(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = arg_to_scheduler[self.hparams.lr_scheduler] lowercase__ = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) lowercase__ = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model lowercase__ = ['''bias''', '''LayerNorm.weight'''] lowercase__ = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: lowercase__ = Adafactor( lowerCamelCase, lr=self.hparams.learning_rate, scale_parameter=lowerCamelCase, relative_step=lowerCamelCase ) else: lowercase__ = AdamW( lowerCamelCase, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) lowercase__ = optimizer lowercase__ = self.get_lr_scheduler() return [optimizer], [scheduler] def lowercase__ ( self : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' return self.validation_step(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' return self.validation_end(lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = max(1, self.hparams.gpus ) # TODO: consider num_tpu_cores lowercase__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowercase__ ( self : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if stage == "test": lowercase__ = len(self.test_dataloader().dataset ) else: lowercase__ = self.get_dataloader('''train''', self.hparams.train_batch_size, shuffle=lowerCamelCase ) lowercase__ = len(self.train_dataloader().dataset ) def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' return self.train_loader def lowercase__ ( self : Optional[int] ): '''simple docstring''' return self.get_dataloader('''dev''', self.hparams.eval_batch_size, shuffle=lowerCamelCase ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' return self.get_dataloader('''test''', self.hparams.eval_batch_size, shuffle=lowerCamelCase ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' return os.path.join( self.hparams.data_dir, '''cached_{}_{}_{}'''.format( lowerCamelCase, list(filter(lowerCamelCase, self.hparams.model_name_or_path.split('''/''' ) ) ).pop(), str(self.hparams.max_seq_length ), ), ) @pl.utilities.rank_zero_only def lowercase__ ( self : Dict, lowerCamelCase : Dict[str, Any] ): '''simple docstring''' lowercase__ = self.output_dir.joinpath('''best_tfmr''' ) lowercase__ = self.step_count self.model.save_pretrained(lowerCamelCase ) self.tokenizer.save_pretrained(lowerCamelCase ) @staticmethod def lowercase__ ( lowerCamelCase : Tuple, lowerCamelCase : List[Any] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''', default=lowerCamelCase, type=lowerCamelCase, required=lowerCamelCase, help='''Path to pretrained model or model identifier from huggingface.co/models''', ) parser.add_argument( '''--config_name''', default='''''', type=lowerCamelCase, help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''', default=lowerCamelCase, type=lowerCamelCase, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--cache_dir''', default=str(Path(lowerCamelCase ).parent / '''test_run''' / '''cache''' ), type=lowerCamelCase, help='''Where do you want to store the pre-trained models downloaded from huggingface.co''', ) parser.add_argument( '''--encoder_layerdrop''', type=lowerCamelCase, help='''Encoder layer dropout probability (Optional). Goes into model.config''', ) parser.add_argument( '''--decoder_layerdrop''', type=lowerCamelCase, help='''Decoder layer dropout probability (Optional). Goes into model.config''', ) parser.add_argument( '''--dropout''', type=lowerCamelCase, help='''Dropout probability (Optional). Goes into model.config''', ) parser.add_argument( '''--attention_dropout''', type=lowerCamelCase, help='''Attention dropout probability (Optional). Goes into model.config''', ) parser.add_argument('''--learning_rate''', default=5E-5, type=lowerCamelCase, help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''', default='''linear''', choices=lowerCamelCase, metavar=lowerCamelCase, type=lowerCamelCase, help='''Learning rate scheduler''', ) parser.add_argument('''--weight_decay''', default=0.0, type=lowerCamelCase, help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''', default=1E-8, type=lowerCamelCase, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''', default=0, type=lowerCamelCase, help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''', default=4, type=lowerCamelCase, help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''', dest='''max_epochs''', default=3, type=lowerCamelCase ) parser.add_argument('''--train_batch_size''', default=32, type=lowerCamelCase ) parser.add_argument('''--eval_batch_size''', default=32, type=lowerCamelCase ) parser.add_argument('''--adafactor''', action='''store_true''' ) class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Tuple ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowercase__ ( self : str, lowerCamelCase : List[str], lowerCamelCase : List[str] ): '''simple docstring''' # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCamelCase ) class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = trainer.lr_schedulers[0]['''scheduler'''] lowercase__ = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCamelCase ) def lowercase__ ( self : Optional[Any], lowerCamelCase : pl.Trainer, lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) lowercase__ = trainer.callback_metrics # Log results for key in sorted(lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowerCamelCase, str(metrics[key] ) ) ) def lowercase__ ( self : Any, lowerCamelCase : pl.Trainer, lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) lowercase__ = trainer.callback_metrics # Log and save results to file lowercase__ = os.path.join(pl_module.hparams.output_dir, '''test_results.txt''' ) with open(lowerCamelCase, '''w''' ) as writer: for key in sorted(lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowerCamelCase, str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowerCamelCase, str(metrics[key] ) ) ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(lowerCamelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCamelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCamelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCamelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCamelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCamelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCamelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCamelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCamelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=[] , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ): '''simple docstring''' pl.seed_everything(args.seed ) # init model lowercase__ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCamelCase_ ) # add custom checkpoints if checkpoint_callback is None: lowercase__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCamelCase_ ) if logging_callback is None: lowercase__ = LoggingCallback() lowercase__ = {} if args.fpaa: lowercase__ = 16 if args.gpus > 1: lowercase__ = '''auto''' lowercase__ = '''ddp''' lowercase__ = args.accumulate_grad_batches lowercase__ = None lowercase__ = '''auto''' lowercase__ = pl.Trainer.from_argparse_args( lowerCamelCase_ , weights_summary=lowerCamelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCamelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCamelCase_ , ) if args.do_train: trainer.fit(lowerCamelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
671
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict, lowerCamelCase : Dict, lowerCamelCase : Any=13, lowerCamelCase : Union[str, Any]=7, lowerCamelCase : Dict=True, lowerCamelCase : Dict=True, lowerCamelCase : int=True, lowerCamelCase : int=True, lowerCamelCase : Any=99, lowerCamelCase : Union[str, Any]=32, lowerCamelCase : Any=2, lowerCamelCase : Any=4, lowerCamelCase : Any=37, lowerCamelCase : Tuple="gelu", lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Optional[int]=512, lowerCamelCase : int=16, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : int=3, lowerCamelCase : Any=4, lowerCamelCase : str=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = '''gelu''' lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCamelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any], lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = TFRoFormerModel(config=lowerCamelCase ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = True lowercase__ = TFRoFormerForCausalLM(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ), [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : Tuple, lowerCamelCase : Any, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = TFRoFormerForMaskedLM(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFRoFormerForSequenceClassification(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFRoFormerForMultipleChoice(config=lowerCamelCase ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFRoFormerForTokenClassification(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = TFRoFormerForQuestionAnswering(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowercase__ = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def lowercase__ ( self : str, lowerCamelCase : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = TFRoFormerModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowerCamelCase ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(lowerCamelCase )[0] # TODO Replace vocab size lowercase__ = 50_000 lowercase__ = [1, 6, vocab_size] self.assertEqual(output.shape, lowerCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase__ = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = 1E-4 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = tf.constant([[4, 10]] ) lowercase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6 ) lowercase__ = emba(input_ids.shape ) lowercase__ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowerCamelCase, lowerCamelCase, atol=self.tolerance ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) lowercase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512 ) emba([2, 16, 512] ) lowercase__ = emba.weight[:3, :5] tf.debugging.assert_near(lowerCamelCase, lowerCamelCase, atol=self.tolerance ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = 1E-4 def lowercase__ ( self : Optional[int] ): '''simple docstring''' # 2,12,16,64 lowercase__ = tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.floataa ), shape=(2, 12, 16, 64) ) / 100 lowercase__ = -tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.floataa ), shape=(2, 12, 16, 64) ) / 100 lowercase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32, embedding_dim=64 ) lowercase__ = embed_positions([2, 16, 768] )[None, None, :, :] lowercase__ , lowercase__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) lowercase__ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8], lowerCamelCase, atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8], lowerCamelCase, atol=self.tolerance )
671
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A__ : Union[str, Any] = pytest.mark.integration @require_faiss class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def lowercase__ ( self : str ): '''simple docstring''' import faiss lowercase__ = self._create_dummy_dataset() lowercase__ = dset.map( lambda lowerCamelCase, lowerCamelCase : {"vecs": i * np.ones(5, dtype=np.floataa )}, with_indices=lowerCamelCase, keep_in_memory=lowerCamelCase ) lowercase__ = dset.add_faiss_index('''vecs''', batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs''', np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def lowercase__ ( self : str ): '''simple docstring''' import faiss lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''', batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT, ) lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs''', np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' import faiss lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''', metric_type=faiss.METRIC_INNER_PRODUCT, ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase ) as tmp_file: dset.save_faiss_index('''vecs''', tmp_file.name ) dset.load_faiss_index('''vecs2''', tmp_file.name ) os.unlink(tmp_file.name ) lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs2''', np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(lowerCamelCase, partial(dset.get_nearest_examples, '''vecs2''', np.ones(5, dtype=np.floataa ) ) ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' from elasticsearch import Elasticsearch lowercase__ = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowercase__ = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} lowercase__ = Elasticsearch() dset.add_elasticsearch_index('''filename''', es_client=lowerCamelCase ) lowercase__ , lowercase__ = dset.get_nearest_examples('''filename''', '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) @require_faiss class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal, 5 ) index.add_vectors(np.zeros((5, 5), dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal, 10 ) # single query lowercase__ = np.zeros(5, dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(lowerCamelCase ) self.assertRaises(lowerCamelCase, index.search, query.reshape(-1, 1 ) ) self.assertGreater(scores[0], 0 ) self.assertEqual(indices[0], 1 ) # batched queries lowercase__ = np.eye(5, dtype=np.floataa )[::-1] lowercase__ , lowercase__ = index.search_batch(lowerCamelCase ) self.assertRaises(lowerCamelCase, index.search_batch, queries[0] ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase ), 0 ) self.assertListEqual([4, 3, 2, 1, 0], lowerCamelCase ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' import faiss lowercase__ = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexFlat ) lowercase__ = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexLSH ) with self.assertRaises(lowerCamelCase ): lowercase__ = FaissIndex(string_factory='''Flat''', custom_index=faiss.IndexFlat(5 ) ) def lowercase__ ( self : Tuple ): '''simple docstring''' import faiss lowercase__ = faiss.IndexFlat(5 ) lowercase__ = FaissIndex(custom_index=lowerCamelCase ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexFlat ) def lowercase__ ( self : List[str] ): '''simple docstring''' import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) lowercase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowercase__ = np.zeros(5, dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(lowerCamelCase ) self.assertGreater(scores[0], 0 ) self.assertEqual(indices[0], 1 ) @require_faiss def a ( lowerCamelCase_ ): '''simple docstring''' import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowercase__ = '''index.faiss''' lowercase__ = F"""mock://{index_name}""" index.save(lowerCamelCase_ , storage_options=mockfs.storage_options ) lowercase__ = FaissIndex.load(lowerCamelCase_ , storage_options=mockfs.storage_options ) lowercase__ = np.zeros(5 , dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(lowerCamelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Dict ): '''simple docstring''' from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowercase__ = Elasticsearch() lowercase__ = {'''acknowledged''': True} lowercase__ = ElasticSearchIndex(es_client=lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query lowercase__ = '''foo''' lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase__ , lowercase__ = index.search(lowerCamelCase ) self.assertEqual(scores[0], 1 ) self.assertEqual(indices[0], 0 ) # single query with timeout lowercase__ = '''foo''' lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase__ , lowercase__ = index.search(lowerCamelCase, request_timeout=30 ) self.assertEqual(scores[0], 1 ) self.assertEqual(indices[0], 0 ) # batched queries lowercase__ = ['''foo''', '''bar''', '''foobar'''] lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase__ , lowercase__ = index.search_batch(lowerCamelCase ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase ), 0 ) self.assertListEqual([1, 1, 1], lowerCamelCase ) # batched queries with timeout lowercase__ = ['''foo''', '''bar''', '''foobar'''] lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase__ , lowercase__ = index.search_batch(lowerCamelCase, request_timeout=30 ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase ), 0 ) self.assertListEqual([1, 1, 1], lowerCamelCase )
671
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# A__ : List[str] = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] A__ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] A__ : List[Any] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks A__ : Union[str, Any] = F"down_blocks.{i}.resnets.{j}." A__ : str = F"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 A__ : Tuple = F"down_blocks.{i}.attentions.{j}." A__ : List[Any] = F"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks A__ : Dict = F"up_blocks.{i}.resnets.{j}." A__ : List[Any] = F"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 A__ : Optional[Any] = F"up_blocks.{i}.attentions.{j}." A__ : Union[str, Any] = F"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 A__ : Optional[Any] = F"down_blocks.{i}.downsamplers.0.conv." A__ : int = F"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 A__ : Dict = F"up_blocks.{i}.upsamplers.0." A__ : Any = F"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) A__ : str = 'mid_block.attentions.0.' A__ : List[str] = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): A__ : Optional[Any] = F"mid_block.resnets.{j}." A__ : str = F"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def a ( lowerCamelCase_ ): '''simple docstring''' # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. lowercase__ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ = v.replace(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ = v.replace(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = v lowercase__ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# A__ : Tuple = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): A__ : List[str] = F"encoder.down_blocks.{i}.resnets.{j}." A__ : Dict = F"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: A__ : int = F"down_blocks.{i}.downsamplers.0." A__ : Optional[int] = F"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) A__ : Any = F"up_blocks.{i}.upsamplers.0." A__ : List[str] = F"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): A__ : Union[str, Any] = F"decoder.up_blocks.{i}.resnets.{j}." A__ : int = F"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): A__ : List[str] = F"mid_block.resnets.{i}." A__ : List[Any] = F"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) A__ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def a ( lowerCamelCase_ ): '''simple docstring''' # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ = v.replace(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ = v.replace(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = v lowercase__ = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) lowercase__ = reshape_weight_for_sd(lowerCamelCase_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# A__ : Any = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] A__ : Optional[int] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} A__ : Dict = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp A__ : Union[str, Any] = {'q': 0, 'k': 1, 'v': 2} def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {} lowercase__ = {} lowercase__ = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): lowercase__ = k[: -len('''.q_proj.weight''' )] lowercase__ = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: lowercase__ = [None, None, None] lowercase__ = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): lowercase__ = k[: -len('''.q_proj.bias''' )] lowercase__ = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: lowercase__ = [None, None, None] lowercase__ = v continue lowercase__ = textenc_pattern.sub(lambda lowerCamelCase_ : protected[re.escape(m.group(0 ) )] , lowerCamelCase_ ) lowercase__ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase__ = textenc_pattern.sub(lambda lowerCamelCase_ : protected[re.escape(m.group(0 ) )] , lowerCamelCase_ ) lowercase__ = torch.cat(lowerCamelCase_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase__ = textenc_pattern.sub(lambda lowerCamelCase_ : protected[re.escape(m.group(0 ) )] , lowerCamelCase_ ) lowercase__ = torch.cat(lowerCamelCase_ ) return new_state_dict def a ( lowerCamelCase_ ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) A__ : Union[str, Any] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors A__ : Any = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') A__ : Optional[int] = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') A__ : str = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): A__ : str = load_file(unet_path, device='cpu') else: A__ : Optional[Any] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') A__ : List[Any] = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): A__ : Optional[Any] = load_file(vae_path, device='cpu') else: A__ : Union[str, Any] = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') A__ : Dict = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): A__ : Any = load_file(text_enc_path, device='cpu') else: A__ : str = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') A__ : List[str] = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model A__ : Optional[Any] = convert_unet_state_dict(unet_state_dict) A__ : Optional[Any] = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model A__ : str = convert_vae_state_dict(vae_state_dict) A__ : Tuple = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper A__ : str = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm A__ : Optional[int] = {'transformer.' + k: v for k, v in text_enc_dict.items()} A__ : Any = convert_text_enc_state_dict_vaa(text_enc_dict) A__ : Tuple = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: A__ : Optional[Any] = convert_text_enc_state_dict(text_enc_dict) A__ : Optional[Any] = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint A__ : int = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: A__ : Optional[int] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: A__ : List[Any] = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
671
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient A__ : str = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = test_results.split(''' ''' ) lowercase__ = 0 lowercase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowercase__ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {} lowercase__ = None lowercase__ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): lowercase__ = True lowercase__ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): lowercase__ = line lowercase__ = False return failures class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : str, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = title lowercase__ = doc_test_results['''time_spent'''].split(''',''' )[0] lowercase__ = doc_test_results['''success'''] lowercase__ = doc_test_results['''failures'''] lowercase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowercase__ = doc_test_results @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = [self._time_spent] lowercase__ = 0 for time in time_spent: lowercase__ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCamelCase ) == 1: lowercase__ = [0, 0, time_parts[0]] lowercase__ , lowercase__ , lowercase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds lowercase__ , lowercase__ , lowercase__ = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return F"""{int(lowerCamelCase )}h{int(lowerCamelCase )}m{int(lowerCamelCase )}s""" @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowercase__ ( self : Tuple ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = 40 lowercase__ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(lowerCamelCase, lowerCamelCase )} lowercase__ = '''''' for category, failures in category_failures.items(): if len(lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCamelCase ) @staticmethod def lowercase__ ( ): '''simple docstring''' lowercase__ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text='''There was an issue running the tests.''', blocks=lowerCamelCase, ) def lowercase__ ( self : List[str] ): '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) lowercase__ = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.''' lowercase__ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], blocks=self.payload, text=lowerCamelCase, ) def lowercase__ ( self : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Any, lowerCamelCase : int ): '''simple docstring''' lowercase__ = '''''' for key, value in failures.items(): lowercase__ = value[:200] + ''' [Truncated]''' if len(lowerCamelCase ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" lowercase__ = job_name lowercase__ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: lowercase__ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowercase__ ( self : List[Any] ): '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) lowercase__ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) lowercase__ = sorted(self.doc_test_results.items(), key=lambda lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): lowercase__ = F"""*Num failures* :{len(job_result['failed'] )} \n""" lowercase__ = job_result['''failures'''] lowercase__ = self.get_reply_blocks(lowerCamelCase, lowerCamelCase, lowerCamelCase, text=lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text=F"""Results for {job}""", blocks=lowerCamelCase, thread_ts=self.thread_ts['''ts'''], ) time.sleep(1 ) def a ( ): '''simple docstring''' lowercase__ = os.environ['''GITHUB_RUN_ID'''] lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" lowercase__ = requests.get(lowerCamelCase_ ).json() lowercase__ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) lowercase__ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCamelCase_ ): lowercase__ = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {} if os.path.exists(lowerCamelCase_ ): lowercase__ = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: lowercase__ = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}.""" ) from e return _artifact def a ( ): '''simple docstring''' class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : str ): '''simple docstring''' lowercase__ = name lowercase__ = [] def __str__( self : Union[str, Any] ): '''simple docstring''' return self.name def lowercase__ ( self : Union[str, Any], lowerCamelCase : str ): '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) lowercase__ = {} lowercase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowercase__ = directory if artifact_name not in _available_artifacts: lowercase__ = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": A__ : Optional[int] = get_job_links() A__ : Union[str, Any] = retrieve_available_artifacts() A__ : int = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' A__ : Any = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job A__ : Union[str, Any] = github_actions_job_links.get('run_doctests') A__ : Union[str, Any] = available_artifacts['doc_tests_gpu_test_reports'].paths[0] A__ : Optional[int] = retrieve_artifact(artifact_path['name']) if "stats" in artifact: A__ , A__ , A__ : Tuple = handle_test_results(artifact['stats']) A__ : Optional[Any] = failed A__ : Optional[int] = success A__ : str = time_spent[1:-1] + ', ' A__ : Optional[int] = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): A__ : int = line.replace('FAILED ', '') A__ : List[str] = line.split()[0].replace('\n', '') if "::" in line: A__ , A__ : int = line.split('::') else: A__ , A__ : List[str] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): A__ : Any = docs[file_regex] doc_test_results[category]["failed"].append(test) A__ : Optional[int] = all_failures[test] if test in all_failures else 'N/A' A__ : List[str] = failure break A__ : Union[str, Any] = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
1
def a ( lowerCamelCase_ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowercase__ = sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
import re def a ( lowerCamelCase_ ): '''simple docstring''' return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''' , str_ )] def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' try: lowercase__ = split_input(lowerCamelCase_ ) if upper: lowercase__ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowercase__ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a ( lowerCamelCase_ ): '''simple docstring''' return to_simple_case(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' try: lowercase__ = to_simple_case(lowerCamelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return to_complex_case(lowerCamelCase_ , lowerCamelCase_ , '''_''' ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return to_complex_case(lowerCamelCase_ , lowerCamelCase_ , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
671
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = KandinskyVaaControlnetImgaImgPipeline lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase__ = False @property def lowercase__ ( self : str ): '''simple docstring''' return 32 @property def lowercase__ ( self : str ): '''simple docstring''' return 32 @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def lowercase__ ( self : Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase__ ( self : Tuple ): '''simple docstring''' return 100 @property def lowercase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ = UNetaDConditionModel(**lowerCamelCase ) return model @property def lowercase__ ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ = DDIMScheduler(**lowerCamelCase ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = image.cpu().permute(0, 2, 3, 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(lowerCamelCase ), return_dict=lowerCamelCase, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ = init_image.resize((512, 512) ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ = torch.from_numpy(np.array(lowerCamelCase ) ).float() / 255.0 lowercase__ = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowercase__ = '''A robot, 4k photo''' lowercase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) lowercase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''', torch_dtype=torch.floataa ) lowercase__ = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( lowerCamelCase, image=lowerCamelCase, strength=0.85, generator=lowerCamelCase, negative_prompt='''''', ).to_tuple() lowercase__ = pipeline( image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, hint=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=100, height=512, width=512, strength=0.5, output_type='''np''', ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase )
671
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A__ : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A__ : Union[str, Any] = logging.getLogger() def a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def a ( lowerCamelCase_ , lowerCamelCase_="eval" ): '''simple docstring''' lowercase__ = os.path.join(lowerCamelCase_ , F"""{split}_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , '''r''' ) as f: return json.load(lowerCamelCase_ ) raise ValueError(F"""can't find {path}""" ) A__ : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowerCamelCase, '''argv''', lowerCamelCase ): run_flax_glue.main() lowercase__ = get_results(lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.75 ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCamelCase, '''argv''', lowerCamelCase ): run_clm_flax.main() lowercase__ = get_results(lowerCamelCase ) self.assertLess(result['''eval_perplexity'''], 100 ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(lowerCamelCase, '''argv''', lowerCamelCase ): run_summarization_flax.main() lowercase__ = get_results(lowerCamelCase, split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''], 10 ) self.assertGreaterEqual(result['''test_rouge2'''], 2 ) self.assertGreaterEqual(result['''test_rougeL'''], 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''], 7 ) @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(lowerCamelCase, '''argv''', lowerCamelCase ): run_mlm_flax.main() lowercase__ = get_results(lowerCamelCase ) self.assertLess(result['''eval_perplexity'''], 42 ) @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCamelCase, '''argv''', lowerCamelCase ): run_ta_mlm_flax.main() lowercase__ = get_results(lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.42 ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(lowerCamelCase, '''argv''', lowerCamelCase ): run_flax_ner.main() lowercase__ = get_results(lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.75 ) self.assertGreaterEqual(result['''eval_f1'''], 0.3 ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(lowerCamelCase, '''argv''', lowerCamelCase ): run_qa.main() lowercase__ = get_results(lowerCamelCase ) self.assertGreaterEqual(result['''eval_f1'''], 30 ) self.assertGreaterEqual(result['''eval_exact'''], 30 )
671
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str]=13, lowerCamelCase : Any=[30, 30], lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Tuple=3, lowerCamelCase : int=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Tuple=32, lowerCamelCase : Tuple=5, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Optional[Any]=37, lowerCamelCase : List[str]="gelu", lowerCamelCase : int=0.1, lowerCamelCase : List[Any]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : List[str]=0.02, lowerCamelCase : str=3, lowerCamelCase : List[Any]=None, lowerCamelCase : Tuple=8, lowerCamelCase : str=10, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = n_targets lowercase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ = num_patches + 1 + self.num_detection_tokens def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ = [] for i in range(self.batch_size ): lowercase__ = {} lowercase__ = torch.randint( high=self.num_labels, size=(self.n_targets,), device=lowerCamelCase ) lowercase__ = torch.rand(self.n_targets, 4, device=lowerCamelCase ) labels.append(lowerCamelCase ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Tuple ): '''simple docstring''' return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = YolosModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = YolosForObjectDetection(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(pixel_values=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ = model(pixel_values=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[str], lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : Optional[Any]=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ = [] for i in range(self.model_tester.batch_size ): lowercase__ = {} lowercase__ = torch.ones( size=(self.model_tester.n_targets,), device=lowerCamelCase, dtype=torch.long ) lowercase__ = torch.ones( self.model_tester.n_targets, 4, device=lowerCamelCase, dtype=torch.float ) labels.append(lowerCamelCase ) lowercase__ = labels return inputs_dict def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = YolosModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ): '''simple docstring''' # YOLOS does not use inputs_embeds pass def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True # in YOLOS, the seq_len is different lowercase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowercase__ = len(lowerCamelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = 1 self.assertEqual(out_len + added_hidden_states, len(lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def lowercase__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[int] ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) # YOLOS has a different seq_length lowercase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCamelCase ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = YolosModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(inputs.pixel_values ) # verify outputs lowercase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]], device=lowerCamelCase, ) lowercase__ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]], device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) # verify postprocessing lowercase__ = image_processor.post_process_object_detection( lowerCamelCase, threshold=0.3, target_sizes=[image.size[::-1]] )[0] lowercase__ = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(lowerCamelCase ) lowercase__ = [75, 75, 17, 63, 17] lowercase__ = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(lowerCamelCase ) self.assertEqual(len(results['''scores'''] ), 5 ) self.assertTrue(torch.allclose(results['''scores'''], lowerCamelCase, atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist(), lowerCamelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :], lowerCamelCase ) )
671
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
1
def a ( lowerCamelCase_=2_8123 ): '''simple docstring''' lowercase__ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase__ = set() lowercase__ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowerCamelCase_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
671
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Any = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """roberta""" def __init__( self : str, lowerCamelCase : Dict=50_265, lowerCamelCase : int=768, lowerCamelCase : Optional[int]=12, lowerCamelCase : Dict=12, lowerCamelCase : Optional[Any]=3_072, lowerCamelCase : Union[str, Any]="gelu", lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Dict=0.1, lowerCamelCase : str=512, lowerCamelCase : str=2, lowerCamelCase : int=0.02, lowerCamelCase : Any=1E-12, lowerCamelCase : int=1, lowerCamelCase : List[str]=0, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Any="absolute", lowerCamelCase : Dict=True, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : List[str], ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class _UpperCAmelCase ( A__ ): """simple docstring""" @property def lowercase__ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
671
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : Any ): '''simple docstring''' self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for a, b in zip(lowerCamelCase, lowerCamelCase ): self.assertAlmostEqual(lowerCamelCase, lowerCamelCase, delta=lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step, 3 ) self.assertEqual(len(accumulator.gradients ), 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1E-2 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = None ops.enable_eager_execution_internal() lowercase__ = tf.config.list_physical_devices('''CPU''' ) if len(lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowercase__ = tf.config.list_logical_devices(device_type='''CPU''' ) lowercase__ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowercase__ = GradientAccumulator() lowercase__ = tf.Variable([4.0, 3.0] ) lowercase__ , lowercase__ = create_optimizer(5E-5, 10, 5 ) lowercase__ = tf.Variable([0.0, 0.0], trainable=lowerCamelCase ) def accumulate_on_replica(lowerCamelCase : Tuple ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients, [variable] ) ) ) @tf.function def accumulate(lowerCamelCase : str, lowerCamelCase : Optional[Any] ): with strategy.scope(): lowercase__ = strategy.experimental_local_results(lowerCamelCase ) local_variables[0].assign(lowerCamelCase ) local_variables[1].assign(lowerCamelCase ) strategy.run(lowerCamelCase, args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowerCamelCase ) def _check_local_values(lowerCamelCase : Dict, lowerCamelCase : Optional[Any] ): lowercase__ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value(), lowerCamelCase, tol=1E-2 ) self.assertListAlmostEqual(values[1].value(), lowerCamelCase, tol=1E-2 ) accumulate([1.0, 2.0], [-1.0, 1.0] ) accumulate([3.0, -1.0], [-1.0, -1.0] ) accumulate([-2.0, 2.0], [3.0, -2.0] ) self.assertEqual(accumulator.step, 3 ) _check_local_values([2.0, 3.0], [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) _check_local_values([0.0, 0.0], [0.0, 0.0] )
671
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : str = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : int, lowerCamelCase : TransformeraDModel, lowerCamelCase : AutoencoderKL, lowerCamelCase : KarrasDiffusionSchedulers, lowerCamelCase : Optional[Dict[int, str]] = None, ): '''simple docstring''' super().__init__() self.register_modules(transformer=lowerCamelCase, vae=lowerCamelCase, scheduler=lowerCamelCase ) # create a imagenet -> id dictionary for easier use lowercase__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): lowercase__ = int(lowerCamelCase ) lowercase__ = dict(sorted(self.labels.items() ) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Union[str, List[str]] ): '''simple docstring''' if not isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = list(lowerCamelCase ) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[Any], lowerCamelCase : List[int], lowerCamelCase : float = 4.0, lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCamelCase : int = 50, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, ): '''simple docstring''' lowercase__ = len(lowerCamelCase ) lowercase__ = self.transformer.config.sample_size lowercase__ = self.transformer.config.in_channels lowercase__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size), generator=lowerCamelCase, device=self.device, dtype=self.transformer.dtype, ) lowercase__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase__ = torch.tensor(lowerCamelCase, device=self.device ).reshape(-1 ) lowercase__ = torch.tensor([1_000] * batch_size, device=self.device ) lowercase__ = torch.cat([class_labels, class_null], 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase__ = latent_model_input[: len(lowerCamelCase ) // 2] lowercase__ = torch.cat([half, half], dim=0 ) lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) lowercase__ = t if not torch.is_tensor(lowerCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase__ = latent_model_input.device.type == '''mps''' if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = torch.floataa if is_mps else torch.floataa else: lowercase__ = torch.intaa if is_mps else torch.intaa lowercase__ = torch.tensor([timesteps], dtype=lowerCamelCase, device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase__ = self.transformer( lowerCamelCase, timestep=lowerCamelCase, class_labels=lowerCamelCase ).sample # perform guidance if guidance_scale > 1: lowercase__ , lowercase__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase__ , lowercase__ = torch.split(lowerCamelCase, len(lowerCamelCase ) // 2, dim=0 ) lowercase__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase__ = torch.cat([half_eps, half_eps], dim=0 ) lowercase__ = torch.cat([eps, rest], dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase__ , lowercase__ = torch.split(lowerCamelCase, lowerCamelCase, dim=1 ) else: lowercase__ = noise_pred # compute previous image: x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample if guidance_scale > 1: lowercase__ , lowercase__ = latent_model_input.chunk(2, dim=0 ) else: lowercase__ = latent_model_input lowercase__ = 1 / self.vae.config.scaling_factor * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (samples / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = samples.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCamelCase )
671
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Tuple ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = 1 lowercase__ = 3 lowercase__ = (32, 32) lowercase__ = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(lowerCamelCase ) return image @property def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) return model @property def lowercase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) return model @property def lowercase__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) return CLIPTextModel(lowerCamelCase ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' def extract(*lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[Any] ): class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' lowercase__ = torch.ones([0] ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str] ): '''simple docstring''' self.pixel_values.to(lowerCamelCase ) return self return Out() return extract def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.dummy_cond_unet lowercase__ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) lowercase__ = self.dummy_vae lowercase__ = self.dummy_text_encoder lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase__ = StableDiffusionPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) lowercase__ = output.images lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=lowerCamelCase, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.dummy_cond_unet lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = self.dummy_vae lowercase__ = self.dummy_text_encoder lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase__ = StableDiffusionPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) lowercase__ = output.images lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=lowerCamelCase, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''', safety_checker=lowerCamelCase ) assert isinstance(lowerCamelCase, lowerCamelCase ) assert isinstance(pipe.scheduler, lowerCamelCase ) assert pipe.safety_checker is None lowercase__ = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase__ = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_cond_unet lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = self.dummy_vae lowercase__ = self.dummy_text_encoder lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase__ = unet.half() lowercase__ = vae.half() lowercase__ = bert.half() # make sure here that pndm scheduler skips prk lowercase__ = StableDiffusionPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = sd_pipe([prompt], num_inference_steps=2, output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=lowerCamelCase ) lowercase__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase__ = 4_003_660_346 lowercase__ = 7 # without safety guidance (sld_guidance_scale = 0) lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=lowerCamelCase ) lowercase__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase__ = 2_734_971_755 lowercase__ = 7 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase__ = 1_044_355_234 lowercase__ = 12 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
671
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A__ : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Tuple, *lowerCamelCase : List[Any], **lowerCamelCase : Tuple ): '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
671
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
1
def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError('''String lengths must match!''' ) lowercase__ = 0 for chara, chara in zip(lowerCamelCase_ , lowerCamelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
671
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
1
import os def a ( ): '''simple docstring''' lowercase__ = os.path.join(os.path.dirname(lowerCamelCase_ ) , '''num.txt''' ) with open(lowerCamelCase_ ) as file_hand: return str(sum(int(lowerCamelCase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
671
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A__ : Optional[int] = random.Random() def a ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' if rng is None: lowercase__ = global_rng lowercase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int, lowerCamelCase : List[str], lowerCamelCase : Dict=7, lowerCamelCase : Dict=400, lowerCamelCase : Dict=2_000, lowerCamelCase : Optional[int]=1, lowerCamelCase : Tuple=0.0, lowerCamelCase : Tuple=16_000, lowerCamelCase : Optional[int]=True, lowerCamelCase : List[Any]=80, lowerCamelCase : str=16, lowerCamelCase : List[Any]=64, lowerCamelCase : List[Any]="hann_window", lowerCamelCase : Any=80, lowerCamelCase : List[Any]=7_600, lowerCamelCase : Any=1E-10, lowerCamelCase : Any=True, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = min_seq_length lowercase__ = max_seq_length lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ = feature_size lowercase__ = padding_value lowercase__ = sampling_rate lowercase__ = do_normalize lowercase__ = num_mel_bins lowercase__ = hop_length lowercase__ = win_length lowercase__ = win_function lowercase__ = fmin lowercase__ = fmax lowercase__ = mel_floor lowercase__ = return_attention_mask def lowercase__ ( self : Dict ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowercase__ ( self : List[str], lowerCamelCase : Dict=False, lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' def _flatten(lowerCamelCase : List[str] ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def lowercase__ ( self : Dict, lowerCamelCase : List[Any]=False, lowerCamelCase : Optional[Any]=False ): '''simple docstring''' if equal_length: lowercase__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = SpeechTaFeatureExtractor def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = SpeechTaFeatureExtractionTester(self ) def lowercase__ ( self : Tuple, lowerCamelCase : List[Any] ): '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCamelCase, axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase, axis=0 ) - 1 ) < 1E-3 ) ) def lowercase__ ( self : List[str] ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values lowercase__ = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) # Test batched lowercase__ = feat_extract(lowerCamelCase, return_tensors='''np''' ).input_values lowercase__ = feat_extract(lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ = [None, 1_600, None] for max_length, padding in zip(lowerCamelCase, lowerCamelCase ): lowercase__ = feat_extract(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = range(800, 1_400, 200 ) lowercase__ = [floats_list((1, x) )[0] for x in lengths] lowercase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ = [None, 1_600, None] for max_length, padding in zip(lowerCamelCase, lowerCamelCase ): lowercase__ = feat_extract(lowerCamelCase, max_length=lowerCamelCase, padding=lowerCamelCase ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = feat_extract( lowerCamelCase, truncation=lowerCamelCase, max_length=1_000, padding='''max_length''', return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = feat_extract( lowerCamelCase, truncation=lowerCamelCase, max_length=1_000, padding='''longest''', return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = feat_extract( lowerCamelCase, truncation=lowerCamelCase, max_length=2_000, padding='''longest''', return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = np.random.rand(100 ).astype(np.floataa ) lowercase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ = feature_extractor(audio_target=lowerCamelCase, padding=lowerCamelCase, return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ = feature_extractor(speech_inputs[0], return_tensors='''np''' ).input_values lowercase__ = feature_extractor(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) # Test batched lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ = np.asarray(lowerCamelCase ) lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase, processed_features[input_name] ) ) ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ = BatchFeature({input_name: speech_inputs}, tensor_type='''np''' ) lowercase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}, tensor_type='''pt''' ) lowercase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = feat_extract.num_mel_bins # hack! lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''np''' )[input_name] lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCamelCase ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = feat_extract.num_mel_bins # hack! lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''np''' ) self.assertIn('''attention_mask''', lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCamelCase ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = min(lowerCamelCase ) lowercase__ = feat_extract.num_mel_bins # hack! lowercase__ = feat_extract.pad( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''np''' ) self.assertIn('''attention_mask''', lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] ) def lowercase__ ( self : str, lowerCamelCase : Any ): '''simple docstring''' from datasets import load_dataset lowercase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech lowercase__ = ds.sort('''id''' ).select(range(lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' # fmt: off lowercase__ = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on lowercase__ = self._load_datasamples(1 ) lowercase__ = SpeechTaFeatureExtractor() lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30], lowerCamelCase, atol=1E-6 ) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' # fmt: off lowercase__ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on lowercase__ = self._load_datasamples(1 ) lowercase__ = SpeechTaFeatureExtractor() lowercase__ = feature_extractor(audio_target=lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30], lowerCamelCase, atol=1E-4 ) )
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple=100, lowerCamelCase : Any=13, lowerCamelCase : Union[str, Any]=30, lowerCamelCase : Dict=2, lowerCamelCase : Optional[int]=3, lowerCamelCase : int=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]=32, lowerCamelCase : Any=4, lowerCamelCase : int=4, lowerCamelCase : int=37, lowerCamelCase : Tuple="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : int=0.02, lowerCamelCase : List[str]=3, lowerCamelCase : List[Any]=None, lowerCamelCase : List[str]=[0, 1, 2, 3], ): '''simple docstring''' lowercase__ = parent lowercase__ = 100 lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = out_indices lowercase__ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = BeitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = BeitForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.type_sequence_label_size lowercase__ = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = BeitForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = BeitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def lowercase__ ( self : Any ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : str ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling]: continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = BeitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Tuple ): '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).pixel_values.to(lowerCamelCase ) # prepare bool_masked_pos lowercase__ = torch.ones((1, 196), dtype=torch.bool ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(pixel_values=lowerCamelCase, bool_masked_pos=lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], lowerCamelCase, atol=1E-2 ) ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) ) lowercase__ = 281 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase ) @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) ) lowercase__ = 2_396 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase ) lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) lowercase__ = Image.open(ds[0]['''file'''] ) lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: lowercase__ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ], device=lowerCamelCase, ) else: lowercase__ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase ) lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) lowercase__ = Image.open(ds[0]['''file'''] ) lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits.detach().cpu() lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(500, 300)] ) lowercase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, lowerCamelCase ) lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) lowercase__ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, lowerCamelCase )
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A__ : Any = 'facebook/wmt19-en-de' A__ : Union[str, Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A__ : Optional[int] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A__ : str = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test A__ : int = tokenizer(['Making tiny model'], return_tensors='pt') A__ : Union[str, Any] = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save A__ : str = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
671
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
1
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
1
import math def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowercase__ = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def a ( lowerCamelCase_ , lowerCamelCase_=1 , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = factor * value lowercase__ = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
671
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
1
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ = set() return any( node not in visited and depth_first_search(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for node in graph ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' visited.add(lowerCamelCase_ ) rec_stk.add(lowerCamelCase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCamelCase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
671
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A__ : Optional[int] = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = True while ask_again: lowercase__ = input(lowerCamelCase_ ) try: if default is not None and len(lowerCamelCase_ ) == 0: return default return convert_value(lowerCamelCase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_=[] , lowerCamelCase_=None , lowerCamelCase_=0 ): '''simple docstring''' lowercase__ = BulletMenu(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = menu.run(default_choice=lowerCamelCase_ ) return convert_value(lowerCamelCase_ ) if convert_value is not None else result def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def lowercase__ ( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : int ): '''simple docstring''' lowercase__ = super()._format_usage(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = usage.replace('''<command> [<args>] ''', '''''' ) return usage
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCamelCase_ ) , lowerCamelCase_ ) return number - int(lowerCamelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
671
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) A__ : Dict = logging.getLogger(__name__) def a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=lowerCamelCase_ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=lowerCamelCase_ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=lowerCamelCase_ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=lowerCamelCase_ , default='''data/dump''' , help='''The dump file prefix.''' ) lowercase__ = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowercase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowercase__ = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` lowercase__ = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": lowercase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowercase__ = tokenizer.special_tokens_map['''cls_token'''] # `<s>` lowercase__ = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": lowercase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowercase__ = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` lowercase__ = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: lowercase__ = fp.readlines() logger.info('''Start encoding''' ) logger.info(F"""{len(lowerCamelCase_ )} examples to process.""" ) lowercase__ = [] lowercase__ = 0 lowercase__ = 1_0000 lowercase__ = time.time() for text in data: lowercase__ = F"""{bos} {text.strip()} {sep}""" lowercase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) rslt.append(lowerCamelCase_ ) iter += 1 if iter % interval == 0: lowercase__ = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowercase__ = time.time() logger.info('''Finished binarization''' ) logger.info(F"""{len(lowerCamelCase_ )} examples processed.""" ) lowercase__ = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowercase__ = tokenizer.vocab_size if vocab_size < (1 << 16): lowercase__ = [np.uintaa(lowerCamelCase_ ) for d in rslt] else: lowercase__ = [np.intaa(lowerCamelCase_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(lowerCamelCase_ , '''wb''' ) as handle: pickle.dump(rslt_ , lowerCamelCase_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
671
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
1
import math def a ( lowerCamelCase_ ): '''simple docstring''' return math.sqrt(lowerCamelCase_ ) * math.sqrt(lowerCamelCase_ ) == num def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0 lowercase__ = n while left <= right: lowercase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase__ = mid - 1 else: lowercase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
671
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return model @property def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D'''), cross_attention_dim=10, ) return model @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D'''), up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D'''), ) lowercase__ = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return vqvae, unet @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) lowercase__ = DDPMScheduler() lowercase__ = AudioDiffusionPipeline(vqvae=lowerCamelCase, unet=self.dummy_unet, mel=lowerCamelCase, scheduler=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(generator=lowerCamelCase, steps=4 ) lowercase__ = output.audios[0] lowercase__ = output.images[0] lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(generator=lowerCamelCase, steps=4, return_dict=lowerCamelCase ) lowercase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.frombuffer(image_from_tuple.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) lowercase__ = DDIMScheduler() lowercase__ = self.dummy_vqvae_and_unet lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=lowerCamelCase, scheduler=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) np.random.seed(0 ) lowercase__ = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(raw_audio=lowerCamelCase, generator=lowerCamelCase, start_step=5, steps=10 ) lowercase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase__ = self.dummy_unet_condition lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=lowerCamelCase, mel=lowerCamelCase, scheduler=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) np.random.seed(0 ) lowercase__ = torch.rand((1, 1, 10) ) lowercase__ = pipe(generator=lowerCamelCase, encoding=lowerCamelCase ) lowercase__ = output.images[0] lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = torch_device lowercase__ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(generator=lowerCamelCase ) lowercase__ = output.audios[0] lowercase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
671
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
1
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow A__ : Any = False class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any]=32 ): '''simple docstring''' set_seed(0 ) lowercase__ = UNetaDModel(sample_size=lowerCamelCase, in_channels=3, out_channels=3 ) lowercase__ = torch.optim.SGD(model.parameters(), lr=0.0001 ) return model, optimizer @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase__ = DDPMScheduler( num_train_timesteps=1_000, beta_start=0.0001, beta_end=0.02, beta_schedule='''linear''', clip_sample=lowerCamelCase, ) lowercase__ = DDIMScheduler( num_train_timesteps=1_000, beta_start=0.0001, beta_end=0.02, beta_schedule='''linear''', clip_sample=lowerCamelCase, ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase__ = [torch.randn((4, 3, 32, 32) ).clip(-1, 1 ).to(lowerCamelCase ) for _ in range(4 )] lowercase__ = [torch.randn((4, 3, 32, 32) ).to(lowerCamelCase ) for _ in range(4 )] lowercase__ = [torch.randint(0, 1_000, (4,) ).long().to(lowerCamelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase__ , lowercase__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase ) for i in range(4 ): optimizer.zero_grad() lowercase__ = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i] ) lowercase__ = model(lowerCamelCase, timesteps[i] ).sample lowercase__ = torch.nn.functional.mse_loss(lowerCamelCase, noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase__ , lowercase__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase ) for i in range(4 ): optimizer.zero_grad() lowercase__ = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i] ) lowercase__ = model(lowerCamelCase, timesteps[i] ).sample lowercase__ = torch.nn.functional.mse_loss(lowerCamelCase, noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) ) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) )
671
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def a ( lowerCamelCase_ , lowerCamelCase_="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) as f: lowercase__ = json.load(lowerCamelCase_ ) lowercase__ = {} lowercase__ = [] lowercase__ = [] for key, info in class_info.items(): lowercase__ = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(lowerCamelCase_ ) ) lowercase__ = thing_ids lowercase__ = class_names return metadata class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : Tuple, lowerCamelCase : str=7, lowerCamelCase : int=3, lowerCamelCase : List[str]=30, lowerCamelCase : Union[str, Any]=400, lowerCamelCase : int=None, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Dict=True, lowerCamelCase : int=[0.5, 0.5, 0.5], lowerCamelCase : Dict=[0.5, 0.5, 0.5], lowerCamelCase : List[str]=10, lowerCamelCase : Tuple=False, lowerCamelCase : Dict=255, lowerCamelCase : Any="shi-labs/oneformer_demo", lowerCamelCase : Tuple="ade20k_panoptic.json", lowerCamelCase : List[Any]=10, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = {'''shortest_edge''': 32, '''longest_edge''': 1_333} if size is None else size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std lowercase__ = class_info_file lowercase__ = prepare_metadata(lowerCamelCase, lowerCamelCase ) lowercase__ = num_text lowercase__ = repo_path # for the post_process_functions lowercase__ = 2 lowercase__ = 10 lowercase__ = 10 lowercase__ = 3 lowercase__ = 4 lowercase__ = num_labels lowercase__ = do_reduce_labels lowercase__ = ignore_index def lowercase__ ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : str=False ): '''simple docstring''' if not batched: lowercase__ = image_inputs[0] if isinstance(lowerCamelCase, Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] if w < h: lowercase__ = int(self.size['''shortest_edge'''] * h / w ) lowercase__ = self.size['''shortest_edge'''] elif w > h: lowercase__ = self.size['''shortest_edge'''] lowercase__ = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__ = self.size['''shortest_edge'''] lowercase__ = self.size['''shortest_edge'''] else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(lowerCamelCase, key=lambda lowerCamelCase : item[0] )[0] lowercase__ = max(lowerCamelCase, key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width def lowercase__ ( self : Optional[int] ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ), masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ), ) @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowercase__ = image_processing_class def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = OneFormerImageProcessorTester(self ) @property def lowercase__ ( self : str ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''ignore_index''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''class_info_file''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''num_text''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''repo_path''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''metadata''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_reduce_labels''' ) ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass def lowercase__ ( self : Tuple ): '''simple docstring''' # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processing_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processor(image_inputs[0], ['''semantic'''], return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ , lowercase__ = self.image_processing_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase ) lowercase__ = image_processor( lowerCamelCase, ['''semantic'''] * len(lowerCamelCase ), return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def lowercase__ ( self : List[str] ): '''simple docstring''' # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processing_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processor(image_inputs[0], ['''semantic'''], return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ , lowercase__ = self.image_processing_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase ) lowercase__ = image_processor( lowerCamelCase, ['''semantic'''] * len(lowerCamelCase ), return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def lowercase__ ( self : List[str] ): '''simple docstring''' # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processing_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processor(image_inputs[0], ['''semantic'''], return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ , lowercase__ = self.image_processing_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase ) lowercase__ = image_processor( lowerCamelCase, ['''semantic'''] * len(lowerCamelCase ), return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str]=False, lowerCamelCase : Any=False, lowerCamelCase : int="np" ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowercase__ = self.image_processing_tester.num_labels lowercase__ = None lowercase__ = None lowercase__ = prepare_image_inputs(self.image_processing_tester, equal_resolution=lowerCamelCase ) if with_segmentation_maps: lowercase__ = num_labels if is_instance_map: lowercase__ = list(range(lowerCamelCase ) ) * 2 lowercase__ = dict(enumerate(lowerCamelCase ) ) lowercase__ = [ np.random.randint(0, high * 2, (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowercase__ = [Image.fromarray(lowerCamelCase ) for annotation in annotations] lowercase__ = image_processor( lowerCamelCase, ['''semantic'''] * len(lowerCamelCase ), lowerCamelCase, return_tensors='''pt''', instance_id_to_semantic_id=lowerCamelCase, pad_and_return_pixel_mask=lowerCamelCase, ) return inputs def lowercase__ ( self : List[str] ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' def common(lowerCamelCase : Optional[Any]=False, lowerCamelCase : Tuple=None ): lowercase__ = self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCamelCase, is_instance_map=lowerCamelCase, segmentation_type=lowerCamelCase ) lowercase__ = inputs['''mask_labels'''] lowercase__ = inputs['''class_labels'''] lowercase__ = inputs['''pixel_values'''] lowercase__ = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase ): self.assertEqual(mask_label.shape[0], class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:], pixel_values.shape[2:] ) self.assertEqual(len(lowerCamelCase ), self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCamelCase ) common(is_instance_map=lowerCamelCase, segmentation_type='''pil''' ) common(is_instance_map=lowerCamelCase, segmentation_type='''pil''' ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = np.zeros((20, 50) ) lowercase__ = 1 lowercase__ = 1 lowercase__ = 1 lowercase__ = binary_mask_to_rle(lowerCamelCase ) self.assertEqual(len(lowerCamelCase ), 4 ) self.assertEqual(rle[0], 21 ) self.assertEqual(rle[1], 45 ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file='''ade20k_panoptic.json''', num_text=self.image_processing_tester.num_text, repo_path='''shi-labs/oneformer_demo''', ) lowercase__ = self.image_processing_tester.get_fake_oneformer_outputs() lowercase__ = fature_extractor.post_process_semantic_segmentation(lowerCamelCase ) self.assertEqual(len(lowerCamelCase ), self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape, ( self.image_processing_tester.height, self.image_processing_tester.width, ), ) lowercase__ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowercase__ = fature_extractor.post_process_semantic_segmentation(lowerCamelCase, target_sizes=lowerCamelCase ) self.assertEqual(segmentation[0].shape, target_sizes[0] ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file='''ade20k_panoptic.json''', num_text=self.image_processing_tester.num_text, repo_path='''shi-labs/oneformer_demo''', ) lowercase__ = self.image_processing_tester.get_fake_oneformer_outputs() lowercase__ = image_processor.post_process_instance_segmentation(lowerCamelCase, threshold=0 ) self.assertTrue(len(lowerCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ), lowerCamelCase ) self.assertEqual( el['''segmentation'''].shape, (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file='''ade20k_panoptic.json''', num_text=self.image_processing_tester.num_text, repo_path='''shi-labs/oneformer_demo''', ) lowercase__ = self.image_processing_tester.get_fake_oneformer_outputs() lowercase__ = image_processor.post_process_panoptic_segmentation(lowerCamelCase, threshold=0 ) self.assertTrue(len(lowerCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ), lowerCamelCase ) self.assertEqual( el['''segmentation'''].shape, (self.image_processing_tester.height, self.image_processing_tester.width) )
671
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
1
import os import numpy import onnx def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = a.name lowercase__ = b.name lowercase__ = '''''' lowercase__ = '''''' lowercase__ = a == b lowercase__ = name_a lowercase__ = name_b return res def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCamelCase_ , lowerCamelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase_ , lowerCamelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = list(model.graph.initializer ) lowercase__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase__ = inits[i].name lowercase__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = os.path.dirname(lowerCamelCase_ ) lowercase__ = os.path.basename(lowerCamelCase_ ) lowercase__ = onnx.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = list(model.graph.initializer ) lowercase__ = set() lowercase__ = {} lowercase__ = [] lowercase__ = 0 for i in range(len(lowerCamelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCamelCase_ ) dup_set.add(lowerCamelCase_ ) lowercase__ = inits[j].data_type lowercase__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCamelCase_ ) total_reduced_size += mem_size lowercase__ = inits[i].name lowercase__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase_ ) else: lowercase__ = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) lowercase__ = sorted(lowerCamelCase_ ) _remove_dup_initializers_from_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = '''optimized_''' + model_file_name lowercase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) onnx.save(lowerCamelCase_ , lowerCamelCase_ ) return new_model
671
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : List[str] = '▁' A__ : Tuple = {'vocab_file': 'spiece.model'} A__ : Dict = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } A__ : List[Any] = { 'google/pegasus-xsum': 5_12, } A__ : int = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict, lowerCamelCase : Any, lowerCamelCase : List[str]="<pad>", lowerCamelCase : Optional[Any]="</s>", lowerCamelCase : int="<unk>", lowerCamelCase : Optional[int]="<mask_2>", lowerCamelCase : Tuple="<mask_1>", lowerCamelCase : Any=None, lowerCamelCase : Optional[int]=103, lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Tuple, ): '''simple docstring''' lowercase__ = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase, lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(lowerCamelCase )}, but is""" F""" {type(lowerCamelCase )}""" ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(lowerCamelCase ), self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2, self.offset )] lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCamelCase, unk_token=lowerCamelCase, mask_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token_sent=lowerCamelCase, offset=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowercase__ = mask_token_sent lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase ) # add special tokens to encoder dict lowercase__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) lowercase__ = {v: k for k, v in self.encoder.items()} @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) + self.offset def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : List[Any], lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : str ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase__ = self.sp_model.piece_to_id(lowerCamelCase ) return sp_id + self.offset def lowercase__ ( self : Any, lowerCamelCase : int ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase__ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase__ ( self : int, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = [] lowercase__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase ) + token lowercase__ = [] else: current_sub_tokens.append(lowerCamelCase ) out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def lowercase__ ( self : str, lowerCamelCase : Dict=False ): '''simple docstring''' return 1 def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : Optional[Any], lowerCamelCase : List, lowerCamelCase : Optional[List] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Dict=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,)
671
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''file.csv''' lowercase__ = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''malformed_file.csv''' lowercase__ = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''csv_with_image.csv''' lowercase__ = textwrap.dedent( F"""\ image {image_file} """ ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''csv_with_label.csv''' lowercase__ = textwrap.dedent( '''\ label good bad good ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''csv_with_int_list.csv''' lowercase__ = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowercase__ = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowercase__ = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowerCamelCase_ ) for label in labels] def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowercase__ = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
671
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
1
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def a ( lowerCamelCase_ = 1_0000 ): '''simple docstring''' lowercase__ = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : List[str] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } A__ : int = { 'yjernite/retribert-base-uncased': 5_12, } A__ : Tuple = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _snake_case ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = RetriBertTokenizer lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple, lowerCamelCase : List[str]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Union[str, Any]="[UNK]", lowerCamelCase : Union[str, Any]="[SEP]", lowerCamelCase : Dict="[PAD]", lowerCamelCase : Any="[CLS]", lowerCamelCase : List[str]="[MASK]", lowerCamelCase : Dict=True, lowerCamelCase : List[str]=None, **lowerCamelCase : List[Any], ): '''simple docstring''' super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, do_lower_case=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, tokenize_chinese_chars=lowerCAmelCase__, strip_accents=lowerCAmelCase__, **lowerCAmelCase__, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCAmelCase__ ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCAmelCase__, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCAmelCase__ ) lowercase__ = do_lower_case def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Dict, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : Optional[Any] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : Tuple = logging.get_logger(__name__) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(lowerCamelCase_ ) - 2] ) lowercase__ = int(key_list[key_list.index(lowerCamelCase_ ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(F"""{orig_block_num}.{layer_num}.{original_name}""" , F"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(lowerCamelCase_ , F"""patch_embeddings.{total_embed_found}.""" ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def a ( ): '''simple docstring''' lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return image @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 1000 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 1000) # set config attributes lowercase__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 128, 320, 512] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 128, 320, 512] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 128, 320, 512] lowercase__ = 4.0 lowercase__ = 1e-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 192, 384, 768] lowercase__ = 4.0 lowercase__ = 1e-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 192, 384, 768] lowercase__ = 4.0 lowercase__ = 1e-6 lowercase__ = 0.95 else: raise ValueError(F"""Size {size} not supported""" ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=lowerCamelCase_ ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict lowercase__ = torch.load(lowerCamelCase_ , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(lowerCamelCase_ ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=lowerCamelCase_ ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(lowerCamelCase_ ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": lowercase__ = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": lowercase__ = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": lowercase__ = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": lowercase__ = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(F"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , lowerCamelCase_ , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A__ : Union[str, Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
from collections.abc import Callable import numpy as np def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(np.ceil((x_end - xa) / step_size ) ) lowercase__ = np.zeros((n + 1,) ) lowercase__ = ya lowercase__ = xa for k in range(_lowercase ): lowercase__ = y[k] + step_size * ode_func(_lowercase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A__ : Tuple = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys A__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging A__ : int = logging.get_logger(__name__) def a ( ): '''simple docstring''' # Get the sagemaker specific mp parameters from smp_options variable. lowercase__ = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowercase__ = json.loads(lowerCamelCase_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowercase__ = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowercase__ = json.loads(lowerCamelCase_ ) if not mpi_options.get('''sagemaker_mpi_enabled''' , lowerCamelCase_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _UpperCAmelCase ( __lowerCamelCase ): """simple docstring""" lowercase__ = field( default="""""" ,metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} ,) def lowercase__ ( self : str ): '''simple docstring''' super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''', UpperCAmelCase_, ) @cached_property def lowercase__ ( self : Dict ): '''simple docstring''' logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: lowercase__ = torch.device('''cpu''' ) lowercase__ = 0 elif is_sagemaker_model_parallel_available(): lowercase__ = smp.local_rank() lowercase__ = torch.device('''cuda''', UpperCAmelCase_ ) lowercase__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''', timeout=self.ddp_timeout_delta ) lowercase__ = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) lowercase__ = torch.device('''cuda''', self.local_rank ) lowercase__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowercase__ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowercase__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''', timeout=self.ddp_timeout_delta ) lowercase__ = torch.device('''cuda''', self.local_rank ) lowercase__ = 1 if device.type == "cuda": torch.cuda.set_device(UpperCAmelCase_ ) return device @property def lowercase__ ( self : Dict ): '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowercase__ ( self : Optional[int] ): '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return False
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) A__ : Tuple = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=UpperCAmelCase_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=UpperCAmelCase_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=UpperCAmelCase_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) lowercase__ = field(default=UpperCAmelCase_ ,metadata={"""help""": """Whether tp freeze the encoder."""} ) lowercase__ = field(default=UpperCAmelCase_ ,metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowercase__ = field( default="""summarization""" ,metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} ,) lowercase__ = field( default=1_024 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=128 ,metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=142 ,metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } ,) lowercase__ = field( default=142 ,metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field(default=-1 ,metadata={"""help""": """# training examples. -1 means use all."""} ) lowercase__ = field(default=-1 ,metadata={"""help""": """# validation examples. -1 means use all."""} ) lowercase__ = field(default=-1 ,metadata={"""help""": """# test examples. -1 means use all."""} ) lowercase__ = field(default=UpperCAmelCase_ ,metadata={"""help""": """Source language id for translation."""} ) lowercase__ = field(default=UpperCAmelCase_ ,metadata={"""help""": """Target language id for translation."""} ) lowercase__ = field(default=UpperCAmelCase_ ,metadata={"""help""": """# num_beams to use for evaluation."""} ) lowercase__ = field( default=UpperCAmelCase_ ,metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} ,) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , F"""{split}_results.json""" ) ) def a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ = parser.parse_args_into_dataclasses() check_output_dir(lowerCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): assert hasattr(lowerCamelCase_ , lowerCamelCase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase__ = SeqaSeqDataset # Get datasets lowercase__ = ( dataset_class( lowerCamelCase_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase__ = ( dataset_class( lowerCamelCase_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase__ = ( dataset_class( lowerCamelCase_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase__ = ( build_compute_metrics_fn(data_args.task , lowerCamelCase_ ) if training_args.predict_with_generate else None ) lowercase__ = SeqaSeqTrainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , data_collator=SeqaSeqDataCollator( lowerCamelCase_ , lowerCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , ) lowercase__ = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase__ = train_result.metrics lowercase__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , lowerCamelCase_ , training_args.output_dir ) all_metrics.update(lowerCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate(metric_key_prefix='''val''' ) lowercase__ = data_args.n_val lowercase__ = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , lowerCamelCase_ , training_args.output_dir ) all_metrics.update(lowerCamelCase_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase__ = trainer.predict(test_dataset=lowerCamelCase_ , metric_key_prefix='''test''' ) lowercase__ = test_output.metrics lowercase__ = data_args.n_test if trainer.is_world_process_zero(): lowercase__ = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , lowerCamelCase_ , training_args.output_dir ) all_metrics.update(lowerCamelCase_ ) if training_args.predict_with_generate: lowercase__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) lowercase__ = lmap(str.strip , lowerCamelCase_ ) write_txt_file(lowerCamelCase_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(lowerCamelCase_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def a ( lowerCamelCase_ ): '''simple docstring''' main() if __name__ == "__main__": main()
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] = logging.get_logger() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ = timm.create_model('''levit_128s''' , pretrained=__A ) else: lowercase__ = timm.create_model('''levit_128''' , pretrained=__A ) if hidden_sizes == 192: lowercase__ = timm.create_model('''levit_192''' , pretrained=__A ) if hidden_sizes == 256: lowercase__ = timm.create_model('''levit_256''' , pretrained=__A ) if hidden_sizes == 384: lowercase__ = timm.create_model('''levit_384''' , pretrained=__A ) from_model.eval() lowercase__ = LevitForImageClassificationWithTeacher(__A ).eval() lowercase__ = OrderedDict() lowercase__ = from_model.state_dict() lowercase__ = list(from_model.state_dict().keys() ) lowercase__ = list(our_model.state_dict().keys() ) print(len(__A ) , len(__A ) ) for i in range(len(__A ) ): lowercase__ = weights[og_keys[i]] our_model.load_state_dict(__A ) lowercase__ = torch.randn((2, 3, 224, 224) ) lowercase__ = from_model(__A ) lowercase__ = our_model(__A ).logits assert torch.allclose(__A , __A ), "The model logits don't match the original one." lowercase__ = name print(__A ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def a ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = True ): '''simple docstring''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = 1000 lowercase__ = (1, num_labels) lowercase__ = '''huggingface/label-files''' lowercase__ = num_labels lowercase__ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(__A ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = partial(__A , num_labels=__A , idalabel=__A , labelaid=__A ) lowercase__ = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } lowercase__ = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __A , names_to_config[model_name] , __A , __A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __A , __A , __A , __A ) return config, expected_shape if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) A__ : int = parser.parse_args() A__ : Optional[int] = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A__ : Optional[Any] = NewType('DataClass', Any) A__ : Dict = NewType('DataClassType', Any) def a ( lowerCamelCase_ ): '''simple docstring''' if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {str(__lowerCAmelCase ): choice for choice in choices} return lambda lowerCamelCase_ : str_to_choice.get(__lowerCAmelCase , __lowerCAmelCase ) def a ( *, lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = dataclasses.MISSING , lowerCamelCase_ = dataclasses.MISSING , lowerCamelCase_ = None , **lowerCamelCase_ , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowercase__ = {} if aliases is not None: lowercase__ = aliases if help is not None: lowercase__ = help return dataclasses.field(metadata=__lowerCAmelCase , default=__lowerCAmelCase , default_factory=__lowerCAmelCase , **__lowerCAmelCase ) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 def __init__( self : Dict, lowerCamelCase : Tuple, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' # To make the default appear when using --help if "formatter_class" not in kwargs: lowercase__ = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCAmelCase ) if dataclasses.is_dataclass(_lowerCAmelCase ): lowercase__ = [dataclass_types] lowercase__ = list(_lowerCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCAmelCase ) @staticmethod def lowercase__ ( lowerCamelCase : Dict, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = F"""--{field.name}""" lowercase__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type, _lowerCAmelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowercase__ = kwargs.pop('''aliases''', [] ) if isinstance(_lowerCAmelCase, _lowerCAmelCase ): lowercase__ = [aliases] lowercase__ = getattr(field.type, '''__origin__''', field.type ) if origin_type is Union or (hasattr(_lowerCAmelCase, '''UnionType''' ) and isinstance(_lowerCAmelCase, types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCAmelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field \'{field.name}\'.""" ) if type(_lowerCAmelCase ) not in field.type.__args__: # filter `str` in Union lowercase__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowercase__ = getattr(field.type, '''__origin__''', field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowercase__ = ( field.type.__args__[0] if isinstance(_lowerCAmelCase, field.type.__args__[1] ) else field.type.__args__[1] ) lowercase__ = getattr(field.type, '''__origin__''', field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowercase__ = {} if origin_type is Literal or (isinstance(field.type, _lowerCAmelCase ) and issubclass(field.type, _lowerCAmelCase )): if origin_type is Literal: lowercase__ = field.type.__args__ else: lowercase__ = [x.value for x in field.type] lowercase__ = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowercase__ = field.default else: lowercase__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowercase__ = copy(_lowerCAmelCase ) # Hack because type=bool in argparse does not behave as we want. lowercase__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowercase__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowercase__ = default # This tells argparse we accept 0 or 1 value after --field_name lowercase__ = '''?''' # This is the value that will get picked if we do --field_name (without value) lowercase__ = True elif isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase, _lowerCAmelCase ): lowercase__ = field.type.__args__[0] lowercase__ = '''+''' if field.default_factory is not dataclasses.MISSING: lowercase__ = field.default_factory() elif field.default is dataclasses.MISSING: lowercase__ = True else: lowercase__ = field.type if field.default is not dataclasses.MISSING: lowercase__ = field.default elif field.default_factory is not dataclasses.MISSING: lowercase__ = field.default_factory() else: lowercase__ = True parser.add_argument(_lowerCAmelCase, *_lowerCAmelCase, **_lowerCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowercase__ = False parser.add_argument(F"""--no_{field.name}""", action='''store_false''', dest=field.name, **_lowerCAmelCase ) def lowercase__ ( self : str, lowerCamelCase : Dict ): '''simple docstring''' if hasattr(_lowerCAmelCase, '''_argument_group_name''' ): lowercase__ = self.add_argument_group(dtype._argument_group_name ) else: lowercase__ = self try: lowercase__ = get_type_hints(_lowerCAmelCase ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCAmelCase ): lowercase__ = '''.'''.join(map(_lowerCAmelCase, sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_lowerCAmelCase ): if not field.init: continue lowercase__ = type_hints[field.name] self._parse_dataclass_field(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : str, lowerCamelCase : Optional[int]=None, lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Dict=None, lowerCamelCase : int=None, ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowercase__ = [] if args_filename: args_files.append(Path(_lowerCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowercase__ = ArgumentParser() args_file_parser.add_argument(_lowerCAmelCase, type=_lowerCAmelCase, action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowercase__ , lowercase__ = args_file_parser.parse_known_args(args=_lowerCAmelCase ) lowercase__ = vars(_lowerCAmelCase ).get(args_file_flag.lstrip('''-''' ), _lowerCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCAmelCase ) for p in cmd_args_file_paths] ) lowercase__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowercase__ = file_args + args if args is not None else file_args + sys.argv[1:] lowercase__ , lowercase__ = self.parse_known_args(args=_lowerCAmelCase ) lowercase__ = [] for dtype in self.dataclass_types: lowercase__ = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} lowercase__ = {k: v for k, v in vars(_lowerCAmelCase ).items() if k in keys} for k in keys: delattr(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase__ ( self : int, lowerCamelCase : Dict, lowerCamelCase : Optional[int] = False ): '''simple docstring''' lowercase__ = set(args.keys() ) lowercase__ = [] for dtype in self.dataclass_types: lowercase__ = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} lowercase__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowercase__ = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(_lowerCAmelCase )}""" ) return tuple(_lowerCAmelCase ) def lowercase__ ( self : List[str], lowerCamelCase : int, lowerCamelCase : Any = False ): '''simple docstring''' with open(Path(_lowerCAmelCase ), encoding='''utf-8''' ) as open_json_file: lowercase__ = json.loads(open_json_file.read() ) lowercase__ = self.parse_dict(_lowerCAmelCase, allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowercase__ ( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Union[str, Any] = False ): '''simple docstring''' lowercase__ = self.parse_dict(yaml.safe_load(Path(_lowerCAmelCase ).read_text() ), allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') A__ : Dict = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default="""tab_fact""" ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowercase__ = field( default="""tab_fact""" ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ,) lowercase__ = field( default=1_024 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowercase__ = field( default=A__ ,metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """A csv or a json file containing the training data."""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """A csv or a json file containing the validation data."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowercase__ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default=A__ ,metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} ,) lowercase__ = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) def a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__ = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__ = data_args.train_file.split('''.''' )[-1] lowercase__ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowercase__ = load_dataset('''csv''' , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__ = load_dataset('''json''' , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__ = raw_datasets["train"].features["label"].names lowercase__ = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCamelCase__ , ) lowercase__ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__ = {"Refused": 0, "Entailed": 1} lowercase__ = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowercase__ = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCamelCase_ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCamelCase_ ): lowercase__ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowercase__ = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__ = examples["statement"] lowercase__ = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) lowercase__ = tokenizer(lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ ) lowercase__ = examples["label"] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowercase__ = raw_datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowercase__ = raw_datasets["train"] if data_args.max_train_samples is not None: lowercase__ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowercase__ = raw_datasets["validation"] if data_args.max_eval_samples is not None: lowercase__ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowercase__ = raw_datasets["test"] if data_args.max_predict_samples is not None: lowercase__ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ ): lowercase__ = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions lowercase__ = np.argmax(lowerCamelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__ = default_data_collator elif training_args.fpaa: lowercase__ = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: lowercase__ = None # Initialize our Trainer lowercase__ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) lowercase__ = train_result.metrics lowercase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowercase__ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , lowerCamelCase__ ) trainer.save_metrics('''train''' , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate(eval_dataset=lowerCamelCase__ ) lowercase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowercase__ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics('''eval''' , lowerCamelCase__ ) trainer.save_metrics('''eval''' , lowerCamelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__ = predict_dataset.remove_columns('''label''' ) lowercase__ = trainer.predict(lowerCamelCase__ , metric_key_prefix='''predict''' ).predictions lowercase__ = np.argmax(lowerCamelCase__ , axis=1 ) lowercase__ = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCamelCase__ ): lowercase__ = label_list[item] writer.write(F"""{index}\t{item}\n""" ) lowercase__ = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def a ( lowerCamelCase_ ): '''simple docstring''' main() if __name__ == "__main__": main()
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
from __future__ import annotations class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' lowercase__ = text, pattern lowercase__ = len(__A ), len(__A ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' for i in range(self.patLen - 1, -1, -1 ): if char == self.pattern[i]: return i return -1 def lowercase__ ( self : Tuple, lowerCamelCase : int ): '''simple docstring''' for i in range(self.patLen - 1, -1, -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase__ ( self : Dict ): '''simple docstring''' # searches pattern in text and returns index positions lowercase__ = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__ = self.mismatch_in_text(__A ) if mismatch_index == -1: positions.append(__A ) else: lowercase__ = self.match_in_pattern(self.text[mismatch_index] ) lowercase__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A__ : int = 'ABAABA' A__ : List[str] = 'AB' A__ : Tuple = BoyerMooreSearch(text, pattern) A__ : List[str] = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A__ : int = logging.get_logger(__name__) A__ : Dict = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for attribute in key.split('''.''' ): lowercase__ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: lowercase__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(__lowerCAmelCase )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , __lowerCAmelCase ) if "weight_g" in name: lowercase__ = """weight_g""" elif "weight_v" in name: lowercase__ = """weight_v""" elif "weight" in name: lowercase__ = """weight""" elif "bias" in name: lowercase__ = """bias""" else: lowercase__ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = SEWConfig() if is_finetuned: lowercase__ = model.wav_encoder.wav_model.cfg else: lowercase__ = model.cfg lowercase__ = fs_config.conv_bias lowercase__ = eval(fs_config.conv_feature_layers ) lowercase__ = [x[0] for x in conv_layers] lowercase__ = [x[1] for x in conv_layers] lowercase__ = [x[2] for x in conv_layers] lowercase__ = """gelu""" lowercase__ = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase__ = 0.0 lowercase__ = fs_config.activation_fn.name lowercase__ = fs_config.encoder_embed_dim lowercase__ = 0.02 lowercase__ = fs_config.encoder_ffn_embed_dim lowercase__ = 1e-5 lowercase__ = fs_config.encoder_layerdrop lowercase__ = fs_config.encoder_attention_heads lowercase__ = fs_config.conv_pos_groups lowercase__ = fs_config.conv_pos lowercase__ = len(__lowerCAmelCase ) lowercase__ = fs_config.encoder_layers lowercase__ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase__ = model.cfg lowercase__ = fs_config.final_dropout lowercase__ = fs_config.layerdrop lowercase__ = fs_config.activation_dropout lowercase__ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase__ = fs_config.attention_dropout lowercase__ = fs_config.dropout_input lowercase__ = fs_config.dropout lowercase__ = fs_config.mask_channel_length lowercase__ = fs_config.mask_channel_prob lowercase__ = fs_config.mask_length lowercase__ = fs_config.mask_prob lowercase__ = """Wav2Vec2FeatureExtractor""" lowercase__ = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True ): '''simple docstring''' if is_finetuned: lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase__ = SEWConfig.from_pretrained(__lowerCAmelCase ) else: lowercase__ = convert_config(model[0] , __lowerCAmelCase ) lowercase__ = model[0].eval() lowercase__ = True if config.feat_extract_norm == """layer""" else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: lowercase__ = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(__lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) lowercase__ = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCAmelCase , ) lowercase__ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) lowercase__ = SEWForCTC(__lowerCAmelCase ) else: lowercase__ = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A__ : Dict = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A__ : List[str] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a ( lowerCamelCase_ ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if args.student_type == "roberta": lowercase__ = False elif args.student_type == "gpt2": lowercase__ = False def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if args.student_type == "roberta": lowercase__ = False def a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__UpperCAmelCase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__UpperCAmelCase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__UpperCAmelCase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__UpperCAmelCase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__UpperCAmelCase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__UpperCAmelCase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__UpperCAmelCase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__UpperCAmelCase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__UpperCAmelCase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=__UpperCAmelCase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__UpperCAmelCase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__UpperCAmelCase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__UpperCAmelCase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__UpperCAmelCase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__UpperCAmelCase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__UpperCAmelCase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__UpperCAmelCase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__UpperCAmelCase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=__UpperCAmelCase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__UpperCAmelCase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=__UpperCAmelCase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=__UpperCAmelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__UpperCAmelCase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=__UpperCAmelCase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__UpperCAmelCase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__UpperCAmelCase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__UpperCAmelCase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__UpperCAmelCase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__UpperCAmelCase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__UpperCAmelCase , default=4000 , help='''Checkpoint interval.''' ) lowercase__ = parser.parse_args() sanity_checks(__UpperCAmelCase ) # ARGS # init_gpu_params(__UpperCAmelCase ) set_seed(__UpperCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__UpperCAmelCase ) , __UpperCAmelCase , indent=4 ) git_log(args.dump_path ) lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[args.student_type] lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase__ = tokenizer.all_special_tokens.index(__UpperCAmelCase ) lowercase__ = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) lowercase__ = special_tok_ids lowercase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: lowercase__ = pickle.load(__UpperCAmelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: lowercase__ = pickle.load(__UpperCAmelCase ) lowercase__ = np.maximum(__UpperCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase__ = 0.0 # do not predict special tokens lowercase__ = torch.from_numpy(__UpperCAmelCase ) else: lowercase__ = None lowercase__ = LmSeqsDataset(params=__UpperCAmelCase , data=__UpperCAmelCase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) lowercase__ = student_config_class.from_pretrained(args.student_config ) lowercase__ = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) lowercase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__UpperCAmelCase ) else: lowercase__ = student_model_class(__UpperCAmelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # lowercase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__UpperCAmelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__UpperCAmelCase , __UpperCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__UpperCAmelCase , __UpperCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase__ = Distiller( params=__UpperCAmelCase , dataset=__UpperCAmelCase , token_probs=__UpperCAmelCase , student=__UpperCAmelCase , teacher=__UpperCAmelCase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A__ : List[str] = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) A__ : str = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = SavedModel() lowercase__ = [] with open(os.path.join(lowerCAmelCase__ , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: lowercase__ = json.load(lowerCAmelCase__ )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowerCAmelCase__ )] ) with open(lowerCAmelCase__ , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) lowercase__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowercase__ = sorted(lowerCAmelCase__ ) lowercase__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowerCAmelCase__ ) if strict and len(lowerCAmelCase__ ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowerCAmelCase__ ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowerCAmelCase__ , sep='''\n''' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) A__ : List[str] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ = mf_knapsack(i - 1 , __A , __A , __A ) else: lowercase__ = max( mf_knapsack(i - 1 , __A , __A , __A ) , mf_knapsack(i - 1 , __A , __A , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ = val return f[i][j] def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ = dp[i - 1][w_] return dp[n][w_], dp def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if not (isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) lowercase__ = len(__A ) if num_items != len(__A ): lowercase__ = ( """The number of weights must be the same as the number of values.\n""" F"""But got {num_items} weights and {len(__A )} values""" ) raise ValueError(__A ) for i in range(__A ): if not isinstance(wt[i] , __A ): lowercase__ = ( """All weights must be integers but got weight of """ F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(__A ) lowercase__ = knapsack(__A , __A , __A , __A ) lowercase__ = set() _construct_solution(__A , __A , __A , __A , __A ) return optimal_val, example_optional_set def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__A , __A , i - 1 , __A , __A ) else: optimal_set.add(__A ) _construct_solution(__A , __A , i - 1 , j - wt[i - 1] , __A ) if __name__ == "__main__": A__ : Any = [3, 2, 4, 4] A__ : str = [4, 3, 2, 3] A__ : Dict = 4 A__ : str = 6 A__ : List[str] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A__ : Union[str, Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A__ : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _UpperCAmelCase ( a__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BlipImageProcessor""" lowercase__ = """AutoTokenizer""" def __init__( self : str, lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(_A, _A ) # add QFormer tokenizer lowercase__ = qformer_tokenizer def __call__( self : Dict, lowerCamelCase : str = None, lowerCamelCase : Union[str, Any] = None, lowerCamelCase : List[Any] = True, lowerCamelCase : List[str] = False, lowerCamelCase : Dict = None, lowerCamelCase : List[Any] = None, lowerCamelCase : List[str] = 0, lowerCamelCase : Any = None, lowerCamelCase : Union[str, Any] = None, lowerCamelCase : str = False, lowerCamelCase : Dict = False, lowerCamelCase : Tuple = False, lowerCamelCase : Dict = False, lowerCamelCase : List[str] = False, lowerCamelCase : int = True, lowerCamelCase : Any = None, **lowerCamelCase : Dict, ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase__ = BatchFeature() if text is not None: lowercase__ = self.tokenizer( text=_A, add_special_tokens=_A, padding=_A, truncation=_A, max_length=_A, stride=_A, pad_to_multiple_of=_A, return_attention_mask=_A, return_overflowing_tokens=_A, return_special_tokens_mask=_A, return_offsets_mapping=_A, return_token_type_ids=_A, return_length=_A, verbose=_A, return_tensors=_A, **_A, ) encoding.update(_A ) lowercase__ = self.qformer_tokenizer( text=_A, add_special_tokens=_A, padding=_A, truncation=_A, max_length=_A, stride=_A, pad_to_multiple_of=_A, return_attention_mask=_A, return_overflowing_tokens=_A, return_special_tokens_mask=_A, return_offsets_mapping=_A, return_token_type_ids=_A, return_length=_A, verbose=_A, return_tensors=_A, **_A, ) lowercase__ = qformer_text_encoding.pop('''input_ids''' ) lowercase__ = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase__ = self.image_processor(_A, return_tensors=_A ) encoding.update(_A ) return encoding def lowercase__ ( self : Tuple, *lowerCamelCase : str, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*_A, **_A ) def lowercase__ ( self : int, *lowerCamelCase : Optional[int], **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*_A, **_A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowercase__ ( self : Any, lowerCamelCase : List[str], **lowerCamelCase : Union[str, Any] ): '''simple docstring''' if os.path.isfile(_A ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_A, exist_ok=_A ) lowercase__ = os.path.join(_A, '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(_A ) return super().save_pretrained(_A, **_A ) @classmethod def lowercase__ ( cls : Union[str, Any], lowerCamelCase : Any, **lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(_A, subfolder='''qformer_tokenizer''' ) lowercase__ = cls._get_arguments_from_pretrained(_A, **_A ) args.append(_A ) return cls(*_A )
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' lowercase__ = (0, 0) lowercase__ = None lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 def __eq__( self : Tuple, lowerCamelCase : int ): '''simple docstring''' return self.position == cell.position def lowercase__ ( self : Dict ): '''simple docstring''' print(self.position ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : List[Any]=(5, 5) ): '''simple docstring''' lowercase__ = np.zeros(__lowerCamelCase ) lowercase__ = world_size[0] lowercase__ = world_size[1] def lowercase__ ( self : Dict ): '''simple docstring''' print(self.w ) def lowercase__ ( self : str, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowercase__ = cell.position[0] lowercase__ = cell.position[1] lowercase__ = [] for n in neughbour_cord: lowercase__ = current_x + n[0] lowercase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowercase__ = Cell() lowercase__ = (x, y) lowercase__ = cell neighbours.append(__lowerCamelCase ) return neighbours def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = [] _open.append(_lowerCamelCase ) while _open: lowercase__ = np.argmin([n.f for n in _open] ) lowercase__ = _open[min_f] _closed.append(_open.pop(_lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(_lowerCamelCase ): for c in _closed: if c == n: continue lowercase__ = current.g + 1 lowercase__ = n.position lowercase__ = goal.position lowercase__ = (ya - ya) ** 2 + (xa - xa) ** 2 lowercase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowerCamelCase ) lowercase__ = [] while current.parent is not None: path.append(current.position ) lowercase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A__ : int = Gridworld() # Start position and goal A__ : Dict = Cell() A__ : List[str] = (0, 0) A__ : List[str] = Cell() A__ : Dict = (4, 4) print(F"path from {start.position} to {goal.position}") A__ : Dict = astar(world, start, goal) # Just for visual reasons. for i in s: A__ : Dict = 1 print(world.w)
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[int] = {"vocab_file": "vocab.json"} A__ : Dict = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } A__ : Optional[Any] = {"mgp-str": 27} class _UpperCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int, lowerCamelCase : Optional[int], lowerCamelCase : Optional[int]="[GO]", lowerCamelCase : int="[GO]", lowerCamelCase : str="[s]", lowerCamelCase : Dict="[GO]", **lowerCamelCase : List[str] ): '''simple docstring''' super().__init__( unk_token=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, pad_token=lowerCamelCase_, **lowerCamelCase_, ) with open(lowerCamelCase_, encoding='''utf-8''' ) as vocab_handle: lowercase__ = json.load(lowerCamelCase_ ) lowercase__ = {v: k for k, v in self.vocab.items()} @property def lowercase__ ( self : int ): '''simple docstring''' return len(self.vocab ) def lowercase__ ( self : List[str] ): '''simple docstring''' return dict(self.vocab, **self.added_tokens_encoder ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = [] for s in text: char_tokens.extend(lowerCamelCase_ ) return char_tokens def lowercase__ ( self : Dict, lowerCamelCase : Tuple ): '''simple docstring''' return self.vocab.get(lowerCamelCase_, self.vocab.get(self.unk_token ) ) def lowercase__ ( self : List[str], lowerCamelCase : Dict ): '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCamelCase_ ) ) return lowercase__ = os.path.join( lowerCamelCase_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(lowerCamelCase_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=lowerCamelCase_, ensure_ascii=lowerCamelCase_ ) + '''\n''' ) return (vocab_file,)
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowercase__ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase__ = tokenizer('''Hello there''', return_tensors='''np''' ).input_ids lowercase__ = tokenizer('''Hi I am''', return_tensors='''np''' ).input_ids lowercase__ = shift_tokens_right(__UpperCamelCase, model.config.pad_token_id, model.config.decoder_start_token_id ) lowercase__ = model(__UpperCamelCase, decoder_input_ids=__UpperCamelCase ).logits lowercase__ = optax.softmax_cross_entropy(__UpperCamelCase, onehot(__UpperCamelCase, logits.shape[-1] ) ).mean() lowercase__ = -(labels.shape[-1] * loss.item()) lowercase__ = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ : Union[str, Any] = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ["""MobileNetV2FeatureExtractor"""] A__ : Dict = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Dict = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } A__ : Optional[Any] = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = GPTaTokenizer def __init__( self : List[str], lowerCamelCase : List[str]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : Tuple="<|endoftext|>", lowerCamelCase : int="<|endoftext|>", lowerCamelCase : List[str]="<|endoftext|>", lowerCamelCase : Optional[Any]=False, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' super().__init__( _lowercase, _lowercase, tokenizer_file=_lowercase, unk_token=_lowercase, bos_token=_lowercase, eos_token=_lowercase, add_prefix_space=_lowercase, **_lowercase, ) lowercase__ = kwargs.pop('''add_bos_token''', _lowercase ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', _lowercase ) != add_prefix_space: lowercase__ = getattr(_lowercase, pre_tok_state.pop('''type''' ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**_lowercase ) lowercase__ = add_prefix_space def lowercase__ ( self : Optional[Any], *lowerCamelCase : Tuple, **lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = kwargs.get('''is_split_into_words''', _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowercase, **_lowercase ) def lowercase__ ( self : Dict, *lowerCamelCase : List[Any], **lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = kwargs.get('''is_split_into_words''', _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowercase, **_lowercase ) def lowercase__ ( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Union[str, Any] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(_lowercase, name=_lowercase ) return tuple(_lowercase ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase, add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: lowercase__ = input_ids[-self.model_max_length :] return input_ids
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import argparse import copy def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {} with open(snake_case__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase__ = [] _list.append([line.split()[1], line.split()[2]] ) lowercase__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase__ = [] _list.append([line.split()[0], line.split()[2]] ) lowercase__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' with open(snake_case__ ) as f: lowercase__ = f.read(1 ) lowercase__ = start_node lowercase__ = [] lowercase__ = start_node lowercase__ = 0 while visiting not in first_solution: lowercase__ = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case__ ) and k[0] not in first_solution: lowercase__ = k[1] lowercase__ = k[0] first_solution.append(snake_case__ ) lowercase__ = distance_of_first_solution + int(snake_case__ ) lowercase__ = best_node first_solution.append(snake_case__ ) lowercase__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for n in solution[1:-1]: lowercase__ = solution.index(snake_case__ ) for kn in solution[1:-1]: lowercase__ = solution.index(snake_case__ ) if n == kn: continue lowercase__ = copy.deepcopy(snake_case__ ) lowercase__ = kn lowercase__ = n lowercase__ = 0 for k in _tmp[:-1]: lowercase__ = _tmp[_tmp.index(snake_case__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase__ = distance + int(i[1] ) _tmp.append(snake_case__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = 1 lowercase__ = first_solution lowercase__ = [] lowercase__ = distance_of_first_solution lowercase__ = solution while count <= iters: lowercase__ = find_neighborhood(snake_case__ , snake_case__ ) lowercase__ = 0 lowercase__ = neighborhood[index_of_best_solution] lowercase__ = len(snake_case__ ) - 1 lowercase__ = False while not found: lowercase__ = 0 while i < len(snake_case__ ): if best_solution[i] != solution[i]: lowercase__ = best_solution[i] lowercase__ = solution[i] break lowercase__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase__ = True lowercase__ = best_solution[:-1] lowercase__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase__ = cost lowercase__ = solution else: lowercase__ = index_of_best_solution + 1 lowercase__ = neighborhood[index_of_best_solution] if len(snake_case__ ) >= size: tabu_list.pop(0 ) lowercase__ = count + 1 return best_solution_ever, best_cost def a ( lowerCamelCase_=None ): '''simple docstring''' lowercase__ = generate_neighbours(args.File ) lowercase__ , lowercase__ = generate_first_solution( args.File , snake_case__ ) lowercase__ , lowercase__ = tabu_search( snake_case__ , snake_case__ , snake_case__ , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A__ : int = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A__ : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(__SCREAMING_SNAKE_CASE ) - np.asarray(__SCREAMING_SNAKE_CASE )) ** 2 ) ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def a ( ): '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig A__ : List[Any] = logging.get_logger(__name__) # General docstring A__ : Any = 'ResNetConfig' # Base docstring A__ : Union[str, Any] = 'microsoft/resnet-50' A__ : int = [1, 20_48, 7, 7] # Image classification docstring A__ : int = 'microsoft/resnet-50' A__ : Any = 'tiger cat' A__ : Tuple = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : List[Any] = 3, lowerCamelCase : Optional[Any] = 1, lowerCamelCase : Tuple = "relu" ): '''simple docstring''' super().__init__() lowercase__ = nn.Convad( lowerCamelCase, lowerCamelCase, kernel_size=lowerCamelCase, stride=lowerCamelCase, padding=kernel_size // 2, bias=lowerCamelCase ) lowercase__ = nn.BatchNormad(lowerCamelCase ) lowercase__ = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.convolution(lowerCamelCase ) lowercase__ = self.normalization(lowerCamelCase ) lowercase__ = self.activation(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any], lowerCamelCase : int ): '''simple docstring''' super().__init__() lowercase__ = ResNetConvLayer( config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act ) lowercase__ = nn.MaxPoolad(kernel_size=3, stride=2, padding=1 ) lowercase__ = config.num_channels def lowercase__ ( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ = self.embedder(lowerCamelCase ) lowercase__ = self.pooler(lowerCamelCase ) return embedding class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int, lowerCamelCase : List[str], lowerCamelCase : Tuple, lowerCamelCase : str = 2 ): '''simple docstring''' super().__init__() lowercase__ = nn.Convad(lowerCamelCase, lowerCamelCase, kernel_size=1, stride=lowerCamelCase, bias=lowerCamelCase ) lowercase__ = nn.BatchNormad(lowerCamelCase ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.convolution(lowerCamelCase ) lowercase__ = self.normalization(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : int, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] = 1, lowerCamelCase : Dict = "relu" ): '''simple docstring''' super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = ( ResNetShortCut(lowerCamelCase, lowerCamelCase, stride=lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( ResNetConvLayer(lowerCamelCase, lowerCamelCase, stride=lowerCamelCase ), ResNetConvLayer(lowerCamelCase, lowerCamelCase, activation=lowerCamelCase ), ) lowercase__ = ACTaFN[activation] def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = hidden_state lowercase__ = self.layer(lowerCamelCase ) lowercase__ = self.shortcut(lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : str = 1, lowerCamelCase : Tuple = "relu", lowerCamelCase : Optional[int] = 4 ): '''simple docstring''' super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = out_channels // reduction lowercase__ = ( ResNetShortCut(lowerCamelCase, lowerCamelCase, stride=lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( ResNetConvLayer(lowerCamelCase, lowerCamelCase, kernel_size=1 ), ResNetConvLayer(lowerCamelCase, lowerCamelCase, stride=lowerCamelCase ), ResNetConvLayer(lowerCamelCase, lowerCamelCase, kernel_size=1, activation=lowerCamelCase ), ) lowercase__ = ACTaFN[activation] def lowercase__ ( self : str, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = hidden_state lowercase__ = self.layer(lowerCamelCase ) lowercase__ = self.shortcut(lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : Optional[int] = 2, lowerCamelCase : Union[str, Any] = 2, ): '''simple docstring''' super().__init__() lowercase__ = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer lowercase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase, lowerCamelCase, stride=lowerCamelCase, activation=config.hidden_act ), *[layer(lowerCamelCase, lowerCamelCase, activation=config.hidden_act ) for _ in range(depth - 1 )], ) def lowercase__ ( self : Dict, lowerCamelCase : str ): '''simple docstring''' lowercase__ = input for layer in self.layers: lowercase__ = layer(lowerCamelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__() lowercase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCamelCase, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], ) ) lowercase__ = zip(config.hidden_sizes, config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase, config.depths[1:] ): self.stages.append(ResNetStage(lowerCamelCase, lowerCamelCase, lowerCamelCase, depth=lowerCamelCase ) ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : str = False, lowerCamelCase : List[str] = True ): '''simple docstring''' lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(lowerCamelCase ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCamelCase, hidden_states=lowerCamelCase, ) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ResNetConfig lowercase__ = """resnet""" lowercase__ = """pixel_values""" lowercase__ = True def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCamelCase, nn.Convad ): nn.init.kaiming_normal_(module.weight, mode='''fan_out''', nonlinearity='''relu''' ) elif isinstance(lowerCamelCase, (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight, 1 ) nn.init.constant_(module.bias, 0 ) def lowercase__ ( self : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = value A__ : Optional[int] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' A__ : Union[str, Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" ,A__ ,) class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Dict, lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(lowerCamelCase ) lowercase__ = config lowercase__ = ResNetEmbeddings(lowerCamelCase ) lowercase__ = ResNetEncoder(lowerCamelCase ) lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=lowerCamelCase, config_class=_CONFIG_FOR_DOC, modality='''vision''', expected_output=_EXPECTED_OUTPUT_SHAPE, ) def lowercase__ ( self : int, lowerCamelCase : Optional[int], lowerCamelCase : List[str] = None, lowerCamelCase : Union[str, Any] = None ): '''simple docstring''' lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(lowerCamelCase ) lowercase__ = self.encoder( lowerCamelCase, output_hidden_states=lowerCamelCase, return_dict=lowerCamelCase ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase, pooler_output=lowerCamelCase, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,A__ ,) class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(lowerCamelCase ) lowercase__ = config.num_labels lowercase__ = ResNetModel(lowerCamelCase ) # classification head lowercase__ = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels ) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=lowerCamelCase, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def lowercase__ ( self : Any, lowerCamelCase : Tuple = None, lowerCamelCase : str = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : str = None, ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.resnet(lowerCamelCase, output_hidden_states=lowerCamelCase, return_dict=lowerCamelCase ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier(lowerCamelCase ) lowercase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ = '''single_label_classification''' else: lowercase__ = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ = MSELoss() if self.num_labels == 1: lowercase__ = loss_fct(logits.squeeze(), labels.squeeze() ) else: lowercase__ = loss_fct(lowerCamelCase, lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ = BCEWithLogitsLoss() lowercase__ = loss_fct(lowerCamelCase, lowerCamelCase ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase, logits=lowerCamelCase, hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ ,A__ ,) class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(lowerCamelCase ) super()._init_backbone(lowerCamelCase ) lowercase__ = [config.embedding_size] + config.hidden_sizes lowercase__ = ResNetEmbeddings(lowerCamelCase ) lowercase__ = ResNetEncoder(lowerCamelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase ) @replace_return_docstrings(output_type=lowerCamelCase, config_class=_CONFIG_FOR_DOC ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Any, lowerCamelCase : Any = None, lowerCamelCase : str = None ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = self.embedder(lowerCamelCase ) lowercase__ = self.encoder(lowerCamelCase, output_hidden_states=lowerCamelCase, return_dict=lowerCamelCase ) lowercase__ = outputs.hidden_states lowercase__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCamelCase, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=lowerCamelCase, )
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any]=3, lowerCamelCase : Optional[int]=32, lowerCamelCase : Optional[int]=3, lowerCamelCase : int=10, lowerCamelCase : Union[str, Any]=[10, 20, 30, 40], lowerCamelCase : Dict=[1, 1, 2, 1], lowerCamelCase : str=True, lowerCamelCase : Tuple=True, lowerCamelCase : Any="relu", lowerCamelCase : Optional[int]=3, lowerCamelCase : int=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(__A ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def lowercase__ ( self : Optional[int], lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = TFRegNetModel(config=__A ) lowercase__ = model(__A, training=__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase__ ( self : Tuple, lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFRegNetForImageClassification(__A ) lowercase__ = model(__A, labels=__A, training=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): """simple docstring""" lowercase__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = TFRegNetModelTester(self ) lowercase__ = ConfigTester(self, config_class=__A, has_text_modality=__A ) def lowercase__ ( self : Dict ): '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowercase__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(__A ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], __A ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowercase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : List[str], lowerCamelCase : Tuple, lowerCamelCase : str ): lowercase__ = model_class(__A ) lowercase__ = model(**self._prepare_for_class(__A, __A ), training=__A ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(__A ), expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(__A, __A, __A ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : List[Any], lowerCamelCase : Tuple={} ): lowercase__ = model(__A, return_dict=__A, **__A ) lowercase__ = model(__A, return_dict=__A, **__A ).to_tuple() def recursive_check(lowerCamelCase : Tuple, lowerCamelCase : Dict ): if isinstance(__A, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__A, __A ): recursive_check(__A, __A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__A, __A ) ), msg=( '''Tuple and dict output are not equal. Difference:''' F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ), ) recursive_check(__A, __A ) for model_class in self.all_model_classes: lowercase__ = model_class(__A ) lowercase__ = self._prepare_for_class(__A, __A ) lowercase__ = self._prepare_for_class(__A, __A ) check_equivalence(__A, __A, __A ) lowercase__ = self._prepare_for_class(__A, __A, return_labels=__A ) lowercase__ = self._prepare_for_class(__A, __A, return_labels=__A ) check_equivalence(__A, __A, __A ) lowercase__ = self._prepare_for_class(__A, __A ) lowercase__ = self._prepare_for_class(__A, __A ) check_equivalence(__A, __A, __A, {'''output_hidden_states''': True} ) lowercase__ = self._prepare_for_class(__A, __A, return_labels=__A ) lowercase__ = self._prepare_for_class(__A, __A, return_labels=__A ) check_equivalence(__A, __A, __A, {'''output_hidden_states''': True} ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFRegNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Dict ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=__A, return_tensors='''tf''' ) # forward pass lowercase__ = model(**__A, training=__A ) # verify the logits lowercase__ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape, __A ) lowercase__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3], __A, atol=1E-4 )
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() A__ : Any = logging.get_logger(__name__) A__ : List[Any] = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def a ( lowerCamelCase_ ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowercase__ = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith('''encoder''' ): lowercase__ = k.replace('''.attn''' , '''.self_attn''' ) lowercase__ = k.replace('''norm1''' , '''self_attn_layer_norm''' ) lowercase__ = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): lowercase__ = k.replace('''norm1''' , '''self_attn_layer_norm''' ) lowercase__ = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) lowercase__ = k.replace('''norm3''' , '''final_layer_norm''' ) return k def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: lowercase__ = sd.pop(_lowerCamelCase ) lowercase__ = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd lowercase__ = v A__ : List[str] = ["START"] @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = torch.load(_lowerCamelCase , map_location='''cpu''' ) lowercase__ = model["model"] lowercase__ = BlenderbotConfig.from_json_file(_lowerCamelCase ) lowercase__ = BlenderbotForConditionalGeneration(_lowerCamelCase ) lowercase__ = m.model.state_dict().keys() lowercase__ = [] lowercase__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowercase__ = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowercase__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) A__ : List[str] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : Any = logging.get_logger(__name__) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase__ = [144, 192, 240] lowercase__ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase__ = [96, 120, 144] lowercase__ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase__ = [64, 80, 96] lowercase__ = [16, 16, 24, 48, 64, 80, 320] lowercase__ = 0.05 lowercase__ = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowercase__ = 512 lowercase__ = 16 lowercase__ = 21 lowercase__ = """pascal-voc-id2label.json""" else: lowercase__ = 1000 lowercase__ = """imagenet-1k-id2label.json""" lowercase__ = """huggingface/label-files""" lowercase__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def a ( lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase__ = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase__ = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowercase__ = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowercase__ = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowercase__ = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowercase__ = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowercase__ = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowercase__ = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowercase__ = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowercase__ = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase__ = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase__ = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase__ = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowercase__ = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowercase__ = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase__ = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowercase__ = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowercase__ = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowercase__ = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowercase__ = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowercase__ = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowercase__ = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowercase__ = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowercase__ = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowercase__ = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowercase__ = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowercase__ = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowercase__ = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowercase__ = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowercase__ = """mobilevit.""" + name return name def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' if base_model: lowercase__ = """""" else: lowercase__ = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(lowerCamelCase_ ) if key[:8] == "encoder.": lowercase__ = key[8:] if "qkv" in key: lowercase__ = key.split('''.''' ) lowercase__ = int(key_split[0][6:] ) - 1 lowercase__ = int(key_split[3] ) lowercase__ = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase__ = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase__ = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] else: lowercase__ = val return orig_state_dict def a ( ): '''simple docstring''' lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' lowercase__ = get_mobilevit_config(lowerCamelCase_ ) # load original state_dict lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowercase__ = MobileViTForSemanticSegmentation(lowerCamelCase_ ).eval() else: lowercase__ = MobileViTForImageClassification(lowerCamelCase_ ).eval() lowercase__ = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = model(**lowerCamelCase_ ) lowercase__ = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase__ = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase__ = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase__ = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase_ , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase__ = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowercase__ = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowercase__ = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: lowercase__ = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print('''Pushing to the hub...''' ) lowercase__ = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase_ , organization='''apple''' ) model.push_to_hub(lowerCamelCase_ , organization='''apple''' ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
from abc import ABC, abstractmethod from typing import List, Optional class _UpperCAmelCase ( __a ): """simple docstring""" def __init__( self : Dict ): '''simple docstring''' self.test() def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = 0 lowercase__ = False while not completed: if counter == 1: self.reset() lowercase__ = self.advance() if not self.does_advance(a_ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowercase__ = self.update(a_ ) counter += 1 if counter > 10_000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def lowercase__ ( self : Optional[int] ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self : Optional[int], lowerCamelCase : int ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self : Optional[int], lowerCamelCase : int ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self : Tuple ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self : int ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self : List[str], lowerCamelCase : Tuple=False ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase ( __a ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : List[int] ): '''simple docstring''' super(a_, self ).__init__() if not isinstance(a_, a_ ) or len(a_ ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(a_, a_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) lowercase__ = token_ids lowercase__ = len(self.token_ids ) lowercase__ = -1 # the index of the currently fulfilled step lowercase__ = False def lowercase__ ( self : Optional[int] ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowercase__ ( self : List[Any], lowerCamelCase : int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowercase__ ( self : List[str], lowerCamelCase : int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}""" ) lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(a_ ): self.fulfilled_idx += 1 lowercase__ = True if self.fulfilled_idx == (self.seqlen - 1): lowercase__ = True lowercase__ = completed else: # failed to make progress. lowercase__ = True self.reset() return stepped, completed, reset def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = False lowercase__ = 0 def lowercase__ ( self : Tuple ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def lowercase__ ( self : Union[str, Any], lowerCamelCase : str=False ): '''simple docstring''' lowercase__ = PhrasalConstraint(self.token_ids ) if stateful: lowercase__ = self.seqlen lowercase__ = self.fulfilled_idx lowercase__ = self.completed return new_constraint class _UpperCAmelCase : """simple docstring""" def __init__( self : int, lowerCamelCase : List[List[int]], lowerCamelCase : int=True ): '''simple docstring''' lowercase__ = max([len(a_ ) for one in nested_token_ids] ) lowercase__ = {} for token_ids in nested_token_ids: lowercase__ = root for tidx, token_id in enumerate(a_ ): if token_id not in level: lowercase__ = {} lowercase__ = level[token_id] if no_subsets and self.has_subsets(a_, a_ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) lowercase__ = root def lowercase__ ( self : Tuple, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = self.trie for current_token in current_seq: lowercase__ = start[current_token] lowercase__ = list(start.keys() ) return next_tokens def lowercase__ ( self : List[Any], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.next_tokens(a_ ) return len(a_ ) == 0 def lowercase__ ( self : Dict, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = list(root.values() ) if len(a_ ) == 0: return 1 else: return sum([self.count_leaves(a_ ) for nn in next_nodes] ) def lowercase__ ( self : str, lowerCamelCase : List[Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.count_leaves(a_ ) return len(a_ ) != leaf_count class _UpperCAmelCase ( __a ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : List[List[int]] ): '''simple docstring''' super(a_, self ).__init__() if not isinstance(a_, a_ ) or len(a_ ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(a_, a_ ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(a_, a_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) lowercase__ = DisjunctiveTrie(a_ ) lowercase__ = nested_token_ids lowercase__ = self.trie.max_height lowercase__ = [] lowercase__ = False def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.trie.next_tokens(self.current_seq ) if len(a_ ) == 0: return None else: return token_list def lowercase__ ( self : Tuple, lowerCamelCase : int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}""" ) lowercase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowercase__ ( self : Any, lowerCamelCase : int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}""" ) lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(a_ ): self.current_seq.append(a_ ) lowercase__ = True else: lowercase__ = True self.reset() lowercase__ = self.trie.reached_leaf(self.current_seq ) lowercase__ = completed return stepped, completed, reset def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = False lowercase__ = [] def lowercase__ ( self : str ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowercase__ ( self : Dict, lowerCamelCase : List[Any]=False ): '''simple docstring''' lowercase__ = DisjunctiveConstraint(self.token_ids ) if stateful: lowercase__ = self.seqlen lowercase__ = self.current_seq lowercase__ = self.completed return new_constraint class _UpperCAmelCase : """simple docstring""" def __init__( self : Any, lowerCamelCase : List[Constraint] ): '''simple docstring''' lowercase__ = constraints # max # of steps required to fulfill a given constraint lowercase__ = max([c.seqlen for c in constraints] ) lowercase__ = len(a_ ) lowercase__ = False self.init_state() def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [] lowercase__ = None lowercase__ = [constraint.copy(stateful=a_ ) for constraint in self.constraints] def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase__ = constraint.advance() if isinstance(a_, a_ ): token_list.append(a_ ) elif isinstance(a_, a_ ): token_list.extend(a_ ) else: lowercase__ = self.inprogress_constraint.advance() if isinstance(a_, a_ ): token_list.append(a_ ) elif isinstance(a_, a_ ): token_list.extend(a_ ) if len(a_ ) == 0: return None else: return token_list def lowercase__ ( self : int, lowerCamelCase : Optional[List[int]] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase__ = self.add(a_ ) # the entire list of constraints are fulfilled if self.completed: break def lowercase__ ( self : List[Any], lowerCamelCase : int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) lowercase__ = False, False if self.completed: lowercase__ = True lowercase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase__ = self.inprogress_constraint.update(a_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=a_ ) ) lowercase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase__ = None if len(self.pending_constraints ) == 0: # we're done! lowercase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(a_ ): lowercase__ = pending_constraint.update(a_ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(a_ ) lowercase__ = None if not complete and stepped: lowercase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowercase__ ( self : Dict, lowerCamelCase : int=True ): '''simple docstring''' lowercase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase__ = [ constraint.copy(stateful=a_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase__ = self.inprogress_constraint.copy(stateful=a_ ) lowercase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def lowercase__ ( self : Optional[int], **lowerCamelCase : Any ): '''simple docstring''' lowercase__ = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__lowerCAmelCase ) return config def lowercase__ ( self : Dict ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCAmelCase, beta_end=__lowerCAmelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = scheduler.scale_model_input(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = model(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = scheduler.step(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) lowercase__ = output.prev_sample lowercase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = scheduler.scale_model_input(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = model(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = scheduler.step(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) lowercase__ = output.prev_sample lowercase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps, device=__lowerCAmelCase ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase__ = scheduler.scale_model_input(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = model(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = scheduler.step(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) lowercase__ = output.prev_sample lowercase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**__lowerCAmelCase, use_karras_sigmas=__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps, device=__lowerCAmelCase ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma lowercase__ = sample.to(__lowerCAmelCase ) for t in scheduler.timesteps: lowercase__ = scheduler.scale_model_input(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = model(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = scheduler.step(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) lowercase__ = output.prev_sample lowercase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ : List[str] = logging.get_logger(__name__) A__ : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase ( _UpperCAmelCase ,_UpperCAmelCase ): """simple docstring""" lowercase__ = """nat""" lowercase__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[int], lowerCamelCase : Optional[Any]=4, lowerCamelCase : Any=3, lowerCamelCase : List[str]=64, lowerCamelCase : List[str]=[3, 4, 6, 5], lowerCamelCase : Optional[int]=[2, 4, 8, 16], lowerCamelCase : List[str]=7, lowerCamelCase : int=3.0, lowerCamelCase : Tuple=True, lowerCamelCase : Dict=0.0, lowerCamelCase : Union[str, Any]=0.0, lowerCamelCase : int=0.1, lowerCamelCase : str="gelu", lowerCamelCase : Union[str, Any]=0.02, lowerCamelCase : List[str]=1E-5, lowerCamelCase : int=0.0, lowerCamelCase : int=None, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : str, ): '''simple docstring''' super().__init__(**lowercase_ ) lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(lowercase_ ) lowercase__ = num_heads lowercase__ = kernel_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = layer_norm_eps lowercase__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowercase__ = layer_scale_init_value lowercase__ = ["""stem"""] + [F"""stage{idx}""" for idx in range(1, len(lowercase_ ) + 1 )] lowercase__ = get_aligned_output_features_output_indices( out_features=lowercase_, out_indices=lowercase_, stage_names=self.stage_names )
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _UpperCAmelCase ( a__ ,a__ ,unittest.TestCase ): """simple docstring""" lowercase__ = VQModel lowercase__ = """sample""" @property def lowercase__ ( self : Optional[int], lowerCamelCase : Dict=(32, 32) ): '''simple docstring''' lowercase__ = 4 lowercase__ = 3 lowercase__ = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase__ ) return {"sample": image} @property def lowercase__ ( self : Optional[int] ): '''simple docstring''' return (3, 32, 32) @property def lowercase__ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' pass def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase__ ) lowercase__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowercase__ = image.to(lowerCAmelCase__ ) with torch.no_grad(): lowercase__ = model(lowerCAmelCase__ ).sample lowercase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase__ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1E-3 ) )
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ = '''The dog is cute and lives in the garden house''' lowercase__ = jnp.array([tokenizer.encode(__lowerCAmelCase )] ) lowercase__ = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ = model(__lowerCAmelCase )['''last_hidden_state'''] self.assertEqual(output.shape, __lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1], __lowerCAmelCase, atol=1E-3 ) )
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : int = '▁' A__ : Dict = {'vocab_file': 'sentencepiece.bpe.model'} A__ : Optional[Any] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } A__ : List[Any] = { 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off A__ : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _UpperCAmelCase ( __UpperCAmelCase ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] lowercase__ = [] def __init__( self : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : int="<s>", lowerCamelCase : Optional[Any]="</s>", lowerCamelCase : List[Any]="</s>", lowerCamelCase : Optional[Any]="<s>", lowerCamelCase : int="<unk>", lowerCamelCase : str="<pad>", lowerCamelCase : List[Any]="<mask>", lowerCamelCase : int=None, lowerCamelCase : Tuple=None, lowerCamelCase : Optional[int]=None, lowerCamelCase : Tuple = None, lowerCamelCase : List[Any]=None, lowerCamelCase : Optional[int]=False, **lowerCamelCase : Optional[Any], ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(UpperCAmelCase_, lstrip=UpperCAmelCase_, rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_, UpperCAmelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = legacy_behaviour super().__init__( bos_token=UpperCAmelCase_, eos_token=UpperCAmelCase_, unk_token=UpperCAmelCase_, sep_token=UpperCAmelCase_, cls_token=UpperCAmelCase_, pad_token=UpperCAmelCase_, mask_token=UpperCAmelCase_, tokenizer_file=UpperCAmelCase_, src_lang=UpperCAmelCase_, tgt_lang=UpperCAmelCase_, additional_special_tokens=UpperCAmelCase_, sp_model_kwargs=self.sp_model_kwargs, legacy_behaviour=UpperCAmelCase_, **UpperCAmelCase_, ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ = 1 lowercase__ = len(self.sp_model ) lowercase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCAmelCase_ ) } lowercase__ = {v: k for k, v in self.lang_code_to_id.items()} lowercase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase__ = src_lang if src_lang is not None else '''eng_Latn''' lowercase__ = self.lang_code_to_id[self._src_lang] lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict, lowerCamelCase : int ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : int ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self._src_lang @src_lang.setter def lowercase__ ( self : str, lowerCamelCase : str ): '''simple docstring''' lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : Any = None, lowerCamelCase : Optional[int] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_, token_ids_a=UpperCAmelCase_, already_has_special_tokens=UpperCAmelCase_ ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Any], lowerCamelCase : List[str] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Tuple, lowerCamelCase : Any, lowerCamelCase : List[str] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : List[str], **lowerCamelCase : Optional[int] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase__ = src_lang lowercase__ = self(UpperCAmelCase_, add_special_tokens=UpperCAmelCase_, return_tensors=UpperCAmelCase_, **UpperCAmelCase_ ) lowercase__ = self.convert_tokens_to_ids(UpperCAmelCase_ ) lowercase__ = tgt_lang_id return inputs def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_, out_type=UpperCAmelCase_ ) def lowercase__ ( self : List[Any], lowerCamelCase : Optional[int] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : Union[str, Any], lowerCamelCase : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = ''''''.join(UpperCAmelCase_ ).replace(UpperCAmelCase_, ''' ''' ).strip() return out_string def lowercase__ ( self : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Dict = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( UpperCAmelCase_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Optional[Any] = "eng_Latn", lowerCamelCase : str = None, lowerCamelCase : List[str] = "fra_Latn", **lowerCamelCase : Any, ): '''simple docstring''' lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_, UpperCAmelCase_, **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Tuple ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : Any, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id] def lowercase__ ( self : int, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id]
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Union[str, Any]=13, lowerCamelCase : List[str]=7, lowerCamelCase : List[str]=True, lowerCamelCase : int=True, lowerCamelCase : Dict=True, lowerCamelCase : str=True, lowerCamelCase : Dict=99, lowerCamelCase : Optional[int]=32, lowerCamelCase : str=5, lowerCamelCase : Optional[Any]=4, lowerCamelCase : int=37, lowerCamelCase : List[str]="gelu", lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : str=0.1, lowerCamelCase : str=512, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : Tuple=2, lowerCamelCase : Union[str, Any]=0.02, lowerCamelCase : Tuple=4, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _UpperCAmelCase ( UpperCamelCase_ ,unittest.TestCase ): """simple docstring""" lowercase__ = True lowercase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxRobertaModelTester(self ) @slow def lowercase__ ( self : int ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''roberta-base''', from_pt=UpperCamelCase__ ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ )
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a ( lowerCamelCase_=None ): '''simple docstring''' if subparsers is not None: lowercase__ = subparsers.add_parser('''env''' ) else: lowercase__ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=__UpperCamelCase , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = torch.__version__ lowercase__ = torch.cuda.is_available() lowercase__ = is_xpu_available() lowercase__ = is_npu_available() lowercase__ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): lowercase__ = load_config_from_file(args.config_file ).to_dict() lowercase__ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(__UpperCamelCase ), '''PyTorch NPU available''': str(__UpperCamelCase ), '''System RAM''': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: lowercase__ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) lowercase__ = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else F"""\t{accelerate_config}""" ) print(__UpperCamelCase ) lowercase__ = accelerate_config return info def a ( ): '''simple docstring''' lowercase__ = env_command_parser() lowercase__ = parser.parse_args() env_command(__UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A__ : Tuple = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Dict ): '''simple docstring''' super().__init__() lowercase__ = torchvision.models.resnetaaa(pretrained=lowerCamelCase ) lowercase__ = list(model.children() )[:-2] lowercase__ = nn.Sequential(*lowerCamelCase ) lowercase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowercase__ ( self : List[str], lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.pool(self.model(lowerCamelCase ) ) lowercase__ = torch.flatten(lowerCamelCase, start_dim=2 ) lowercase__ = out.transpose(1, 2 ).contiguous() return out # BxNx2048 class _UpperCAmelCase ( UpperCAmelCase__ ): """simple docstring""" def __init__( self : str, lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = [json.loads(lowerCamelCase ) for l in open(lowerCamelCase )] lowercase__ = os.path.dirname(lowerCamelCase ) lowercase__ = tokenizer lowercase__ = labels lowercase__ = len(lowerCamelCase ) lowercase__ = max_seq_length lowercase__ = transforms def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self.data ) def __getitem__( self : int, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''], add_special_tokens=lowerCamelCase ) ) lowercase__ = sentence[0], sentence[1:-1], sentence[-1] lowercase__ = sentence[: self.max_seq_length] lowercase__ = torch.zeros(self.n_classes ) lowercase__ = 1 lowercase__ = Image.open(os.path.join(self.data_dir, self.data[index]['''img'''] ) ).convert('''RGB''' ) lowercase__ = self.transforms(lowerCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [len(row['''sentence'''] ) for row in batch] lowercase__ = len(lowerCamelCase_ ), max(lowerCamelCase_ ) lowercase__ = torch.zeros(lowerCamelCase_ , lowerCamelCase_ , dtype=torch.long ) lowercase__ = torch.zeros(lowerCamelCase_ , lowerCamelCase_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): lowercase__ = input_row["""sentence"""] lowercase__ = 1 lowercase__ = torch.stack([row['''image'''] for row in batch] ) lowercase__ = torch.stack([row['''label'''] for row in batch] ) lowercase__ = torch.stack([row['''image_start_token'''] for row in batch] ) lowercase__ = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def a ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def a ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( lowercase__ ,unittest.TestCase ): """simple docstring""" lowercase__ = TransfoXLTokenizer lowercase__ = False lowercase__ = False def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() lowercase__ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Any ): '''simple docstring''' lowercase__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **__lowercase ) def lowercase__ ( self : Tuple, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = '''<unk> UNwanted , running''' lowercase__ = '''<unk> unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=__lowercase ) lowercase__ = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase, ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ), [0, 4, 8, 7] ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(lower_case=__lowercase ) lowercase__ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' lowercase__ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ), __lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ), __lowercase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''', 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ), original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ), [1] ) self.assertEqual(tokenizer.decode([1] ), '''new1''' )
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ ,__snake_case ,) class _UpperCAmelCase ( __snake_case ): """simple docstring""" lowercase__ = RobertaConfig lowercase__ = 'roberta' def __init__( self : Any, lowerCamelCase : Dict ): '''simple docstring''' super().__init__(A_ ) lowercase__ = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. """ ,__snake_case ,) class _UpperCAmelCase ( __snake_case ): """simple docstring""" lowercase__ = RobertaConfig lowercase__ = 'roberta' def __init__( self : str, lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(A_ ) lowercase__ = config.num_labels lowercase__ = config.num_hidden_layers lowercase__ = DeeRobertaModel(A_ ) lowercase__ = nn.Dropout(config.hidden_dropout_prob ) lowercase__ = nn.Linear(config.hidden_size, self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : str=None, lowerCamelCase : List[Any]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Tuple=None, lowerCamelCase : Dict=-1, lowerCamelCase : List[Any]=False, ): '''simple docstring''' lowercase__ = self.num_layers try: lowercase__ = self.roberta( A_, attention_mask=A_, token_type_ids=A_, position_ids=A_, head_mask=A_, inputs_embeds=A_, ) lowercase__ = outputs[1] lowercase__ = self.dropout(A_ ) lowercase__ = self.classifier(A_ ) lowercase__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase__ = e.message lowercase__ = e.exit_layer lowercase__ = outputs[0] if not self.training: lowercase__ = entropy(A_ ) lowercase__ = [] lowercase__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase__ = MSELoss() lowercase__ = loss_fct(logits.view(-1 ), labels.view(-1 ) ) else: lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) # work with highway exits lowercase__ = [] for highway_exit in outputs[-1]: lowercase__ = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowercase__ = MSELoss() lowercase__ = loss_fct(highway_logits.view(-1 ), labels.view(-1 ) ) else: lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(highway_logits.view(-1, self.num_labels ), labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: lowercase__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowercase__ = (loss,) + outputs if not self.training: lowercase__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
from __future__ import annotations import math def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if len(lowerCamelCase_ ) != 2 or len(a[0] ) != 2 or len(lowerCamelCase_ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase_ ) ) ] def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase_ ) ) ] def a ( lowerCamelCase_ ): '''simple docstring''' if len(lowerCamelCase_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(lowerCamelCase_ , lowerCamelCase_ )] for i in range(lowerCamelCase_ )] lowercase__ = [ [a[i][j] for j in range(lowerCamelCase_ , lowerCamelCase_ )] for i in range(lowerCamelCase_ , lowerCamelCase_ ) ] lowercase__ = [[a[i][j] for j in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ )] lowercase__ = [[a[i][j] for j in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ , lowerCamelCase_ )] return top_left, top_right, bot_left, bot_right def a ( lowerCamelCase_ ): '''simple docstring''' return len(lowerCamelCase_ ), len(matrix[0] ) def a ( lowerCamelCase_ ): '''simple docstring''' print('''\n'''.join(str(lowerCamelCase_ ) for line in matrix ) ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if matrix_dimensions(lowerCamelCase_ ) == (2, 2): return default_matrix_multiplication(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(lowerCamelCase_ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(lowerCamelCase_ ) lowercase__ = actual_strassen(lowerCamelCase_ , matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = actual_strassen(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) lowercase__ = actual_strassen(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) lowercase__ = actual_strassen(lowerCamelCase_ , matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = actual_strassen(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = actual_strassen(matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) , matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = actual_strassen(matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) , matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) , lowerCamelCase_ ) lowercase__ = matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) , lowerCamelCase_ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCamelCase_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if matrix_dimensions(lowerCamelCase_ )[1] != matrix_dimensions(lowerCamelCase_ )[0]: lowercase__ = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase_ ) lowercase__ = matrix_dimensions(lowerCamelCase_ ) lowercase__ = matrix_dimensions(lowerCamelCase_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*lowerCamelCase_ , *lowerCamelCase_ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(lowerCamelCase_ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCamelCase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(lowerCamelCase_ , lowerCamelCase_ ) # Removing the additional zeros for i in range(0 , lowerCamelCase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A__ : Tuple = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A__ : Any = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' A__ : Dict = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
from datetime import datetime import matplotlib.pyplot as plt import torch def a ( lowerCamelCase_ ): '''simple docstring''' for param in module.parameters(): lowercase__ = False def a ( ): '''simple docstring''' lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = plt.imshow(lowercase__ ) fig.axes.get_xaxis().set_visible(lowercase__ ) fig.axes.get_yaxis().set_visible(lowercase__ ) plt.show() def a ( ): '''simple docstring''' lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ = """The dog is cute and lives in the garden house""" lowercase__ = jnp.array([tokenizer.encode(__a )] ) lowercase__ = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ = model(__a )["""last_hidden_state"""] self.assertEqual(output.shape, __a ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1], __a, atol=1E-3 ) )
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
import os import jsonlines import numpy as np from tqdm import tqdm A__ : Dict = 20_48 A__ : Dict = 40_96 A__ : List[Any] = 42 A__ : List[str] = os.environ.pop('PROCESS_TRAIN', 'false') A__ : Optional[int] = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def a ( lowerCamelCase_ ): '''simple docstring''' def choose_first(lowerCamelCase_ , lowerCamelCase_=False ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) == 1: lowercase__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowercase__ = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a lowercase__ = {'''id''': example['''id''']} lowercase__ = example['''annotations'''] lowercase__ = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: lowercase__ = ['''yes'''] if 1 in yes_no_answer else ['''no'''] lowercase__ = lowercase__ = [] lowercase__ = lowercase__ = [] lowercase__ = ['''<cls>'''] else: lowercase__ = ['''short'''] lowercase__ = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available lowercase__ = ['''long'''] lowercase__ = choose_first(annotation['''long_answer'''] , is_long_answer=_UpperCamelCase ) lowercase__ = [] answer.update(_UpperCamelCase ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: lowercase__ = True else: lowercase__ = False lowercase__ = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , _UpperCamelCase ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def a ( lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' lowercase__ = _get_single_answer(_UpperCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ = example['''document''']['''tokens'''] lowercase__ = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowercase__ = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowercase__ = example['''document''']['''tokens'''] lowercase__ = answer['''start_token'''] lowercase__ = answer['''end_token'''] lowercase__ = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowercase__ = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: lowercase__ = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] lowercase__ = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] lowercase__ = ''' '''.join([old[i] for i in range(len(_UpperCamelCase ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , _UpperCamelCase , end='''\n''' ) print('''Old:''' , _UpperCamelCase , end='''\n\n''' ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=2048 , lowerCamelCase_=4096 , lowerCamelCase_=True ): '''simple docstring''' lowercase__ = get_context_and_ans(_UpperCamelCase , assertion=_UpperCamelCase ) lowercase__ = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowercase__ = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids lowercase__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ = [] lowercase__ = [] lowercase__ = input_ids[:q_len] lowercase__ = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: lowercase__ = i + max_length - q_len lowercase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_UpperCamelCase ), "end_token": [-100] * len(_UpperCamelCase ), "category": category, }, } lowercase__ = out['''context'''].split() lowercase__ = splitted_context[answer['''end_token''']] lowercase__ = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=_UpperCamelCase , ).input_ids ) lowercase__ = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=_UpperCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowercase__ = len(tokenizer(_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowercase__ = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive lowercase__ = answer['''start_token'''] lowercase__ = answer['''end_token'''] if assertion: lowercase__ = tokenizer.decode(_UpperCamelCase ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , _UpperCamelCase , end='''\n\n''' ) if len(_UpperCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowercase__ = input_ids[:q_len] lowercase__ = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] # null, yes, no, long, short for i in doc_start_indices: lowercase__ = i + max_length - q_len lowercase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowercase__ = start_token - i + q_len lowercase__ = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: lowercase__ = -100 lowercase__ = -100 answers_category.append('''null''' ) lowercase__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(_UpperCamelCase ) answers_end_token.append(_UpperCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(_UpperCamelCase ) ) print('''Old:''' , tokenizer.decode(_UpperCamelCase ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=2048 , lowerCamelCase_=4096 , lowerCamelCase_=False ): '''simple docstring''' lowercase__ = get_strided_contexts_and_ans( _UpperCamelCase , _UpperCamelCase , doc_stride=_UpperCamelCase , max_length=_UpperCamelCase , assertion=_UpperCamelCase , ) return example def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' with jsonlines.open(_UpperCamelCase , '''a''' ) as writer: for example in tqdm(_UpperCamelCase , total=len(_UpperCamelCase ) , desc='''Saving samples ... ''' ): lowercase__ = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer A__ : List[Any] = load_dataset('natural_questions') A__ : Any = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') A__ : Dict = data["train" if PROCESS_TRAIN == "true" else "validation"] A__ : List[Any] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } A__ : List[str] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) A__ : Optional[Any] = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) A__ : Optional[int] = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ : int = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ['ConditionalDetrFeatureExtractor'] A__ : Optional[int] = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
from PIL import Image def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' def brightness(lowerCamelCase_ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 A__ : Any = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any]=2, lowerCamelCase : str=8, lowerCamelCase : int=True, lowerCamelCase : List[str]=True, lowerCamelCase : List[Any]=True, lowerCamelCase : str=True, lowerCamelCase : int=99, lowerCamelCase : str=16, lowerCamelCase : int=5, lowerCamelCase : Dict=2, lowerCamelCase : str=36, lowerCamelCase : int="gelu", lowerCamelCase : Any=0.0, lowerCamelCase : Union[str, Any]=0.0, lowerCamelCase : List[str]=512, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : List[str]=2, lowerCamelCase : Any=0.02, lowerCamelCase : Tuple=3, lowerCamelCase : List[str]=4, lowerCamelCase : List[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[int] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__UpperCamelCase, initializer_range=self.initializer_range, ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.get_config() lowercase__ = 300 return config def lowercase__ ( self : Optional[int] ): '''simple docstring''' ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = MraModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase ) lowercase__ = model(__UpperCamelCase, token_type_ids=__UpperCamelCase ) lowercase__ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Tuple, lowerCamelCase : List[Any], lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : List[Any], lowerCamelCase : Any, ): '''simple docstring''' lowercase__ = True lowercase__ = MraModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model( __UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, encoder_hidden_states=__UpperCamelCase, encoder_attention_mask=__UpperCamelCase, ) lowercase__ = model( __UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, encoder_hidden_states=__UpperCamelCase, ) lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any], lowerCamelCase : str ): '''simple docstring''' lowercase__ = MraForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : int, lowerCamelCase : List[str], lowerCamelCase : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : List[str], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' lowercase__ = MraForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model( __UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, start_positions=__UpperCamelCase, end_positions=__UpperCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MraForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any], lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MraForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = MraForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = model( __UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, labels=__UpperCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = () def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MraModelTester(self ) lowercase__ = ConfigTester(self, config_class=__UpperCamelCase, hidden_size=37 ) def lowercase__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = MraModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCamelCase )[0] lowercase__ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape, __UpperCamelCase ) lowercase__ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], __UpperCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCamelCase )[0] lowercase__ = 50_265 lowercase__ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape, __UpperCamelCase ) lowercase__ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], __UpperCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) lowercase__ = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCamelCase )[0] lowercase__ = 50_265 lowercase__ = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape, __UpperCamelCase ) lowercase__ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], __UpperCamelCase, atol=1E-4 ) )
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : int = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' require_version(deps[pkg] , lowerCAmelCase_ )
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
from __future__ import annotations from functools import lru_cache from math import ceil A__ : Any = 1_00 A__ : List[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) A__ : Dict = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def a ( lowerCamelCase_ ): '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def a ( lowerCamelCase_ = 5000 ): '''simple docstring''' for number_to_partition in range(1 , SCREAMING_SNAKE_CASE__ ): if len(partition(SCREAMING_SNAKE_CASE__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A__ : str = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Any=None, lowerCamelCase : int=1 ): '''simple docstring''' lowercase__ = tokenizer lowercase__ = dataset lowercase__ = len(__snake_case ) if n_tasks is None else n_tasks lowercase__ = n_copies def __iter__( self : Tuple ): '''simple docstring''' lowercase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowercase__ = self.tokenizer(__snake_case, padding=__snake_case, return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = start_length lowercase__ = eof_strings lowercase__ = tokenizer def __call__( self : Any, lowerCamelCase : str, lowerCamelCase : Dict, **lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__snake_case ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = re.split('''(%s)''' % '''|'''.join(a_ ) , a_ ) # last string should be "" return "".join(string_list[:-2] ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=20 , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = defaultdict(a_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a_ ) ): with torch.no_grad(): lowercase__ = batch['''ids'''].shape[-1] lowercase__ = accelerator.unwrap_model(a_ ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=a_ , **a_ ) # each task is generated batch_size times lowercase__ = batch['''task_id'''].repeat(a_ ) lowercase__ = accelerator.pad_across_processes( a_ , dim=1 , pad_index=tokenizer.pad_token_id ) lowercase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowercase__ = generated_tokens.cpu().numpy() lowercase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a_ , a_ ): gen_token_dict[task].append(a_ ) lowercase__ = [[] for _ in range(a_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase__ = tokenizer.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) code_gens[task].append(remove_last_block(a_ ) ) return code_gens def a ( ): '''simple docstring''' # Setup configuration lowercase__ = HfArgumentParser(a_ ) lowercase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase__ = '''false''' if args.num_workers is None: lowercase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase__ = Accelerator() set_seed(args.seed , device_specific=a_ ) # Load model and tokenizer lowercase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase__ = tokenizer.eos_token lowercase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowercase__ = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , a_ , a_ )] ), } # Load evaluation dataset and metric lowercase__ = load_dataset('''openai_humaneval''' ) lowercase__ = load_metric('''code_eval''' ) lowercase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) lowercase__ = args.n_samples // args.batch_size lowercase__ = TokenizedDataset(a_ , human_eval['''test'''] , n_copies=a_ , n_tasks=a_ ) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase__ = DataLoader(a_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowercase__ = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception lowercase__ = accelerator.prepare(a_ , a_ ) lowercase__ = complete_code( a_ , a_ , a_ , a_ , n_tasks=a_ , batch_size=args.batch_size , **a_ , ) if accelerator.is_main_process: lowercase__ = [] for task in tqdm(range(a_ ) ): lowercase__ = human_eval['''test'''][task]['''test'''] lowercase__ = F"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric lowercase__ = code_eval_metric.compute( references=a_ , predictions=a_ , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(a_ , a_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : int = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__ : str = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' A__ : str = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' A__ : Union[str, Any] = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return float((preds == labels).mean() ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="binary" ): '''simple docstring''' lowercase__ = simple_accuracy(lowercase_ , lowercase_ ) lowercase__ = float(fa_score(y_true=lowercase_ , y_pred=lowercase_ , average=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = {} for id_pred, label in zip(lowercase_ , lowercase_ ): lowercase__ = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowercase__ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowercase__ = [(pred, label)] lowercase__ = [], [] for question, preds_labels in question_map.items(): lowercase__ = zip(*lowercase_ ) lowercase__ = fa_score(y_true=lowercase_ , y_pred=lowercase_ , average='''macro''' ) fas.append(lowercase_ ) lowercase__ = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase_ ) ) ems.append(lowercase_ ) lowercase__ = float(sum(lowercase_ ) / len(lowercase_ ) ) lowercase__ = sum(lowercase_ ) / len(lowercase_ ) lowercase__ = float(fa_score(y_true=lowercase_ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase__ ( self : Dict ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types() ), codebase_urls=[], reference_urls=[], format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None, ) def lowercase__ ( self : str ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowercase__ ( self : Any, lowerCamelCase : Dict, lowerCamelCase : Dict ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__a, __a )} elif self.config_name == "cb": return acc_and_fa(__a, __a, fa_avg='''macro''' ) elif self.config_name == "record": lowercase__ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] lowercase__ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__a, __a )[0] elif self.config_name == "multirc": return evaluate_multirc(__a, __a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__a, __a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' )
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0