code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str]=13, lowerCamelCase : Any=[30, 30], lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Tuple=3, lowerCamelCase : int=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Tuple=32, lowerCamelCase : Tuple=5, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Optional[Any]=37, lowerCamelCase : List[str]="gelu", lowerCamelCase : int=0.1, lowerCamelCase : List[Any]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : List[str]=0.02, lowerCamelCase : str=3, lowerCamelCase : List[Any]=None, lowerCamelCase : Tuple=8, lowerCamelCase : str=10, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = n_targets lowercase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ = num_patches + 1 + self.num_detection_tokens def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ = [] for i in range(self.batch_size ): lowercase__ = {} lowercase__ = torch.randint( high=self.num_labels, size=(self.n_targets,), device=lowerCamelCase ) lowercase__ = torch.rand(self.n_targets, 4, device=lowerCamelCase ) labels.append(lowerCamelCase ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Tuple ): '''simple docstring''' return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = YolosModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = YolosForObjectDetection(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(pixel_values=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ = model(pixel_values=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[str], lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : Optional[Any]=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ = [] for i in range(self.model_tester.batch_size ): lowercase__ = {} lowercase__ = torch.ones( size=(self.model_tester.n_targets,), device=lowerCamelCase, dtype=torch.long ) lowercase__ = torch.ones( self.model_tester.n_targets, 4, device=lowerCamelCase, dtype=torch.float ) labels.append(lowerCamelCase ) lowercase__ = labels return inputs_dict def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = YolosModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True # in YOLOS, the seq_len is different lowercase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowercase__ = len(lowerCamelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = 1 self.assertEqual(out_len + added_hidden_states, len(lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def lowercase__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[int] ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) # YOLOS has a different seq_length lowercase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCamelCase ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = YolosModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(inputs.pixel_values ) # verify outputs lowercase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]], device=lowerCamelCase, ) lowercase__ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]], device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) # verify postprocessing lowercase__ = image_processor.post_process_object_detection( lowerCamelCase, threshold=0.3, target_sizes=[image.size[::-1]] )[0] lowercase__ = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(lowerCamelCase ) lowercase__ = [75, 75, 17, 63, 17] lowercase__ = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(lowerCamelCase ) self.assertEqual(len(results['''scores'''] ), 5 ) self.assertTrue(torch.allclose(results['''scores'''], lowerCamelCase, atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist(), lowerCamelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :], lowerCamelCase ) )
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable A__ : int = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 384 lowercase__ = 7 if "tiny" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 6, 2) lowercase__ = (3, 6, 12, 24) elif "small" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 18, 2) lowercase__ = (3, 6, 12, 24) elif "base" in model_name: lowercase__ = 128 lowercase__ = (2, 2, 18, 2) lowercase__ = (4, 8, 16, 32) lowercase__ = 12 lowercase__ = 512 elif "large" in model_name: lowercase__ = 192 lowercase__ = (2, 2, 18, 2) lowercase__ = (6, 12, 24, 48) lowercase__ = 12 lowercase__ = 768 # set label information lowercase__ = 150 lowercase__ = '''huggingface/label-files''' lowercase__ = '''ade20k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = SwinConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowercase__ = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = dct.pop(lowerCamelCase_ ) lowercase__ = val def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) lowercase__ = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:dim, :] lowercase__ = in_proj_bias[: dim] lowercase__ = in_proj_weight[ dim : dim * 2, : ] lowercase__ = in_proj_bias[ dim : dim * 2 ] lowercase__ = in_proj_weight[ -dim :, : ] lowercase__ = in_proj_bias[-dim :] # fmt: on def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ , lowercase__ = x.shape lowercase__ = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 ) lowercase__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ , lowercase__ = x.shape lowercase__ = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 ) lowercase__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = x.shape[0] lowercase__ = x.reshape(4 , in_channel // 4 ) lowercase__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = x.shape[0] lowercase__ = x.reshape(in_channel // 4 , 4 ) lowercase__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='''cpu''' , file_name=lowerCamelCase_ )[ '''state_dict''' ] for name, param in state_dict.items(): print(lowerCamelCase_ , param.shape ) lowercase__ = get_upernet_config(lowerCamelCase_ ) lowercase__ = UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(lowerCamelCase_ ) if "bn" in key: lowercase__ = key.replace('''bn''' , '''batch_norm''' ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase__ = reverse_correct_unfold_reduction_order(lowerCamelCase_ ) if "norm" in key: lowercase__ = reverse_correct_unfold_norm_order(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image lowercase__ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowercase__ = model(lowerCamelCase_ ) lowercase__ = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase__ = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": lowercase__ = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": lowercase__ = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": lowercase__ = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"upernet-swin-{size}" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict, lowerCamelCase : Dict, lowerCamelCase : Any=13, lowerCamelCase : Union[str, Any]=7, lowerCamelCase : Dict=True, lowerCamelCase : Dict=True, lowerCamelCase : int=True, lowerCamelCase : int=True, lowerCamelCase : Any=99, lowerCamelCase : Union[str, Any]=32, lowerCamelCase : Any=2, lowerCamelCase : Any=4, lowerCamelCase : Any=37, lowerCamelCase : Tuple="gelu", lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Optional[int]=512, lowerCamelCase : int=16, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : int=3, lowerCamelCase : Any=4, lowerCamelCase : str=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = '''gelu''' lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCamelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any], lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = TFRoFormerModel(config=lowerCamelCase ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = True lowercase__ = TFRoFormerForCausalLM(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ), [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : Tuple, lowerCamelCase : Any, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = TFRoFormerForMaskedLM(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFRoFormerForSequenceClassification(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFRoFormerForMultipleChoice(config=lowerCamelCase ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFRoFormerForTokenClassification(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = TFRoFormerForQuestionAnswering(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowercase__ = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def lowercase__ ( self : str, lowerCamelCase : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = TFRoFormerModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowerCamelCase ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(lowerCamelCase )[0] # TODO Replace vocab size lowercase__ = 50_000 lowercase__ = [1, 6, vocab_size] self.assertEqual(output.shape, lowerCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase__ = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = 1E-4 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = tf.constant([[4, 10]] ) lowercase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6 ) lowercase__ = emba(input_ids.shape ) lowercase__ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowerCamelCase, lowerCamelCase, atol=self.tolerance ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) lowercase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512 ) emba([2, 16, 512] ) lowercase__ = emba.weight[:3, :5] tf.debugging.assert_near(lowerCamelCase, lowerCamelCase, atol=self.tolerance ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = 1E-4 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.floataa ), shape=(2, 12, 16, 64) ) / 100 lowercase__ = -tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.floataa ), shape=(2, 12, 16, 64) ) / 100 lowercase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32, embedding_dim=64 ) lowercase__ = embed_positions([2, 16, 768] )[None, None, :, :] lowercase__ , lowercase__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) lowercase__ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8], lowerCamelCase, atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8], lowerCamelCase, atol=self.tolerance )
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , ): '''simple docstring''' lowercase__ = {} if train_file is not None: lowercase__ = [train_file] if eval_file is not None: lowercase__ = [eval_file] if test_file is not None: lowercase__ = [test_file] lowercase__ = datasets.load_dataset('''csv''' , data_files=lowerCamelCase_ ) lowercase__ = list(ds[list(files.keys() )[0]].features.keys() ) lowercase__ = features_name.pop(lowerCamelCase_ ) lowercase__ = list(set(ds[list(files.keys() )[0]][label_name] ) ) lowercase__ = {label: i for i, label in enumerate(lowerCamelCase_ )} lowercase__ = tokenizer.model_input_names lowercase__ = {} if len(lowerCamelCase_ ) == 1: for k in files.keys(): lowercase__ = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' ) , batched=lowerCamelCase_ , ) elif len(lowerCamelCase_ ) == 2: for k in files.keys(): lowercase__ = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' , ) , batched=lowerCamelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowercase__ = {k: v for k, v in ex.items() if k in input_names} lowercase__ = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowercase__ = {k: v for k, v in ex.items() if k in input_names} lowercase__ = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowercase__ = {k: v for k, v in ex.items() if k in input_names} lowercase__ = labelaid[ex[label_name]] yield (d, label) lowercase__ = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowercase__ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowercase__ = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowercase__ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowercase__ = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowercase__ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid A__ : List[Any] = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field(metadata={"""help""": """Which column contains the label"""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """The path of the training file"""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """The path of the development file"""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """The path of the test file"""} ) lowercase__ = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__ = field( default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) def a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowercase__ = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase_ ) -> Dict: lowercase__ = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowercase__ = TFTrainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(lowerCamelCase_ ) return results if __name__ == "__main__": main()
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : str = '▁' A__ : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} A__ : int = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } A__ : int = { 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off A__ : Optional[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] lowercase__ = [] def __init__( self : Optional[Any], lowerCamelCase : int, lowerCamelCase : Optional[int]="<s>", lowerCamelCase : List[Any]="</s>", lowerCamelCase : Optional[Any]="</s>", lowerCamelCase : str="<s>", lowerCamelCase : Any="<unk>", lowerCamelCase : Dict="<pad>", lowerCamelCase : int="<mask>", lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : int=None, lowerCamelCase : Optional[Dict[str, Any]] = None, lowerCamelCase : List[Any]=None, lowerCamelCase : List[str]=False, **lowerCamelCase : str, ): '''simple docstring''' lowercase__ = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = legacy_behaviour super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, tokenizer_file=lowerCamelCase, src_lang=lowerCamelCase, tgt_lang=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, legacy_behaviour=lowerCamelCase, **lowerCamelCase, ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ = 1 lowercase__ = len(self.sp_model ) lowercase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase ) } lowercase__ = {v: k for k, v in self.lang_code_to_id.items()} lowercase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase__ = src_lang if src_lang is not None else '''eng_Latn''' lowercase__ = self.lang_code_to_id[self._src_lang] lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : str, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : int ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def lowercase__ ( self : Optional[Any], lowerCamelCase : str ): '''simple docstring''' lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase )) + ([0] * len(lowerCamelCase )) + suffix_ones def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : int, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : str, lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[str], lowerCamelCase : Optional[str], **lowerCamelCase : int ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase__ = src_lang lowercase__ = self(lowerCamelCase, add_special_tokens=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase ) lowercase__ = self.convert_tokens_to_ids(lowerCamelCase ) lowercase__ = tgt_lang_id return inputs def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int], lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : int, lowerCamelCase : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = ''''''.join(lowerCamelCase ).replace(lowerCamelCase, ''' ''' ).strip() return out_string def lowercase__ ( self : Tuple, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def lowercase__ ( self : int, lowerCamelCase : List[str], lowerCamelCase : str = "eng_Latn", lowerCamelCase : Optional[List[str]] = None, lowerCamelCase : str = "fra_Latn", **lowerCamelCase : Tuple, ): '''simple docstring''' lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase, lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Any ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id] def lowercase__ ( self : Tuple, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id]
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple=3, lowerCamelCase : int=32, lowerCamelCase : str=3, lowerCamelCase : Tuple=10, lowerCamelCase : Dict=[10, 20, 30, 40], lowerCamelCase : List[str]=[1, 1, 2, 1], lowerCamelCase : List[Any]=True, lowerCamelCase : int=True, lowerCamelCase : Optional[Any]="relu", lowerCamelCase : Dict=3, lowerCamelCase : Optional[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : str ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = RegNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase__ ( self : List[str], lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = RegNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = RegNetModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : int ): '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase ) for name, module in model.named_modules(): if isinstance(lowerCamelCase, (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ), msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) self.assertTrue( torch.all(module.bias == 0 ), msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) def lowercase__ ( self : Any ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : Dict ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ), expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = RegNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return model @property def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D'''), cross_attention_dim=10, ) return model @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D'''), up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D'''), ) lowercase__ = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return vqvae, unet @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) lowercase__ = DDPMScheduler() lowercase__ = AudioDiffusionPipeline(vqvae=lowerCamelCase, unet=self.dummy_unet, mel=lowerCamelCase, scheduler=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(generator=lowerCamelCase, steps=4 ) lowercase__ = output.audios[0] lowercase__ = output.images[0] lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(generator=lowerCamelCase, steps=4, return_dict=lowerCamelCase ) lowercase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.frombuffer(image_from_tuple.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) lowercase__ = DDIMScheduler() lowercase__ = self.dummy_vqvae_and_unet lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=lowerCamelCase, scheduler=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) np.random.seed(0 ) lowercase__ = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(raw_audio=lowerCamelCase, generator=lowerCamelCase, start_step=5, steps=10 ) lowercase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase__ = self.dummy_unet_condition lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=lowerCamelCase, mel=lowerCamelCase, scheduler=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) np.random.seed(0 ) lowercase__ = torch.rand((1, 1, 10) ) lowercase__ = pipe(generator=lowerCamelCase, encoding=lowerCamelCase ) lowercase__ = output.images[0] lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = torch_device lowercase__ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(42 ) lowercase__ = pipe(generator=lowerCamelCase ) lowercase__ = output.audios[0] lowercase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase__ = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:10] lowercase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
import random def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = a[left_index] lowercase__ = left_index + 1 for j in range(left_index + 1 , lowerCamelCase_ ): if a[j] < pivot: lowercase__ , lowercase__ = a[i], a[j] i += 1 lowercase__ , lowercase__ = a[i - 1], a[left_index] return i - 1 def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if left < right: lowercase__ = random.randint(lowerCamelCase_ , right - 1 ) lowercase__ , lowercase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowercase__ = partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) quick_sort_random( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCamelCase_ , pivot_index + 1 , lowerCamelCase_ ) # recursive quicksort to the right of the pivot point def a ( ): '''simple docstring''' lowercase__ = input('''Enter numbers separated by a comma:\n''' ).strip() lowercase__ = [int(lowerCamelCase_ ) for item in user_input.split(''',''' )] quick_sort_random(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) ) print(lowerCamelCase_ ) if __name__ == "__main__": main()
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int, lowerCamelCase : Any, lowerCamelCase : Optional[int]=13, lowerCamelCase : int=3, lowerCamelCase : Optional[Any]=224, lowerCamelCase : List[str]=30, lowerCamelCase : List[Any]=400, lowerCamelCase : List[str]=True, lowerCamelCase : Tuple=None, lowerCamelCase : int=True, lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5], lowerCamelCase : Any=[0.5, 0.5, 0.5], ): '''simple docstring''' lowercase__ = size if size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = EfficientFormerImageProcessorTester(self ) @property def lowercase__ ( self : str ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_proc_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched lowercase__ = image_processor(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_proc_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched lowercase__ = image_processor(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_proc_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched lowercase__ = image_processor(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), )
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' try: lowercase__ = float(lowerCamelCase_ ) except ValueError: raise ValueError('''Please enter a valid number''' ) lowercase__ = decimal - int(lowerCamelCase_ ) if fractional_part == 0: return int(lowerCamelCase_ ), 1 else: lowercase__ = len(str(lowerCamelCase_ ).split('''.''' )[1] ) lowercase__ = int(decimal * (10**number_of_frac_digits) ) lowercase__ = 10**number_of_frac_digits lowercase__ , lowercase__ = denominator, numerator while True: lowercase__ = dividend % divisor if remainder == 0: break lowercase__ , lowercase__ = divisor, remainder lowercase__ , lowercase__ = numerator / divisor, denominator / divisor return int(lowerCamelCase_ ), int(lowerCamelCase_ ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Dict = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A__ : Optional[int] = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = True while ask_again: lowercase__ = input(lowerCamelCase_ ) try: if default is not None and len(lowerCamelCase_ ) == 0: return default return convert_value(lowerCamelCase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_=[] , lowerCamelCase_=None , lowerCamelCase_=0 ): '''simple docstring''' lowercase__ = BulletMenu(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = menu.run(default_choice=lowerCamelCase_ ) return convert_value(lowerCamelCase_ ) if convert_value is not None else result def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def lowercase__ ( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : int ): '''simple docstring''' lowercase__ = super()._format_usage(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = usage.replace('''<command> [<args>] ''', '''''' ) return usage
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
import argparse from collections import defaultdict import yaml A__ : Union[str, Any] = 'docs/source/en/_toctree.yml' def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = [] lowercase__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(lowerCamelCase_ ) lowercase__ = new_doc_list lowercase__ = [key for key, value in counts.items() if value > 1] lowercase__ = [] for duplicate_key in duplicates: lowercase__ = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(lowerCamelCase_ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) lowercase__ = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCamelCase_ ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(lowerCamelCase_ ) # Sort return overview_doc def a ( lowerCamelCase_=False ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]['''sections'''] # Then to the model doc lowercase__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase__ = api_doc[scheduler_idx]['''sections'''] lowercase__ = clean_doc_toc(lowerCamelCase_ ) lowercase__ = False if new_scheduler_doc != scheduler_doc: lowercase__ = True if overwrite: lowercase__ = new_scheduler_doc if diff: if overwrite: lowercase__ = api_doc with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def a ( lowerCamelCase_=False ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]['''sections'''] # Then to the model doc lowercase__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase__ = False lowercase__ = api_doc[pipeline_idx]['''sections'''] lowercase__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase__ = pipeline_doc['''section'''] lowercase__ = clean_doc_toc(lowerCamelCase_ ) if overwrite: lowercase__ = new_sub_pipeline_doc new_pipeline_docs.append(lowerCamelCase_ ) # sort overall pipeline doc lowercase__ = clean_doc_toc(lowerCamelCase_ ) if new_pipeline_docs != pipeline_docs: lowercase__ = True if overwrite: lowercase__ = new_pipeline_docs if diff: if overwrite: lowercase__ = api_doc with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A__ : Optional[int] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
from collections import Counter from timeit import timeit def a ( lowerCamelCase_ = "" , ): '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def a ( lowerCamelCase_ = "" ): '''simple docstring''' if len(lowerCamelCase_ ) == 0: return True lowercase__ = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowercase__ = {} for character in lower_case_input_str: lowercase__ = character_freq_dict.get(lowerCamelCase_ , 0 ) + 1 lowercase__ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a ( lowerCamelCase_ = "" ): '''simple docstring''' print('''\nFor string = ''' , lowerCamelCase_ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(lowerCamelCase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": A__ : Optional[int] = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) A__ : List[str] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[Any] = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = TextaTextGenerationPipeline(model=lowerCamelCase, tokenizer=lowerCamelCase ) return generator, ["Something to write", "Something else"] def lowercase__ ( self : int, lowerCamelCase : Tuple, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = generator('''Something there''' ) self.assertEqual(lowerCamelCase, [{'''generated_text''': ANY(lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) lowercase__ = generator(['''This is great !''', '''Something else'''], num_return_sequences=2, do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase, [ [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], ], ) lowercase__ = generator( ['''This is great !''', '''Something else'''], num_return_sequences=2, batch_size=2, do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase, [ [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], ], ) with self.assertRaises(lowerCamelCase ): generator(4 ) @require_torch def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = pipeline('''text2text-generation''', model='''patrickvonplaten/t5-tiny-random''', framework='''pt''' ) # do_sample=False necessary for reproducibility lowercase__ = generator('''Something there''', do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase, [{'''generated_text''': ''''''}] ) lowercase__ = 3 lowercase__ = generator( '''Something there''', num_return_sequences=lowerCamelCase, num_beams=lowerCamelCase, ) lowercase__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = generator('''This is a test''', do_sample=lowerCamelCase, num_return_sequences=2, return_tensors=lowerCamelCase ) self.assertEqual( lowerCamelCase, [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ) lowercase__ = generator.model.config.eos_token_id lowercase__ = '''<pad>''' lowercase__ = generator( ['''This is a test''', '''This is a second test'''], do_sample=lowerCamelCase, num_return_sequences=2, batch_size=2, return_tensors=lowerCamelCase, ) self.assertEqual( lowerCamelCase, [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ], ) @require_tf def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = pipeline('''text2text-generation''', model='''patrickvonplaten/t5-tiny-random''', framework='''tf''' ) # do_sample=False necessary for reproducibility lowercase__ = generator('''Something there''', do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase, [{'''generated_text''': ''''''}] )
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import os import re import shutil import sys import tempfile import unittest import black A__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. A__ : int = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, '''models/bert/''' ) ) lowercase__ = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase, '''src/transformers/models/bert/modeling_bert.py''' ), os.path.join(self.transformer_dir, '''models/bert/modeling_bert.py''' ), ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' lowercase__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase__ = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) lowercase__ = black.format_str(lowerCamelCase, mode=lowerCamelCase ) lowercase__ = os.path.join(self.transformer_dir, '''new_code.py''' ) with open(lowerCamelCase, '''w''', newline='''\n''' ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=lowerCamelCase ) with open(lowerCamelCase, '''r''' ) as f: self.assertTrue(f.read(), lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', REFERENCE_CODE + '''\n''', ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', lowerCamelCase, ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', re.sub('''Bert''', '''TestModel''', lowerCamelCase ), ) # Copy consistency with a really long name lowercase__ = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""", F"""{long_class_name}LMPredictionHead""", re.sub('''Bert''', lowerCamelCase, lowerCamelCase ), ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', lowerCamelCase, overwrite_result=re.sub('''Bert''', '''TestModel''', lowerCamelCase ), ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) self.assertFalse(lowerCamelCase ) self.assertEqual(lowerCamelCase, lowerCamelCase ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowercase__ , lowercase__ = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase, lowerCamelCase )
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ = set() return any( node not in visited and depth_first_search(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for node in graph ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' visited.add(lowerCamelCase_ ) rec_stk.add(lowerCamelCase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCamelCase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : List[str] = '▁' A__ : Tuple = {'vocab_file': 'spiece.model'} A__ : Dict = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } A__ : List[Any] = { 'google/pegasus-xsum': 5_12, } A__ : int = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict, lowerCamelCase : Any, lowerCamelCase : List[str]="<pad>", lowerCamelCase : Optional[Any]="</s>", lowerCamelCase : int="<unk>", lowerCamelCase : Optional[int]="<mask_2>", lowerCamelCase : Tuple="<mask_1>", lowerCamelCase : Any=None, lowerCamelCase : Optional[int]=103, lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Tuple, ): '''simple docstring''' lowercase__ = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase, lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(lowerCamelCase )}, but is""" F""" {type(lowerCamelCase )}""" ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(lowerCamelCase ), self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2, self.offset )] lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCamelCase, unk_token=lowerCamelCase, mask_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token_sent=lowerCamelCase, offset=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowercase__ = mask_token_sent lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase ) # add special tokens to encoder dict lowercase__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) lowercase__ = {v: k for k, v in self.encoder.items()} @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) + self.offset def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : List[Any], lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : str ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase__ = self.sp_model.piece_to_id(lowerCamelCase ) return sp_id + self.offset def lowercase__ ( self : Any, lowerCamelCase : int ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase__ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase__ ( self : int, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = [] lowercase__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase ) + token lowercase__ = [] else: current_sub_tokens.append(lowerCamelCase ) out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def lowercase__ ( self : str, lowerCamelCase : Dict=False ): '''simple docstring''' return 1 def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : Optional[Any], lowerCamelCase : List, lowerCamelCase : Optional[List] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Dict=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,)
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import re def a ( lowerCamelCase_ ): '''simple docstring''' return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''' , str_ )] def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' try: lowercase__ = split_input(lowerCamelCase_ ) if upper: lowercase__ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowercase__ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a ( lowerCamelCase_ ): '''simple docstring''' return to_simple_case(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' try: lowercase__ = to_simple_case(lowerCamelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return to_complex_case(lowerCamelCase_ , lowerCamelCase_ , '''_''' ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return to_complex_case(lowerCamelCase_ , lowerCamelCase_ , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : str, lowerCamelCase : float ): '''simple docstring''' return 0.0 def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = 512 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(lowerCamelCase_ ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.abs(np.fft.fft(lowerCamelCase_ ) ) lowercase__ = 20 * np.logaa(lowerCamelCase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowercase__ = get_bounds(lowerCamelCase_ , lowerCamelCase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowerCamelCase_ ) plt.show() def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = 512 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(lowerCamelCase_ ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.angle(np.fft.fft(lowerCamelCase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowerCamelCase_ , -2 * pi ) ) plt.show()
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase__ = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''', safety_checker=lowerCamelCase, cache_dir=lowerCamelCase ) lowercase__ = [t[-1] for t in os.walk(os.path.join(lowerCamelCase, os.listdir(lowerCamelCase )[0], '''snapshots''' ) )] lowercase__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''', safety_checker=lowerCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 4 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 lowercase__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase ) == num_samples def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''flax''', safety_checker=lowerCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, safety_checker=lowerCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = FlaxDDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', set_alpha_to_one=lowerCamelCase, steps_offset=1, ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, scheduler=lowerCamelCase, safety_checker=lowerCamelCase, ) lowercase__ = scheduler.create_state() lowercase__ = scheduler_state lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowercase__ = replicate(lowerCamelCase ) lowercase__ = jax.random.split(lowerCamelCase, lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase, dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, safety_checker=lowerCamelCase, ) lowercase__ = replicate(lowerCamelCase ) lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''bf16''', dtype=jnp.bfloataa, safety_checker=lowerCamelCase, use_memory_efficient_attention=lowerCamelCase, ) lowercase__ = replicate(lowerCamelCase ) lowercase__ = pipeline.prepare_inputs(lowerCamelCase ) lowercase__ = shard(lowerCamelCase ) lowercase__ = pipeline(lowerCamelCase, lowerCamelCase, lowerCamelCase, jit=lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : str = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = TransfoXLTokenizer lowercase__ = False lowercase__ = False def lowercase__ ( self : Dict ): '''simple docstring''' super().setUp() lowercase__ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : List[Any], **lowerCamelCase : Any ): '''simple docstring''' lowercase__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = '''<unk> UNwanted , running''' lowercase__ = '''<unk> unwanted, running''' return input_text, output_text def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=lowerCamelCase ) lowercase__ = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCamelCase, ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [0, 4, 8, 7] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = TransfoXLTokenizer(lower_case=lowerCamelCase ) lowercase__ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' lowercase__ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCamelCase ), lowerCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCamelCase ), lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = len(lowerCamelCase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''', 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCamelCase ), original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ), [1] ) self.assertEqual(tokenizer.decode([1] ), '''new1''' )
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def lowercase__ ( self : Optional[Any] ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowerCamelCase ) for k, v in self.__dict__.items()} )
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Tuple = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """vit_mae""" def __init__( self : List[Any], lowerCamelCase : Optional[Any]=768, lowerCamelCase : Dict=12, lowerCamelCase : List[str]=12, lowerCamelCase : Optional[int]=3_072, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : int=0.0, lowerCamelCase : List[str]=0.0, lowerCamelCase : Any=0.02, lowerCamelCase : Optional[int]=1E-12, lowerCamelCase : Tuple=224, lowerCamelCase : int=16, lowerCamelCase : List[str]=3, lowerCamelCase : Dict=True, lowerCamelCase : List[Any]=16, lowerCamelCase : int=512, lowerCamelCase : int=8, lowerCamelCase : List[str]=2_048, lowerCamelCase : Tuple=0.75, lowerCamelCase : Optional[int]=False, **lowerCamelCase : Optional[int], ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = decoder_num_attention_heads lowercase__ = decoder_hidden_size lowercase__ = decoder_num_hidden_layers lowercase__ = decoder_intermediate_size lowercase__ = mask_ratio lowercase__ = norm_pix_loss
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
from __future__ import annotations def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(lowerCamelCase_ ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[Any] = logging.get_logger(__name__) A__ : List[Any] = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """unispeech-sat""" def __init__( self : Optional[int], lowerCamelCase : Any=32, lowerCamelCase : Optional[Any]=768, lowerCamelCase : List[str]=12, lowerCamelCase : List[Any]=12, lowerCamelCase : Optional[int]=3_072, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : str=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : int=0.1, lowerCamelCase : int=0.0, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : str=0.02, lowerCamelCase : Optional[Any]=1E-5, lowerCamelCase : Tuple="group", lowerCamelCase : List[str]="gelu", lowerCamelCase : int=(512, 512, 512, 512, 512, 512, 512), lowerCamelCase : Optional[Any]=(5, 2, 2, 2, 2, 2, 2), lowerCamelCase : Optional[Any]=(10, 3, 3, 3, 3, 2, 2), lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[Any]=128, lowerCamelCase : Optional[int]=16, lowerCamelCase : Optional[int]=False, lowerCamelCase : Dict=True, lowerCamelCase : Any=0.05, lowerCamelCase : Optional[Any]=10, lowerCamelCase : Any=2, lowerCamelCase : Dict=0.0, lowerCamelCase : Union[str, Any]=10, lowerCamelCase : Dict=0, lowerCamelCase : List[Any]=320, lowerCamelCase : Any=2, lowerCamelCase : List[Any]=0.1, lowerCamelCase : Any=100, lowerCamelCase : int=256, lowerCamelCase : Tuple=256, lowerCamelCase : Any=0.1, lowerCamelCase : Dict="mean", lowerCamelCase : Any=False, lowerCamelCase : Dict=False, lowerCamelCase : Optional[int]=256, lowerCamelCase : Optional[int]=(512, 512, 512, 512, 1_500), lowerCamelCase : Optional[Any]=(5, 3, 3, 1, 1), lowerCamelCase : Union[str, Any]=(1, 2, 3, 1, 1), lowerCamelCase : List[str]=512, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Optional[int]=1, lowerCamelCase : int=2, lowerCamelCase : int=504, **lowerCamelCase : str, ): '''simple docstring''' super().__init__(**lowerCamelCase, pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(lowerCamelCase ) lowercase__ = list(lowerCamelCase ) lowercase__ = list(lowerCamelCase ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = num_clusters lowercase__ = do_stable_layer_norm lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ = num_codevectors_per_group lowercase__ = num_codevector_groups lowercase__ = contrastive_logits_temperature lowercase__ = feat_quantizer_dropout lowercase__ = num_negatives lowercase__ = codevector_dim lowercase__ = proj_codevector_dim lowercase__ = diversity_loss_weight # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(lowerCamelCase ) lowercase__ = list(lowerCamelCase ) lowercase__ = list(lowerCamelCase ) lowercase__ = xvector_output_dim @property def lowercase__ ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1 )
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[str] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A__ : Any = logging.get_logger(__name__) A__ : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : List[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Optional[int] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Optional[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : str = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } A__ : List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } A__ : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } A__ : int = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A__ : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A__ : int = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ : List[Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A__ : int = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A__ : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(A__ ) class _UpperCAmelCase : """simple docstring""" def __call__( self : int, lowerCamelCase : Tuple, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Union[bool, str] = False, lowerCamelCase : Union[bool, str] = False, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : Optional[bool] = None, **lowerCamelCase : List[str], ): '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = titles if not isinstance(lowerCamelCase, lowerCamelCase ) else [titles] lowercase__ = texts if not isinstance(lowerCamelCase, lowerCamelCase ) else [texts] lowercase__ = len(lowerCamelCase ) lowercase__ = questions if not isinstance(lowerCamelCase, lowerCamelCase ) else [questions] * n_passages if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( F"""There should be as many titles than texts but got {len(lowerCamelCase )} titles and {len(lowerCamelCase )} texts.""" ) lowercase__ = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase )['''input_ids'''] lowercase__ = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase )['''input_ids'''] lowercase__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase ) def lowercase__ ( self : Tuple, lowerCamelCase : BatchEncoding, lowerCamelCase : DPRReaderOutput, lowerCamelCase : int = 16, lowerCamelCase : int = 64, lowerCamelCase : int = 4, ): '''simple docstring''' lowercase__ = reader_input['''input_ids'''] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(lowerCamelCase ) lowercase__ = sorted(range(lowerCamelCase ), reverse=lowerCamelCase, key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(lowerCamelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : List[int], lowerCamelCase : int, lowerCamelCase : int, ): '''simple docstring''' lowercase__ = [] for start_index, start_score in enumerate(lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(lowerCamelCase, key=lambda lowerCamelCase : x[1], reverse=lowerCamelCase ) lowercase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) lowercase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = READER_PRETRAINED_INIT_CONFIGURATION lowercase__ = ["""input_ids""", """attention_mask"""]
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Any = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """roberta""" def __init__( self : str, lowerCamelCase : Dict=50_265, lowerCamelCase : int=768, lowerCamelCase : Optional[int]=12, lowerCamelCase : Dict=12, lowerCamelCase : Optional[Any]=3_072, lowerCamelCase : Union[str, Any]="gelu", lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Dict=0.1, lowerCamelCase : str=512, lowerCamelCase : str=2, lowerCamelCase : int=0.02, lowerCamelCase : Any=1E-12, lowerCamelCase : int=1, lowerCamelCase : List[str]=0, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Any="absolute", lowerCamelCase : Dict=True, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : List[str], ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class _UpperCAmelCase ( A__ ): """simple docstring""" @property def lowercase__ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
from __future__ import annotations from typing import Any class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : int = 6 ): '''simple docstring''' lowercase__ = None lowercase__ = None self.create_linked_list(lowerCamelCase ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = Node() lowercase__ = current_node lowercase__ = current_node lowercase__ = current_node for _ in range(1, lowerCamelCase ): lowercase__ = Node() lowercase__ = current_node lowercase__ = previous_node lowercase__ = current_node lowercase__ = self.front lowercase__ = previous_node def lowercase__ ( self : int ): '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self : Dict, lowerCamelCase : Any ): '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase__ = self.rear.next if self.rear: lowercase__ = data def lowercase__ ( self : Tuple ): '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase__ = self.front.data lowercase__ = None return data lowercase__ = self.front lowercase__ = old_front.next lowercase__ = old_front.data lowercase__ = None return data def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' if self.is_empty(): raise Exception('''Empty Queue''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' lowercase__ = None lowercase__ = None lowercase__ = None if __name__ == "__main__": import doctest doctest.testmod()
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer A__ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Union[str, Any] = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } A__ : int = { 'unc-nlp/lxmert-base-uncased': 5_12, } A__ : List[Any] = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LxmertTokenizer def __init__( self : str, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Tuple=None, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : int="[UNK]", lowerCamelCase : Optional[int]="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Dict="[CLS]", lowerCamelCase : List[str]="[MASK]", lowerCamelCase : Union[str, Any]=True, lowerCamelCase : List[Any]=None, **lowerCamelCase : List[Any], ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : int, lowerCamelCase : Optional[Any], lowerCamelCase : Any=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : int, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = val lowercase__ = None lowercase__ = None def lowercase__ ( self : Union[str, Any], lowerCamelCase : str ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: lowercase__ = Node(lowerCamelCase ) else: self.left.insert(lowerCamelCase ) elif val > self.val: if self.right is None: lowercase__ = Node(lowerCamelCase ) else: self.right.insert(lowerCamelCase ) else: lowercase__ = val def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # Recursive traversal if root: inorder(root.left , lowerCamelCase_ ) res.append(root.val ) inorder(root.right , lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # Build BST if len(lowerCamelCase_ ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(lowerCamelCase_ ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(lowerCamelCase_ , lowerCamelCase_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''file.csv''' lowercase__ = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''malformed_file.csv''' lowercase__ = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''csv_with_image.csv''' lowercase__ = textwrap.dedent( F"""\ image {image_file} """ ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''csv_with_label.csv''' lowercase__ = textwrap.dedent( '''\ label good bad good ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path / '''csv_with_int_list.csv''' lowercase__ = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowercase__ = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowercase__ = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowerCamelCase_ ) for label in labels] def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowercase__ = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() lowercase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], **lowerCamelCase : List[str] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Any, **lowerCamelCase : int ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Dict, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase, padding='''max_length''', max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = BertJapaneseTokenizer lowercase__ = False lowercase__ = True def lowercase__ ( self : str ): '''simple docstring''' super().setUp() lowercase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase__ = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.get_input_output_texts(lowerCamelCase ) lowercase__ = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.decode(lowerCamelCase, clean_up_tokenization_spaces=lowerCamelCase ) return text, ids def lowercase__ ( self : Any ): '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file ) lowercase__ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(lowerCamelCase, ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='''mecab''' ) self.assertIsNotNone(lowerCamelCase ) lowercase__ = '''こんにちは、世界。\nこんばんは、世界。''' lowercase__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ = os.path.join(self.tmpdirname, '''tokenizer.bin''' ) with open(lowerCamelCase, '''wb''' ) as handle: pickle.dump(lowerCamelCase, lowerCamelCase ) with open(lowerCamelCase, '''rb''' ) as handle: lowercase__ = pickle.load(lowerCamelCase ) lowercase__ = tokenizer_new.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''], ) def lowercase__ ( self : List[str] ): '''simple docstring''' try: lowercase__ = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''], ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' try: lowercase__ = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''], ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MecabTokenizer(do_lower_case=lowerCamelCase, mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''], ) def lowercase__ ( self : Any ): '''simple docstring''' try: lowercase__ = MecabTokenizer( do_lower_case=lowerCamelCase, normalize_text=lowerCamelCase, mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''], ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = MecabTokenizer(normalize_text=lowerCamelCase, mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''], ) @require_sudachi def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(lowerCamelCase ) lowercase__ = '''こんにちは、世界。\nこんばんは、世界。''' lowercase__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ = os.path.join(self.tmpdirname, '''tokenizer.bin''' ) with open(lowerCamelCase, '''wb''' ) as handle: pickle.dump(lowerCamelCase, lowerCamelCase ) with open(lowerCamelCase, '''rb''' ) as handle: lowercase__ = pickle.load(lowerCamelCase ) lowercase__ = tokenizer_new.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) @require_sudachi def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''], ) @require_sudachi def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = SudachiTokenizer(sudachi_dict_type='''core''', sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ), ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = SudachiTokenizer(sudachi_dict_type='''core''', sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ), ['''外国人''', '''参政権'''] ) @require_sudachi def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = SudachiTokenizer(sudachi_dict_type='''core''', sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ), ['''外国人参政権'''] ) @require_sudachi def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = SudachiTokenizer(do_lower_case=lowerCamelCase, sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''], ) @require_sudachi def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = SudachiTokenizer(normalize_text=lowerCamelCase, sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''], ) @require_sudachi def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = SudachiTokenizer(trim_whitespace=lowerCamelCase, sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''], ) @require_jumanpp def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(lowerCamelCase ) lowercase__ = '''こんにちは、世界。\nこんばんは、世界。''' lowercase__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ = os.path.join(self.tmpdirname, '''tokenizer.bin''' ) with open(lowerCamelCase, '''wb''' ) as handle: pickle.dump(lowerCamelCase, lowerCamelCase ) with open(lowerCamelCase, '''rb''' ) as handle: lowercase__ = pickle.load(lowerCamelCase ) lowercase__ = tokenizer_new.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) @require_jumanpp def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''], ) @require_jumanpp def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = JumanppTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''], ) @require_jumanpp def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = JumanppTokenizer(normalize_text=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''], ) @require_jumanpp def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = JumanppTokenizer(trim_whitespace=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ), ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''], ) @require_jumanpp def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ), ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''], ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowercase__ = {} for i, token in enumerate(lowerCamelCase ): lowercase__ = i lowercase__ = WordpieceTokenizer(vocab=lowerCamelCase, unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ), [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ), ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ), ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ), ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) lowercase__ = tokenizer.subword_tokenizer lowercase__ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(lowerCamelCase, ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) lowercase__ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(lowerCamelCase, ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) lowercase__ = tokenizer.encode('''ありがとう。''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''どういたしまして。''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = BertJapaneseTokenizer lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' super().setUp() lowercase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : str, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type='''character''', **lowerCamelCase ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase__ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def lowercase__ ( self : Any ): '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : int ): '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file, subword_tokenizer_type='''character''' ) lowercase__ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( lowerCamelCase, ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase__ = {} for i, token in enumerate(lowerCamelCase ): lowercase__ = i lowercase__ = CharacterTokenizer(vocab=lowerCamelCase, unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ), [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ), ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ), ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) lowercase__ = tokenizer.encode('''ありがとう。''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''どういたしまして。''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cl-tohoku/bert-base-japanese''' lowercase__ = AutoTokenizer.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase, lowerCamelCase ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''', level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) lowercase__ = '''bert-base-cased''' with self.assertLogs('''transformers''', level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: A__ : int = None A__ : Dict = logging.get_logger(__name__) A__ : int = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } A__ : Dict = { 'camembert-base': 5_12, } A__ : Any = '▁' class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = CamembertTokenizer def __init__( self : Tuple, lowerCamelCase : str=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : int="<s>", lowerCamelCase : Union[str, Any]="</s>", lowerCamelCase : Any="</s>", lowerCamelCase : Optional[Any]="<s>", lowerCamelCase : int="<unk>", lowerCamelCase : Any="<pad>", lowerCamelCase : Optional[int]="<mask>", lowerCamelCase : Any=["<s>NOTUSED", "</s>NOTUSED"], **lowerCamelCase : str, ): '''simple docstring''' lowercase__ = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, unk_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowercase__ ( self : Any, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Optional[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Tuple, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file, lowerCamelCase ) return (out_vocab_file,)
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
from manim import * class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = Rectangle(height=0.5, width=0.5 ) lowercase__ = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase, buff=0 ) lowercase__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase, buff=0 ) lowercase__ = VGroup(lowerCamelCase, lowerCamelCase ).arrange(lowerCamelCase, buff=0 ) lowercase__ = Text('''CPU''', font_size=24 ) lowercase__ = Group(lowerCamelCase, lowerCamelCase ).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase ) lowercase__ = [mem.copy() for i in range(1 )] lowercase__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase, buff=0 ) lowercase__ = Text('''GPU''', font_size=24 ) lowercase__ = Group(lowerCamelCase, lowerCamelCase ).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase ) gpu.align_to(lowerCamelCase, lowerCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase, buff=0 ) lowercase__ = Text('''Model''', font_size=24 ) lowercase__ = Group(lowerCamelCase, lowerCamelCase ).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase, run_time=1 ), Create(lowerCamelCase, run_time=1 ), Create(lowerCamelCase, run_time=1 ), ) lowercase__ = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""", font_size=24, ) lowercase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""", font_size=18, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase, run_time=2.5 ), Write(lowerCamelCase ), Write(lowerCamelCase ) ) self.add(lowerCamelCase ) lowercase__ = [] lowercase__ = [] lowercase__ = [] for i, rect in enumerate(lowerCamelCase ): lowercase__ = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase, opacity=0.7 ) cpu_target.move_to(lowerCamelCase ) cpu_target.generate_target() lowercase__ = 0.46 / 4 lowercase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=lowerCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=lowerCamelCase, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=lowerCamelCase, buff=0.0 ) cpu_targs.append(lowerCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase ) ) second_animations.append(MoveToTarget(lowerCamelCase, run_time=1.5 ) ) self.play(*lowerCamelCase ) self.play(*lowerCamelCase ) self.wait()
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = AudioLDMPipeline lowercase__ = TEXT_TO_AUDIO_PARAMS lowercase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowercase__ = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=(32, 64), class_embed_type='''simple_projection''', projection_class_embeddings_input_dim=32, class_embeddings_concat=lowerCamelCase, ) lowercase__ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=1, out_channels=1, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) torch.manual_seed(0 ) lowercase__ = ClapTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, projection_dim=32, ) lowercase__ = ClapTextModelWithProjection(lowerCamelCase ) lowercase__ = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''', model_max_length=77 ) lowercase__ = SpeechTaHifiGanConfig( model_in_dim=8, sampling_rate=16_000, upsample_initial_channel=16, upsample_rates=[2, 2], upsample_kernel_sizes=[4, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], normalize_before=lowerCamelCase, ) lowercase__ = SpeechTaHifiGan(lowerCamelCase ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * [inputs['''prompt''']] # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * [inputs.pop('''prompt''' )] lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase, padding='''max_length''', max_length=audioldm_pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = text_inputs['''input_ids'''].to(lowerCamelCase ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase, ) lowercase__ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase, dim=-1 ) lowercase__ = prompt_embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * ['''this is a negative prompt'''] lowercase__ = negative_prompt lowercase__ = 3 * [inputs['''prompt''']] # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * [inputs.pop('''prompt''' )] lowercase__ = [] for p in [prompt, negative_prompt]: lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase, padding='''max_length''', max_length=audioldm_pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = text_inputs['''input_ids'''].to(lowerCamelCase ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase, ) lowercase__ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase, dim=-1 ) embeds.append(lowerCamelCase ) lowercase__ , lowercase__ = embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = '''egg cracking''' lowercase__ = audioldm_pipe(**lowerCamelCase, negative_prompt=lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe([prompt] * batch_size, num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase__ = 2 lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=2, num_waveforms_per_prompt=lowerCamelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=lowerCamelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = audioldm_pipe.vocoder.config.sampling_rate lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = audioldm_pipe(audio_length_in_s=0.016, **lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) / vocoder_sampling_rate == 0.016 lowercase__ = audioldm_pipe(audio_length_in_s=0.032, **lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) / vocoder_sampling_rate == 0.032 def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = ['''hey'''] lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=1 ) lowercase__ = output.audios.shape assert audio_shape == (1, 256) lowercase__ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase__ = SpeechTaHifiGan(lowerCamelCase ).to(lowerCamelCase ) lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=1 ) lowercase__ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowercase__ ( self : int ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase ) @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[Any]="cpu", lowerCamelCase : List[Any]=torch.floataa, lowerCamelCase : List[str]=0 ): '''simple docstring''' lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = np.random.RandomState(lowerCamelCase ).standard_normal((1, 8, 128, 16) ) lowercase__ = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase, dtype=lowerCamelCase ) lowercase__ = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_inputs(lowerCamelCase ) lowercase__ = 25 lowercase__ = audioldm_pipe(**lowerCamelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 81_920 lowercase__ = audio[77_230:77_240] lowercase__ = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_inputs(lowerCamelCase ) lowercase__ = audioldm_pipe(**lowerCamelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 81_920 lowercase__ = audio[27_780:27_790] lowercase__ = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
import argparse import datetime def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } lowercase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase_ ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month lowercase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) lowercase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day lowercase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator lowercase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year lowercase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation lowercase__ = datetime.date(int(lowerCamelCase_ ) , int(lowerCamelCase_ ) , int(lowerCamelCase_ ) ) # Start math if m <= 2: lowercase__ = y - 1 lowercase__ = m + 12 # maths var lowercase__ = int(str(lowerCamelCase_ )[:2] ) lowercase__ = int(str(lowerCamelCase_ )[2:] ) lowercase__ = int(2.6 * m - 5.39 ) lowercase__ = int(c / 4 ) lowercase__ = int(k / 4 ) lowercase__ = int(d + k ) lowercase__ = int(t + u + v + x ) lowercase__ = int(z - (2 * c) ) lowercase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response lowercase__ = F"""Your date {date_input}, is a {days[str(lowerCamelCase_ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() A__ : str = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) A__ : Any = parser.parse_args() zeller(args.date_input)
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
# Lint as: python3 import itertools import os import re A__ : List[str] = re.compile(r'([A-Z]+)([A-Z][a-z])') A__ : Optional[Any] = re.compile(r'([a-z\d])([A-Z])') A__ : int = re.compile(r'(?<!_)_(?!_)') A__ : int = re.compile(r'(_{2,})') A__ : List[str] = r'^\w+(\.\w+)*$' A__ : Any = r'<>:/\|?*' def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _uppercase_uppercase_re.sub(r'''\1_\2''' , lowerCamelCase_ ) lowercase__ = _lowercase_uppercase_re.sub(r'''\1_\2''' , lowerCamelCase_ ) return name.lower() def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _single_underscore_re.split(lowerCamelCase_ ) lowercase__ = [_multiple_underscores_re.split(lowerCamelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCamelCase_ ) if n != '''''' ) def a ( lowerCamelCase_ ): '''simple docstring''' if os.path.basename(lowerCamelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if os.path.basename(lowerCamelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , lowerCamelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(lowerCamelCase_ )}-{split}""" def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = filename_prefix_for_split(lowerCamelCase_ , lowerCamelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" lowercase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) return F"""{filepath}*""" def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = filename_prefix_for_split(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if shard_lengths: lowercase__ = len(lowerCamelCase_ ) lowercase__ = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(lowerCamelCase_ )] if filetype_suffix: lowercase__ = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BridgeTowerImageProcessor""" lowercase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : List[str], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(lowerCamelCase, lowerCamelCase ) def __call__( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : str, ): '''simple docstring''' lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) # add pixel_values + pixel_mask lowercase__ = self.image_processor( lowerCamelCase, return_tensors=lowerCamelCase, do_normalize=lowerCamelCase, do_center_crop=lowerCamelCase, **lowerCamelCase ) encoding.update(lowerCamelCase ) return encoding def lowercase__ ( self : str, *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[Any], *lowerCamelCase : Optional[int], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
import math def a ( lowerCamelCase_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( lowerCamelCase_ = 0.1 ): '''simple docstring''' lowercase__ = 3 lowercase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCamelCase_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' assert column_title.isupper() lowercase__ = 0 lowercase__ = len(lowerCamelCase_ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , lowerCamelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = BertConfig.from_json_file(lowerCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__ = BertForPreTraining(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A__ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
from math import ceil def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = list(range(0 , lowerCamelCase_ ) ) lowercase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase__ = [] for i in device_map_blocks: if device_map_blocks.count(lowerCamelCase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCamelCase_ ) # Missing blocks lowercase__ = [i for i in blocks if i not in device_map_blocks] lowercase__ = [i for i in device_map_blocks if i not in blocks] if len(lowerCamelCase_ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(lowerCamelCase_ ) ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = list(range(lowerCamelCase_ ) ) lowercase__ = int(ceil(n_layers / len(lowerCamelCase_ ) ) ) lowercase__ = [layers[i : i + n_blocks] for i in range(0 , lowerCamelCase_ , lowerCamelCase_ )] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) lowercase__ = sorted(string.lower() ) return len(lowerCamelCase_ ) == len(set(lowerCamelCase_ ) ) if __name__ == "__main__": A__ : int = input('Enter a string ').strip() A__ : Optional[Any] = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = 1 lowercase__ = 3 lowercase__ = (32, 32) lowercase__ = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(lowerCamelCase ) return image @property def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) return model @property def lowercase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) return model @property def lowercase__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) return CLIPTextModel(lowerCamelCase ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' def extract(*lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[Any] ): class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' lowercase__ = torch.ones([0] ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str] ): '''simple docstring''' self.pixel_values.to(lowerCamelCase ) return self return Out() return extract def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.dummy_cond_unet lowercase__ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) lowercase__ = self.dummy_vae lowercase__ = self.dummy_text_encoder lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase__ = StableDiffusionPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) lowercase__ = output.images lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=lowerCamelCase, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.dummy_cond_unet lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = self.dummy_vae lowercase__ = self.dummy_text_encoder lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase__ = StableDiffusionPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) lowercase__ = output.images lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=lowerCamelCase, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''', safety_checker=lowerCamelCase ) assert isinstance(lowerCamelCase, lowerCamelCase ) assert isinstance(pipe.scheduler, lowerCamelCase ) assert pipe.safety_checker is None lowercase__ = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase__ = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_cond_unet lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = self.dummy_vae lowercase__ = self.dummy_text_encoder lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase__ = unet.half() lowercase__ = vae.half() lowercase__ = bert.half() # make sure here that pndm scheduler skips prk lowercase__ = StableDiffusionPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = sd_pipe([prompt], num_inference_steps=2, output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=lowerCamelCase ) lowercase__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase__ = 4_003_660_346 lowercase__ = 7 # without safety guidance (sld_guidance_scale = 0) lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=lowerCamelCase ) lowercase__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase__ = 2_734_971_755 lowercase__ = 7 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase__ = 1_044_355_234 lowercase__ = 12 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=lowerCamelCase, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
import math def a ( lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 ): '''simple docstring''' lowercase__ = end or len(lowerCamelCase_ ) for i in range(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = i lowercase__ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowercase__ = array[temp_index - 1] temp_index -= 1 lowercase__ = temp_index_value return array def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): # Max Heap '''simple docstring''' lowercase__ = index lowercase__ = 2 * index + 1 # Left Node lowercase__ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowercase__ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowercase__ = right_index if largest != index: lowercase__ , lowercase__ = array[largest], array[index] heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = len(lowerCamelCase_ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for i in range(n - 1 , 0 , -1 ): lowercase__ , lowercase__ = array[0], array[i] heapify(lowerCamelCase_ , 0 , lowerCamelCase_ ) return array def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = low lowercase__ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowercase__ , lowercase__ = array[j], array[i] i += 1 def a ( lowerCamelCase_ ): '''simple docstring''' if len(lowerCamelCase_ ) == 0: return array lowercase__ = 2 * math.ceil(math.loga(len(lowerCamelCase_ ) ) ) lowercase__ = 16 return intro_sort(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase_ ) max_depth -= 1 lowercase__ = median_of_a(lowerCamelCase_ , lowerCamelCase_ , start + ((end - start) // 2) + 1 , end - 1 ) lowercase__ = partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) intro_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = p return insertion_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() A__ : Tuple = input('Enter numbers separated by a comma : ').strip() A__ : Union[str, Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Dict = None A__ : int = logging.get_logger(__name__) A__ : int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A__ : str = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } A__ : Any = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } A__ : Optional[int] = '▁' # Segments (not really needed) A__ : Tuple = 0 A__ : Tuple = 1 A__ : Dict = 2 A__ : Any = 3 A__ : Any = 4 class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = """left""" lowercase__ = XLNetTokenizer def __init__( self : Optional[Any], lowerCamelCase : Tuple=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Tuple=False, lowerCamelCase : List[Any]=True, lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[int]="<s>", lowerCamelCase : Any="</s>", lowerCamelCase : Dict="<unk>", lowerCamelCase : Optional[Any]="<sep>", lowerCamelCase : Optional[Any]="<pad>", lowerCamelCase : List[Any]="<cls>", lowerCamelCase : Optional[int]="<mask>", lowerCamelCase : List[Any]=["<eop>", "<eod>"], **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token super().__init__( vocab_file=lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, remove_space=lowerCamelCase, keep_accents=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) lowercase__ = 3 lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self : Optional[int], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file, lowerCamelCase ) return (out_vocab_file,)
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowercase__ = """CIDAS/clipseg-rd64-refined""" lowercase__ = """image_segmenter""" lowercase__ = CLIPSegForImageSegmentation lowercase__ = ["""image""", """text"""] lowercase__ = ["""image"""] def __init__( self : Optional[Any], *lowerCamelCase : Tuple, **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(self, ['''vision'''] ) super().__init__(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Optional[Any], lowerCamelCase : "Image", lowerCamelCase : str ): '''simple docstring''' return self.pre_processor(text=[label], images=[image], padding=lowerCamelCase, return_tensors='''pt''' ) def lowercase__ ( self : Any, lowerCamelCase : Optional[int] ): '''simple docstring''' with torch.no_grad(): lowercase__ = self.model(**lowerCamelCase ).logits return logits def lowercase__ ( self : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = outputs.cpu().detach().numpy() lowercase__ = 0 lowercase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
import os def a ( ): '''simple docstring''' lowercase__ = os.path.dirname(os.path.realpath(lowerCamelCase_ ) ) lowercase__ = os.path.join(lowerCamelCase_ , '''triangle.txt''' ) with open(lowerCamelCase_ ) as f: lowercase__ = f.readlines() lowercase__ = [] for line in triangle: lowercase__ = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(lowerCamelCase_ ) ) a.append(lowerCamelCase_ ) for i in range(1 , len(lowerCamelCase_ ) ): for j in range(len(a[i] ) ): lowercase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowercase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase_ , lowerCamelCase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import operator def a ( lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None ): '''simple docstring''' lowercase__ = operator.lt if reverse else operator.gt lowercase__ = solution or [] if not arr: return solution lowercase__ = [arr.pop(0 )] for i, item in enumerate(lowerCamelCase_ ): if _operator(lowerCamelCase_ , sublist[-1] ): sublist.append(lowerCamelCase_ ) arr.pop(lowerCamelCase_ ) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase_ ) else: while sublist: lowercase__ = sublist.pop(0 ) for i, xx in enumerate(lowerCamelCase_ ): if not _operator(lowerCamelCase_ , lowerCamelCase_ ): solution.insert(lowerCamelCase_ , lowerCamelCase_ ) break else: solution.append(lowerCamelCase_ ) strand_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : List[str] = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = ['DeiTFeatureExtractor'] A__ : str = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A__ : Tuple = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Optional[int], lowerCamelCase : Any=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : List[str]=30, lowerCamelCase : Optional[Any]=400, lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=True, lowerCamelCase : int=True, lowerCamelCase : Dict=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''height''': 20, '''width''': 20} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = size lowercase__ = do_normalize lowercase__ = do_convert_rgb lowercase__ = [512, 1_024, 2_048, 4_096] lowercase__ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def lowercase__ ( self : Dict ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" ,) @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = PixaStructImageProcessor if is_vision_available() else None def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = PixaStructImageProcessingTester(self ) @property def lowercase__ ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_convert_rgb''' ) ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.image_processor_tester.prepare_dummy_image() lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = 2_048 lowercase__ = image_processor(lowerCamelCase, return_tensors='''pt''', max_patches=lowerCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606 ), atol=1E-3, rtol=1E-3 ) ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( lowerCamelCase, return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 lowercase__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCamelCase ): lowercase__ = image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches lowercase__ = '''Hello''' lowercase__ = image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCamelCase, header_text=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( lowerCamelCase, return_tensors='''pt''', max_patches=lowerCamelCase, header_text=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( lowerCamelCase, return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( lowerCamelCase, return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" ,) @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = PixaStructImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = PixaStructImageProcessingTester(self, num_channels=4 ) lowercase__ = 3 @property def lowercase__ ( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_convert_rgb''' ) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( lowerCamelCase, return_tensors='''pt''', max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
from math import sqrt def a ( lowerCamelCase_ = 100_0000 ): '''simple docstring''' lowercase__ = 0 lowercase__ = 0 lowercase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
'''simple docstring''' import requests a : str = """YOUR API KEY""" def __lowerCamelCase ( _lowercase , _lowercase = giphy_api_key ) -> list: UpperCAmelCase : Union[str, Any] = """+""".join(query.split() ) UpperCAmelCase : List[Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCAmelCase : List[Any] = requests.get(_lowercase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=False , A=True , A="None" , A=3 , A=4 , A=None , ) -> str: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Any = use_input_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : List[Any] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : List[str] = num_labels UpperCAmelCase : List[Any] = num_choices UpperCAmelCase : Optional[Any] = relative_attention UpperCAmelCase : int = position_biased_input UpperCAmelCase : Union[str, Any] = pos_att_type UpperCAmelCase : Tuple = scope def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = None if self.use_input_mask: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : Dict = None if self.use_labels: UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> List[Any]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowercase( self , A ) -> List[str]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[Any]: UpperCAmelCase : Tuple = DebertaVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A )[0] UpperCAmelCase : List[str] = model(A , token_type_ids=A )[0] UpperCAmelCase : Union[str, Any] = model(A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _lowercase( self , A , A , A , A , A , A , A ) -> int: UpperCAmelCase : str = DebertaVaForMaskedLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : str = self.num_labels UpperCAmelCase : int = DebertaVaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(A ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[Any]: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : int = DebertaVaForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[str]: UpperCAmelCase : Optional[Any] = DebertaVaForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Any: UpperCAmelCase : str = DebertaVaForMultipleChoice(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Any = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : int = config_and_inputs UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> str: UpperCAmelCase : Dict = DebertaVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> List[str]: self.config_tester.run_common_tests() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A ) def _lowercase( self ) -> str: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*A ) @slow def _lowercase( self ) -> Tuple: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = DebertaVaModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _lowercase( self ) -> List[str]: pass @slow def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCAmelCase : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a : int = logging.get_logger(__name__) a : Optional[Any] = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: for attribute in key.split(""".""" ): UpperCAmelCase : Tuple = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase : Optional[Any] = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase : Dict = value elif weight_type == "weight_v": UpperCAmelCase : List[Any] = value elif weight_type == "bias": UpperCAmelCase : Union[str, Any] = value else: UpperCAmelCase : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : int = [] UpperCAmelCase : List[Any] = fairseq_model.state_dict() UpperCAmelCase : Optional[int] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase : List[str] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Optional[int] = True if "*" in mapped_key: UpperCAmelCase : str = name.split(_lowercase )[0].split(""".""" )[-2] UpperCAmelCase : Optional[int] = mapped_key.replace("""*""" , _lowercase ) if "weight_g" in name: UpperCAmelCase : Optional[int] = """weight_g""" elif "weight_v" in name: UpperCAmelCase : Union[str, Any] = """weight_v""" elif "weight" in name: UpperCAmelCase : Any = """weight""" elif "bias" in name: UpperCAmelCase : Any = """bias""" else: UpperCAmelCase : Tuple = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Tuple = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Optional[int] = name.split(""".""" ) UpperCAmelCase : Union[str, Any] = int(items[0] ) UpperCAmelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : int = SEWConfig() if is_finetuned: UpperCAmelCase : Union[str, Any] = model.wav_encoder.wav_model.cfg else: UpperCAmelCase : Tuple = model.cfg UpperCAmelCase : Tuple = fs_config.conv_bias UpperCAmelCase : Dict = eval(fs_config.conv_feature_layers ) UpperCAmelCase : Any = [x[0] for x in conv_layers] UpperCAmelCase : List[Any] = [x[1] for x in conv_layers] UpperCAmelCase : Union[str, Any] = [x[2] for x in conv_layers] UpperCAmelCase : Tuple = """gelu""" UpperCAmelCase : Optional[Any] = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" UpperCAmelCase : List[str] = 0.0 UpperCAmelCase : List[Any] = fs_config.activation_fn.name UpperCAmelCase : Optional[Any] = fs_config.encoder_embed_dim UpperCAmelCase : Optional[Any] = 0.02 UpperCAmelCase : str = fs_config.encoder_ffn_embed_dim UpperCAmelCase : Union[str, Any] = 1e-5 UpperCAmelCase : Union[str, Any] = fs_config.encoder_layerdrop UpperCAmelCase : Union[str, Any] = fs_config.encoder_attention_heads UpperCAmelCase : str = fs_config.conv_pos_groups UpperCAmelCase : Dict = fs_config.conv_pos UpperCAmelCase : Optional[Any] = len(_lowercase ) UpperCAmelCase : List[str] = fs_config.encoder_layers UpperCAmelCase : Tuple = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCAmelCase : List[Any] = model.cfg UpperCAmelCase : int = fs_config.final_dropout UpperCAmelCase : Union[str, Any] = fs_config.layerdrop UpperCAmelCase : Any = fs_config.activation_dropout UpperCAmelCase : List[str] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCAmelCase : Tuple = fs_config.attention_dropout UpperCAmelCase : Optional[int] = fs_config.dropout_input UpperCAmelCase : Any = fs_config.dropout UpperCAmelCase : Tuple = fs_config.mask_channel_length UpperCAmelCase : int = fs_config.mask_channel_prob UpperCAmelCase : Union[str, Any] = fs_config.mask_length UpperCAmelCase : str = fs_config.mask_prob UpperCAmelCase : Any = """Wav2Vec2FeatureExtractor""" UpperCAmelCase : Any = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ) -> Dict: if is_finetuned: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: UpperCAmelCase : str = SEWConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : str = convert_config(model[0] , _lowercase ) UpperCAmelCase : Optional[int] = model[0].eval() UpperCAmelCase : List[str] = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) if is_finetuned: if dict_path: UpperCAmelCase : Optional[Any] = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : List[Any] = target_dict.pad_index UpperCAmelCase : int = target_dict.bos_index UpperCAmelCase : Dict = target_dict.pad_index UpperCAmelCase : List[str] = target_dict.bos_index UpperCAmelCase : Tuple = target_dict.eos_index UpperCAmelCase : Optional[int] = len(target_dict.symbols ) UpperCAmelCase : int = os.path.join(_lowercase , """vocab.json""" ) if not os.path.isdir(_lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowercase ) UpperCAmelCase : List[str] = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowercase , ) UpperCAmelCase : Tuple = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) UpperCAmelCase : List[Any] = SEWForCTC(_lowercase ) else: UpperCAmelCase : List[Any] = SEWModel(_lowercase ) feature_extractor.save_pretrained(_lowercase ) recursively_load_weights(_lowercase , _lowercase , _lowercase ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a : Any = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : List[Any] = (n * (n + 1) // 2) ** 2 UpperCAmelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a : int = logging.get_logger(__name__) a : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } a : Optional[int] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCAmelCase : Any = """lm_head""" UpperCAmelCase : Dict = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase : Any = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase : List[Any] = value elif weight_type == "weight_g": UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": UpperCAmelCase : Any = value elif weight_type == "bias": UpperCAmelCase : Dict = value else: UpperCAmelCase : str = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : str = [] UpperCAmelCase : Optional[Any] = fairseq_model.state_dict() UpperCAmelCase : Any = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase : str = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : List[str] = name.split(_lowercase )[0].split(""".""" )[-2] UpperCAmelCase : Optional[Any] = mapped_key.replace("""*""" , _lowercase ) if "weight_g" in name: UpperCAmelCase : Tuple = """weight_g""" elif "weight_v" in name: UpperCAmelCase : int = """weight_v""" elif "bias" in name: UpperCAmelCase : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : str = """weight""" else: UpperCAmelCase : Dict = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : List[Any] = name.split(""".""" ) UpperCAmelCase : Optional[int] = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ) -> Union[str, Any]: if config_path is not None: UpperCAmelCase : Tuple = UniSpeechConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : Any = UniSpeechConfig() if is_finetuned: if dict_path: UpperCAmelCase : Optional[Any] = Dictionary.load_from_json(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Union[str, Any] = target_dict.pad_index UpperCAmelCase : List[Any] = target_dict.bos_index UpperCAmelCase : Tuple = target_dict.eos_index UpperCAmelCase : Dict = len(target_dict.symbols ) UpperCAmelCase : str = os.path.join(_lowercase , """vocab.json""" ) if not os.path.isdir(_lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[Any] = 4_2 UpperCAmelCase : Dict = 4_3 with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_lowercase , _lowercase ) UpperCAmelCase : str = WavaVecaPhonemeCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowercase , ) UpperCAmelCase : Optional[int] = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) UpperCAmelCase : Dict = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) UpperCAmelCase : List[Any] = UniSpeechForCTC(_lowercase ) else: UpperCAmelCase : Union[str, Any] = UniSpeechForPreTraining(_lowercase ) if is_finetuned: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase : str = model[0].eval() recursively_load_weights(_lowercase , _lowercase , _lowercase ) hf_unispeech.save_pretrained(_lowercase ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a : Any = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) a : List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } a : Optional[Any] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: for attribute in key.split(""".""" ): UpperCAmelCase : Optional[Any] = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase : Any = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase : Dict = value elif weight_type == "weight_g": UpperCAmelCase : Tuple = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : int = value else: UpperCAmelCase : Tuple = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : int = [] UpperCAmelCase : Any = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Dict = True if "*" in mapped_key: UpperCAmelCase : Optional[Any] = name.split(_lowercase )[0].split(""".""" )[-2] UpperCAmelCase : Union[str, Any] = mapped_key.replace("""*""" , _lowercase ) if "weight_g" in name: UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: UpperCAmelCase : Tuple = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : Union[str, Any] = """weight""" else: UpperCAmelCase : Optional[Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Dict = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Any = name.split(""".""" ) UpperCAmelCase : Optional[int] = int(items[0] ) UpperCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Dict: # load the pre-trained checkpoints UpperCAmelCase : Optional[Any] = torch.load(_lowercase ) UpperCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase : Union[str, Any] = WavLMOrig(_lowercase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase : Union[str, Any] = WavLMConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : List[Any] = WavLMConfig() UpperCAmelCase : Optional[Any] = WavLMModel(_lowercase ) recursively_load_weights(_lowercase , _lowercase ) hf_wavlm.save_pretrained(_lowercase ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a : Union[str, Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , A = True , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase : Optional[Any] = get_size_dict(A , default_to_square=A ) UpperCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A , param_name="""crop_size""" ) UpperCAmelCase : Optional[int] = do_resize UpperCAmelCase : Dict = size UpperCAmelCase : Dict = resample UpperCAmelCase : Optional[int] = do_center_crop UpperCAmelCase : Tuple = crop_size UpperCAmelCase : List[Any] = do_rescale UpperCAmelCase : Dict = rescale_factor UpperCAmelCase : Optional[Any] = do_normalize UpperCAmelCase : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : Union[str, Any] = do_convert_rgb def _lowercase( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Dict = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase : Tuple = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Union[str, Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> Optional[int]: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Tuple = size if size is not None else self.size UpperCAmelCase : List[str] = get_size_dict(A , param_name="""size""" , default_to_square=A ) UpperCAmelCase : int = resample if resample is not None else self.resample UpperCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Optional[int] = get_size_dict(A , param_name="""crop_size""" , default_to_square=A ) UpperCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : int = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : List[str] = image_std if image_std is not None else self.image_std UpperCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : Optional[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : Union[str, Any] = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : Any = [to_numpy_array(A ) for image in images] if do_resize: UpperCAmelCase : Any = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: UpperCAmelCase : Tuple = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: UpperCAmelCase : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: UpperCAmelCase : int = [self.normalize(image=A , mean=A , std=A ) for image in images] UpperCAmelCase : int = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : List[Any] = os.path.abspath(_lowercase ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model UpperCAmelCase : Optional[Any] = tf.train.list_variables(_lowercase ) UpperCAmelCase : Any = [] UpperCAmelCase : List[str] = [] UpperCAmelCase : Any = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCAmelCase : Optional[Any] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' UpperCAmelCase : List[str] = name[1:] # figure out how many levels deep the name is UpperCAmelCase : Any = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(_lowercase ) # read data UpperCAmelCase : Dict = tf.train.load_variable(_lowercase , _lowercase ) names.append("""/""".join(_lowercase ) ) arrays.append(_lowercase ) logger.info(F'''Read a total of {len(_lowercase ):,} layers''' ) # Sanity check if len(set(_lowercase ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(_lowercase ) )})''' ) UpperCAmelCase : Tuple = list(set(_lowercase ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(_lowercase , _lowercase ): UpperCAmelCase : Optional[Any] = full_name.split("""/""" ) UpperCAmelCase : Optional[Any] = model UpperCAmelCase : str = [] for i, m_name in enumerate(_lowercase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): UpperCAmelCase : Union[str, Any] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) UpperCAmelCase : int = getattr(_lowercase , """embeddings""" ) UpperCAmelCase : Optional[int] = getattr(_lowercase , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) UpperCAmelCase : Any = getattr(_lowercase , """encoder""" ) UpperCAmelCase : Union[str, Any] = getattr(_lowercase , """layer""" ) UpperCAmelCase : str = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) UpperCAmelCase : int = getattr(_lowercase , """pooler""" ) UpperCAmelCase : Optional[Any] = getattr(_lowercase , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) UpperCAmelCase : Any = getattr(_lowercase , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) UpperCAmelCase : Tuple = getattr(_lowercase , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) UpperCAmelCase : Dict = getattr(_lowercase , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) UpperCAmelCase : Optional[int] = getattr(_lowercase , """token_type_embeddings""" ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) UpperCAmelCase : str = getattr(_lowercase , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) UpperCAmelCase : Optional[Any] = getattr(_lowercase , """attention""" ) UpperCAmelCase : Optional[int] = getattr(_lowercase , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) UpperCAmelCase : List[str] = getattr(_lowercase , """attention""" ) UpperCAmelCase : Any = getattr(_lowercase , """output""" ) UpperCAmelCase : List[Any] = getattr(_lowercase , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) UpperCAmelCase : Optional[Any] = getattr(_lowercase , """attention""" ) UpperCAmelCase : List[str] = getattr(_lowercase , """output""" ) UpperCAmelCase : Any = getattr(_lowercase , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) UpperCAmelCase : Dict = getattr(_lowercase , """output""" ) UpperCAmelCase : Any = getattr(_lowercase , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) UpperCAmelCase : List[str] = getattr(_lowercase , """output""" ) UpperCAmelCase : Union[str, Any] = getattr(_lowercase , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) UpperCAmelCase : List[str] = getattr(_lowercase , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) UpperCAmelCase : Optional[Any] = getattr(_lowercase , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) UpperCAmelCase : Any = getattr(_lowercase , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) UpperCAmelCase : Optional[int] = getattr(_lowercase , """intermediate""" ) UpperCAmelCase : Any = getattr(_lowercase , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) UpperCAmelCase : Union[str, Any] = getattr(_lowercase , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) UpperCAmelCase : Union[str, Any] = getattr(_lowercase , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) UpperCAmelCase : Optional[int] = getattr(_lowercase , """weight""" ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary UpperCAmelCase : Optional[int] = """.""".join(_lowercase ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , _lowercase ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , _lowercase ): UpperCAmelCase : Tuple = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCAmelCase : Union[str, Any] = array.transpose() if pointer.shape == array.shape: UpperCAmelCase : Tuple = torch.from_numpy(_lowercase ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) UpperCAmelCase : str = BertConfig.from_json_file(_lowercase ) UpperCAmelCase : List[Any] = BertModel(_lowercase ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": a : str = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) a : Optional[Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __lowerCamelCase ( _lowercase ) -> Tuple: # getting number of pixels in the image UpperCAmelCase , UpperCAmelCase : List[Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_lowercase ): for j in range(_lowercase ): UpperCAmelCase : int = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image a : Optional[int] = imread("""image_data/lena.jpg""", 1) # convert to its negative a : List[str] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def _lowercase( self , A ) -> str: UpperCAmelCase : Any = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings UpperCAmelCase : Tuple = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def _lowercase( self , A ) -> Any: TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _lowercase( self , A ) -> str: # create estimator UpperCAmelCase : Union[str, Any] = self.create_estimator(A ) # run training estimator.fit() # result dataframe UpperCAmelCase : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class UpperCamelCase_ : def __init__( self , A , A , A , A=None , A=None ) -> Dict: UpperCAmelCase : Dict = start UpperCAmelCase : List[Any] = end UpperCAmelCase : Any = val UpperCAmelCase : List[str] = (start + end) // 2 UpperCAmelCase : Any = left UpperCAmelCase : Any = right def __repr__( self ) -> str: return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class UpperCamelCase_ : def __init__( self , A , A ) -> Optional[Any]: UpperCAmelCase : int = collection UpperCAmelCase : Any = function if self.collection: UpperCAmelCase : List[Any] = self._build_tree(0 , len(A ) - 1 ) def _lowercase( self , A , A ) -> List[Any]: self._update_tree(self.root , A , A ) def _lowercase( self , A , A ) -> Union[str, Any]: return self._query_range(self.root , A , A ) def _lowercase( self , A , A ) -> Optional[Any]: if start == end: return SegmentTreeNode(A , A , self.collection[start] ) UpperCAmelCase : int = (start + end) // 2 UpperCAmelCase : Tuple = self._build_tree(A , A ) UpperCAmelCase : Any = self._build_tree(mid + 1 , A ) return SegmentTreeNode(A , A , self.fn(left.val , right.val ) , A , A ) def _lowercase( self , A , A , A ) -> Union[str, Any]: if node.start == i and node.end == i: UpperCAmelCase : Optional[int] = val return if i <= node.mid: self._update_tree(node.left , A , A ) else: self._update_tree(node.right , A , A ) UpperCAmelCase : List[str] = self.fn(node.left.val , node.right.val ) def _lowercase( self , A , A , A ) -> List[str]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , A , A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , A , node.mid ) , self._query_range(node.right , node.mid + 1 , A ) , ) else: # range in right child tree return self._query_range(node.right , A , A ) def _lowercase( self ) -> List[Any]: if self.root is not None: UpperCAmelCase : Union[str, Any] = Queue() queue.put(self.root ) while not queue.empty(): UpperCAmelCase : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 5_0) a : Optional[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Dict = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'realm' def __init__( self , A=30522 , A=768 , A=128 , A=12 , A=12 , A=8 , A=3072 , A="gelu_new" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=256 , A=10 , A=1e-3 , A=5 , A=320 , A=13353718 , A=5000 , A=1 , A=0 , A=2 , **A , ) -> Tuple: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) # Common config UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Any = hidden_size UpperCAmelCase : str = retriever_proj_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = num_candidates UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : Any = layer_norm_eps # Reader config UpperCAmelCase : Union[str, Any] = span_hidden_size UpperCAmelCase : List[Any] = max_span_width UpperCAmelCase : str = reader_layer_norm_eps UpperCAmelCase : Tuple = reader_beam_size UpperCAmelCase : Any = reader_seq_len # Retrieval config UpperCAmelCase : Tuple = num_block_records UpperCAmelCase : Dict = searcher_beam_size
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Any = logging.get_logger(__name__) a : Dict = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'deta' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=None , A=900 , A=2048 , A=6 , A=2048 , A=8 , A=6 , A=1024 , A=8 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=True , A=False , A="sine" , A=5 , A=4 , A=4 , A=True , A=300 , A=True , A=True , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , A=0.2_5 , **A , ) -> List[Any]: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(A , A ): UpperCAmelCase : Dict = backbone_config.pop("""model_type""" ) UpperCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : int = config_class.from_dict(A ) UpperCAmelCase : Optional[Any] = backbone_config UpperCAmelCase : Union[str, Any] = num_queries UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : List[Any] = d_model UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_layers UpperCAmelCase : int = encoder_attention_heads UpperCAmelCase : Dict = decoder_ffn_dim UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Optional[int] = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Optional[int] = activation_dropout UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : Optional[int] = init_xavier_std UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Any = auxiliary_loss UpperCAmelCase : Optional[int] = position_embedding_type # deformable attributes UpperCAmelCase : Dict = num_feature_levels UpperCAmelCase : List[Any] = encoder_n_points UpperCAmelCase : Optional[Any] = decoder_n_points UpperCAmelCase : Union[str, Any] = two_stage UpperCAmelCase : str = two_stage_num_proposals UpperCAmelCase : Optional[Any] = with_box_refine UpperCAmelCase : int = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCAmelCase : int = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : int = giou_cost # Loss coefficients UpperCAmelCase : Optional[int] = mask_loss_coefficient UpperCAmelCase : Tuple = dice_loss_coefficient UpperCAmelCase : Tuple = bbox_loss_coefficient UpperCAmelCase : str = giou_loss_coefficient UpperCAmelCase : List[Any] = eos_coefficient UpperCAmelCase : Dict = focal_alpha super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[str] = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Union[str, Any] = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging a : str = logging.get_logger(__name__) a : List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED a : List[str] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } a : List[Any] = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Dict = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase : Tuple = bs[:] UpperCAmelCase : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase : int = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : List[Any] = set() UpperCAmelCase : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Any = char return pairs class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Optional[int]: UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token UpperCAmelCase : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token UpperCAmelCase : List[str] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : Union[str, Any] = json.load(A ) UpperCAmelCase : str = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Optional[int] = errors # how to handle errors in decoding UpperCAmelCase : List[str] = bytes_to_unicode() UpperCAmelCase : Any = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : Dict = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase : Optional[int] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Union[str, Any] = {} UpperCAmelCase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase : Optional[Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase( self ) -> int: return len(self.encoder ) def _lowercase( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase( self , A ) -> int: if token in self.cache: return self.cache[token] UpperCAmelCase : List[Any] = tuple(A ) UpperCAmelCase : List[Any] = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase : Dict = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : int = bigram UpperCAmelCase : Tuple = [] UpperCAmelCase : Dict = 0 while i < len(A ): try: UpperCAmelCase : List[Any] = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Dict = tuple(A ) UpperCAmelCase : Any = new_word if len(A ) == 1: break else: UpperCAmelCase : Optional[int] = get_pairs(A ) UpperCAmelCase : Optional[int] = """ """.join(A ) UpperCAmelCase : str = word return word def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : int = [] for token in re.findall(self.pat , A ): UpperCAmelCase : int = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def _lowercase( self , A ) -> Dict: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def _lowercase( self , A ) -> Dict: return self.decoder.get(A ) def _lowercase( self , A ) -> Any: UpperCAmelCase : Union[str, Any] = """""".join(A ) UpperCAmelCase : Any = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Dict = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Dict = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) UpperCAmelCase : str = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase : Optional[Any] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] UpperCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A=False , **A ) -> str: UpperCAmelCase : Tuple = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): UpperCAmelCase : List[str] = """ """ + text return (text, kwargs) def _lowercase( self , A , A = None , A = PaddingStrategy.DO_NOT_PAD , A = None , A = None , ) -> dict: UpperCAmelCase : Union[str, Any] = super()._pad( encoded_inputs=A , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase : List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase : Optional[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase : Dict = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: UpperCAmelCase : Dict = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase : int = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Optional[int] = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' from __future__ import annotations a : str = list[tuple[int, int]] a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a : Optional[int] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCamelCase_ : def __init__( self , A , A , A , A , A , A , ) -> str: UpperCAmelCase : List[str] = pos_x UpperCAmelCase : List[str] = pos_y UpperCAmelCase : Optional[int] = (pos_y, pos_x) UpperCAmelCase : int = goal_x UpperCAmelCase : int = goal_y UpperCAmelCase : Union[str, Any] = g_cost UpperCAmelCase : Dict = parent UpperCAmelCase : Tuple = self.calculate_heuristic() def _lowercase( self ) -> float: UpperCAmelCase : int = abs(self.pos_x - self.goal_x ) UpperCAmelCase : List[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , A ) -> bool: return self.f_cost < other.f_cost class UpperCamelCase_ : def __init__( self , A , A ) -> int: UpperCAmelCase : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A ) UpperCAmelCase : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , A ) UpperCAmelCase : Union[str, Any] = [self.start] UpperCAmelCase : list[Node] = [] UpperCAmelCase : Any = False def _lowercase( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : List[Any] = True return self.retrace_path(A ) self.closed_nodes.append(A ) UpperCAmelCase : Any = self.get_successors(A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A ) else: # retrieve the best current path UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A ) else: self.open_nodes.append(A ) if not self.reached: return [self.start.pos] return None def _lowercase( self , A ) -> list[Node]: UpperCAmelCase : int = [] for action in delta: UpperCAmelCase : Optional[int] = parent.pos_x + action[1] UpperCAmelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A , A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A , ) ) return successors def _lowercase( self , A ) -> Path: UpperCAmelCase : str = node UpperCAmelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : Union[str, Any] = current_node.parent path.reverse() return path if __name__ == "__main__": a : str = (0, 0) a : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") a : Optional[Any] = GreedyBestFirst(init, goal) a : Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: a : Any = 2 for elem in grid: print(elem)
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar a : int = TypeVar("""KT""") a : int = TypeVar("""VT""") class UpperCamelCase_ ( Generic[KT, VT] ): def __init__( self , A = "root" , A = None ) -> int: UpperCAmelCase : Union[str, Any] = key UpperCAmelCase : List[str] = value UpperCAmelCase : list[Node[KT, VT]] = [] def __repr__( self ) -> str: return f'''Node({self.key}: {self.value})''' @property def _lowercase( self ) -> int: return len(self.forward ) class UpperCamelCase_ ( Generic[KT, VT] ): def __init__( self , A = 0.5 , A = 16 ) -> Tuple: UpperCAmelCase : Node[KT, VT] = Node[KT, VT]() UpperCAmelCase : Dict = 0 UpperCAmelCase : List[Any] = p UpperCAmelCase : Dict = max_level def __str__( self ) -> str: UpperCAmelCase : Union[str, Any] = list(self ) if len(A ) == 0: return f'''SkipList(level={self.level})''' UpperCAmelCase : List[Any] = max((len(str(A ) ) for item in items) , default=4 ) UpperCAmelCase : str = max(A , 4 ) + 4 UpperCAmelCase : List[str] = self.head UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[int] = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(A , """-""" ) + """* """ * len(A ) ) lines.append(""" """ * label_size + """| """ * len(A ) ) while len(node.forward ) != 0: UpperCAmelCase : Any = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(A , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(A ) ) UpperCAmelCase : List[str] = node.forward lines.append("""None""".ljust(A ) + """* """ * len(A ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(A ) def __iter__( self ) -> List[str]: UpperCAmelCase : int = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCAmelCase : Optional[int] = node.forward[0] def _lowercase( self ) -> int: UpperCAmelCase : List[str] = 1 while random() < self.p and level < self.max_level: level += 1 return level def _lowercase( self , A ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Dict = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCAmelCase : Optional[Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(A ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _lowercase( self , A ) -> Dict: UpperCAmelCase , UpperCAmelCase : Dict = self._locate_node(A ) if node is not None: for i, update_node in enumerate(A ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCAmelCase : Any = node.forward[i] else: UpperCAmelCase : List[Any] = update_node.forward[:i] def _lowercase( self , A , A ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self._locate_node(A ) if node is not None: UpperCAmelCase : List[str] = value else: UpperCAmelCase : Optional[Any] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , A ): update_vector.append(self.head ) UpperCAmelCase : Tuple = level UpperCAmelCase : Optional[Any] = Node(A , A ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(A ) else: UpperCAmelCase : Optional[Any] = new_node def _lowercase( self , A ) -> VT | None: UpperCAmelCase , UpperCAmelCase : Dict = self._locate_node(A ) if node is not None: return node.value return None def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Any = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 1_2 ) skip_list.insert("""Key3""" , 4_1 ) skip_list.insert("""Key4""" , -1_9 ) UpperCAmelCase : Optional[Any] = skip_list.head UpperCAmelCase : Optional[int] = {} while node.level != 0: UpperCAmelCase : Dict = node.forward[0] UpperCAmelCase : int = node.value assert len(_lowercase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def __lowerCamelCase ( ) -> Union[str, Any]: UpperCAmelCase : List[str] = SkipList() skip_list.insert("""Key1""" , 1_0 ) skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 1_0 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 1_0 ) UpperCAmelCase : int = skip_list.head UpperCAmelCase : Any = {} while node.level != 0: UpperCAmelCase : List[Any] = node.forward[0] UpperCAmelCase : int = node.value if len(_lowercase ) != 4: print() assert len(_lowercase ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : Any = SkipList() assert skip_list.find("""Some key""" ) is None def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : int = SkipList() skip_list.insert("""Key2""" , 2_0 ) assert skip_list.find("""Key2""" ) == 2_0 skip_list.insert("""Some Key""" , 1_0 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 1_3 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 1_0 assert skip_list.find("""V""" ) == 1_3 def __lowerCamelCase ( ) -> str: UpperCAmelCase : List[Any] = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def __lowerCamelCase ( ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = SkipList() skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""V""" , 1_3 ) skip_list.insert("""X""" , 1_4 ) skip_list.insert("""Key2""" , 1_5 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def __lowerCamelCase ( ) -> str: UpperCAmelCase : Optional[Any] = SkipList() skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""V""" , 1_3 ) skip_list.insert("""X""" , 1_4 ) skip_list.insert("""Key2""" , 1_5 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 1_4 assert skip_list.find("""Key1""" ) == 1_2 assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 1_2 assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : Optional[int] = SkipList() skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""V""" , 1_3 ) skip_list.insert("""X""" , 1_4_2 ) skip_list.insert("""Key2""" , 1_5 ) skip_list.delete("""X""" ) def traverse_keys(_lowercase ): yield node.key for forward_node in node.forward: yield from traverse_keys(_lowercase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __lowerCamelCase ( ) -> List[Any]: def is_sorted(_lowercase ): return all(next_item >= item for item, next_item in zip(_lowercase , lst[1:] ) ) UpperCAmelCase : int = SkipList() for i in range(1_0 ): skip_list.insert(_lowercase , _lowercase ) assert is_sorted(list(_lowercase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_lowercase ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(_lowercase ) ) def __lowerCamelCase ( ) -> List[str]: for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : List[Any] = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) set_seed(7_7_0) a : List[Any] = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } a : Dict = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } a : str = os.path.dirname(os.path.abspath(__file__)) a : Tuple = os.path.join(os.path.expanduser("""~"""), """.cache""") a : int = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[Any]: UpperCAmelCase : int = model_type if use_small: key += "_small" return os.path.join(_lowercase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: os.makedirs(_lowercase , exist_ok=_lowercase ) hf_hub_download(repo_id=_lowercase , filename=_lowercase , local_dir=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase="text" ) -> Optional[Any]: if model_type == "text": UpperCAmelCase : int = BarkSemanticModel UpperCAmelCase : Optional[Any] = BarkSemanticConfig UpperCAmelCase : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": UpperCAmelCase : List[str] = BarkCoarseModel UpperCAmelCase : int = BarkCoarseConfig UpperCAmelCase : Union[str, Any] = BarkCoarseGenerationConfig elif model_type == "fine": UpperCAmelCase : str = BarkFineModel UpperCAmelCase : List[str] = BarkFineConfig UpperCAmelCase : str = BarkFineGenerationConfig else: raise NotImplementedError() UpperCAmelCase : Union[str, Any] = F'''{model_type}_small''' if use_small else model_type UpperCAmelCase : int = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_lowercase ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) UpperCAmelCase : Dict = torch.load(_lowercase , map_location=_lowercase ) # this is a hack UpperCAmelCase : int = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: UpperCAmelCase : Optional[int] = model_args["""vocab_size"""] UpperCAmelCase : Optional[Any] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCAmelCase : str = model_args.pop("""n_head""" ) UpperCAmelCase : Optional[Any] = model_args.pop("""n_embd""" ) UpperCAmelCase : Optional[int] = model_args.pop("""n_layer""" ) UpperCAmelCase : str = ConfigClass(**checkpoint["""model_args"""] ) UpperCAmelCase : List[str] = ModelClass(config=_lowercase ) UpperCAmelCase : Optional[Any] = GenerationConfigClass() UpperCAmelCase : Tuple = model_generation_config UpperCAmelCase : Any = checkpoint["""model"""] # fixup checkpoint UpperCAmelCase : List[str] = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(_lowercase ): # replace part of the key with corresponding layer name in HF implementation UpperCAmelCase : List[Any] = k[len(_lowercase ) :] for old_layer_name in new_layer_name_dict: UpperCAmelCase : Union[str, Any] = new_k.replace(_lowercase , new_layer_name_dict[old_layer_name] ) UpperCAmelCase : Optional[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCAmelCase : Any = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} UpperCAmelCase : Dict = set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCAmelCase : Optional[int] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(_lowercase ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(_lowercase ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(_lowercase , strict=_lowercase ) UpperCAmelCase : str = model.num_parameters(exclude_embeddings=_lowercase ) UpperCAmelCase : Union[str, Any] = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(_lowercase , 3 )} loss''' ) model.eval() model.to(_lowercase ) del checkpoint, state_dict return model def __lowerCamelCase ( _lowercase , _lowercase=False , _lowercase="text" ) -> Optional[int]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCAmelCase : List[str] = """cpu""" # do conversion on cpu UpperCAmelCase : int = _get_ckpt_path(_lowercase , use_small=_lowercase ) UpperCAmelCase : List[str] = _load_model(_lowercase , _lowercase , model_type=_lowercase , use_small=_lowercase ) # load bark initial model UpperCAmelCase : Union[str, Any] = _bark_load_model(_lowercase , """cpu""" , model_type=_lowercase , use_small=_lowercase ) if model_type == "text": UpperCAmelCase : Tuple = bark_model["""model"""] if model.num_parameters(exclude_embeddings=_lowercase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model UpperCAmelCase : Dict = 5 UpperCAmelCase : Tuple = 1_0 if model_type in ["text", "coarse"]: UpperCAmelCase : Dict = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) UpperCAmelCase : List[Any] = bark_model(_lowercase )[0] UpperCAmelCase : List[Any] = model(_lowercase ) # take last logits UpperCAmelCase : List[Any] = output_new_model_total.logits[:, [-1], :] else: UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : Optional[Any] = 8 UpperCAmelCase : List[str] = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCAmelCase : str = model(_lowercase , _lowercase ) UpperCAmelCase : int = bark_model(_lowercase , _lowercase ) UpperCAmelCase : str = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> str: UpperCAmelCase : Optional[Any] = os.path.join(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = BarkSemanticConfig.from_pretrained(os.path.join(_lowercase , """config.json""" ) ) UpperCAmelCase : Tuple = BarkCoarseConfig.from_pretrained(os.path.join(_lowercase , """config.json""" ) ) UpperCAmelCase : Optional[Any] = BarkFineConfig.from_pretrained(os.path.join(_lowercase , """config.json""" ) ) UpperCAmelCase : List[str] = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) UpperCAmelCase : Tuple = BarkSemanticModel.from_pretrained(_lowercase ) UpperCAmelCase : Dict = BarkCoarseModel.from_pretrained(_lowercase ) UpperCAmelCase : Union[str, Any] = BarkFineModel.from_pretrained(_lowercase ) UpperCAmelCase : Optional[int] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) UpperCAmelCase : Any = BarkConfig.from_sub_model_configs( _lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCAmelCase : Optional[int] = BarkModel(_lowercase ) UpperCAmelCase : Dict = semantic UpperCAmelCase : Union[str, Any] = coarseAcoustic UpperCAmelCase : Optional[Any] = fineAcoustic UpperCAmelCase : Dict = codec UpperCAmelCase : Dict = bark_generation_config Path(_lowercase ).mkdir(exist_ok=_lowercase ) bark.save_pretrained(_lowercase , repo_id=_lowercase , push_to_hub=_lowercase ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") a : Dict = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: # Initialise PyTorch model UpperCAmelCase : Dict = FunnelConfig.from_json_file(_lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : Tuple = FunnelBaseModel(_lowercase ) if base_model else FunnelModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) a : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 42 class UpperCamelCase_ : def __init__( self , A ) -> Any: UpperCAmelCase : list[list[Edge]] = [[] for _ in range(A )] UpperCAmelCase : Dict = size def __getitem__( self , A ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _lowercase( self ) -> Optional[int]: return self._size def _lowercase( self , A , A , A ) -> List[str]: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(A , A ) ) def _lowercase( self , A , A ) -> int | None: UpperCAmelCase : List[str] = deque([start_vertex] ) UpperCAmelCase : list[int | None] = [None] * self.size UpperCAmelCase : Optional[int] = 0 while queue: UpperCAmelCase : Optional[Any] = queue.popleft() UpperCAmelCase : int = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase : List[Any] = current_distance + edge.weight UpperCAmelCase : Dict = distances[edge.destination_vertex] if ( isinstance(A , A ) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase : Union[str, Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a : Optional[int] = logging.getLogger(__name__) torch.set_grad_enabled(False) a : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCamelCase ( _lowercase , _lowercase=1_0_0 , _lowercase=" " ) -> List[str]: UpperCAmelCase : Optional[int] = text.split(_lowercase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_lowercase ) , _lowercase )] def __lowerCamelCase ( _lowercase ) -> dict: UpperCAmelCase , UpperCAmelCase : Optional[int] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_lowercase ): titles.append(title if title is not None else """""" ) texts.append(_lowercase ) return {"title": titles, "text": texts} def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> dict: UpperCAmelCase : Any = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_lowercase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase : Any = ctx_encoder(input_ids.to(device=_lowercase ) , return_dict=_lowercase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , ) -> str: ###################################### logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase : Any = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase : Any = dataset.map(_lowercase , batched=_lowercase , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase : int = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_lowercase ) UpperCAmelCase : List[Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase : List[Any] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase : List[str] = dataset.map( partial(_lowercase , ctx_encoder=_lowercase , ctx_tokenizer=_lowercase ) , batched=_lowercase , batch_size=processing_args.batch_size , features=_lowercase , ) # And finally save your dataset UpperCAmelCase : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_lowercase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_lowercase ) # And save the index UpperCAmelCase : Any = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_lowercase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCamelCase_ : lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowercase = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowercase = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowercase = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class UpperCamelCase_ : lowercase = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowercase = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a , a , a : Dict = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a : Optional[int] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: assert isinstance(_lowercase , _lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Any = tmp_path / """cache""" UpperCAmelCase : Union[str, Any] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = TextDatasetReader(_lowercase , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : List[str] = tmp_path / """cache""" UpperCAmelCase : Dict = {"""text""": """string"""} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[str] = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = TextDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : List[Any] = tmp_path / """cache""" UpperCAmelCase : Dict = {"""text""": """string"""} UpperCAmelCase : List[Any] = TextDatasetReader(_lowercase , cache_dir=_lowercase , split=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: if issubclass(_lowercase , _lowercase ): UpperCAmelCase : int = text_path elif issubclass(_lowercase , _lowercase ): UpperCAmelCase : Optional[int] = [text_path] UpperCAmelCase : int = tmp_path / """cache""" UpperCAmelCase : Dict = {"""text""": """string"""} UpperCAmelCase : List[Any] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=("train",) ) -> Any: assert isinstance(_lowercase , _lowercase ) for split in splits: UpperCAmelCase : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = tmp_path / """cache""" UpperCAmelCase : Optional[Any] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : List[str] = TextDatasetReader({"""train""": text_path} , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : int = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Optional[int] = {"""text""": """string"""} UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features UpperCAmelCase : str = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : str = TextDatasetReader({"""train""": text_path} , features=_lowercase , cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: if split: UpperCAmelCase : Any = {split: text_path} else: UpperCAmelCase : Optional[int] = """train""" UpperCAmelCase : Optional[int] = {"""train""": text_path, """test""": text_path} UpperCAmelCase : str = tmp_path / """cache""" UpperCAmelCase : str = {"""text""": """string"""} UpperCAmelCase : Optional[Any] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Optional[int] = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'gpt_neox_japanese' def __init__( self , A=32000 , A=2560 , A=32 , A=32 , A=4 , A="gelu" , A=1.0_0 , A=10000 , A=2048 , A=0.0_2 , A=1e-5 , A=True , A=31996 , A=31999 , A=0.1 , A=0.0 , **A , ) -> List[Any]: super().__init__(bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : int = max_position_embeddings UpperCAmelCase : Dict = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Any = intermediate_multiple_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : List[str] = rotary_pct UpperCAmelCase : int = rotary_emb_base UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Any = use_cache UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Union[str, Any] = hidden_dropout
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=64 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , A=2 , A=2 , A=2 , A=2 , A=4 , A=1 , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[Any] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : Tuple = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : Union[str, Any] = type_sequence_label_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = num_labels UpperCAmelCase : Union[str, Any] = num_choices UpperCAmelCase : Dict = scope UpperCAmelCase : Optional[Any] = q_groups UpperCAmelCase : Dict = k_groups UpperCAmelCase : Any = v_groups UpperCAmelCase : Union[str, Any] = post_attention_groups UpperCAmelCase : List[str] = intermediate_groups UpperCAmelCase : Dict = output_groups def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : str = None UpperCAmelCase : List[Any] = None UpperCAmelCase : Optional[int] = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> int: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowercase( self , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Any = SqueezeBertModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , A ) UpperCAmelCase : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A ) -> Dict: UpperCAmelCase : List[Any] = SqueezeBertForMaskedLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = SqueezeBertForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model( A , attention_mask=A , start_positions=A , end_positions=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : int = SqueezeBertForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A ) -> Union[str, Any]: UpperCAmelCase : str = self.num_labels UpperCAmelCase : Dict = SqueezeBertForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[Any] = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A ) -> List[str]: UpperCAmelCase : Union[str, Any] = self.num_choices UpperCAmelCase : Any = SqueezeBertForMultipleChoice(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = model( A , attention_mask=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Any = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Optional[int] = config_and_inputs UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = True lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : Tuple = SqueezeBertModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , dim=37 ) def _lowercase( self ) -> Any: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*A ) @slow def _lowercase( self ) -> Optional[int]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = SqueezeBertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) UpperCAmelCase : Any = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) UpperCAmelCase : Dict = model(A )[0] UpperCAmelCase : Dict = torch.Size((1, 3) ) self.assertEqual(output.shape , A ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(A , A , atol=1e-4 ) )
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[Any] = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _lowercase ) UpperCAmelCase : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCAmelCase : Any = dataset_size < in_memory_max_size else: UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = is_small_dataset(_lowercase ) assert result == expected
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.ndarray: UpperCAmelCase : List[str] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase : Any = ya UpperCAmelCase : Any = xa for k in range(_lowercase ): UpperCAmelCase : List[Any] = y[k] + step_size * ode_func(_lowercase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a : List[Any] = None a : List[Any] = logging.get_logger(__name__) a : Tuple = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a : Any = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } a : int = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } a : Tuple = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BigBirdTokenizer lowercase = ['input_ids', 'attention_mask'] lowercase = [] def __init__( self , A=None , A=None , A="<unk>" , A="<s>" , A="</s>" , A="<pad>" , A="[SEP]" , A="[MASK]" , A="[CLS]" , **A , ) -> Dict: UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token UpperCAmelCase : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token UpperCAmelCase : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) UpperCAmelCase : List[str] = vocab_file UpperCAmelCase : Optional[Any] = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : str = logging.get_logger(__name__) a : Tuple = {"""vocab_file""": """spiece.model"""} a : Optional[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } a : Dict = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = [] def __init__( self , A , A="<unk>" , A="<s>" , A="</s>" , A="<pad>" , A="[SEP]" , A="[MASK]" , A="[CLS]" , A = None , **A , ) -> None: UpperCAmelCase : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token UpperCAmelCase : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token UpperCAmelCase : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sep_token=A , mask_token=A , cls_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def _lowercase( self ) -> Optional[int]: return self.sp_model.get_piece_size() def _lowercase( self ) -> List[str]: UpperCAmelCase : int = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: UpperCAmelCase : int = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self , A ) -> int: UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : int = {} UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def _lowercase( self , A ) -> Union[str, Any]: return self.sp_model.piece_to_id(A ) def _lowercase( self , A ) -> int: UpperCAmelCase : Dict = self.sp_model.IdToPiece(A ) return token def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : int = [] UpperCAmelCase : int = """""" UpperCAmelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token UpperCAmelCase : List[Any] = True UpperCAmelCase : Optional[int] = [] else: current_sub_tokens.append(A ) UpperCAmelCase : Dict = False out_string += self.sp_model.decode(A ) return out_string.strip() def _lowercase( self , A , A = False , A = None , A = True , **A , ) -> str: UpperCAmelCase : Tuple = kwargs.pop("""use_source_tokenizer""" , A ) UpperCAmelCase : str = self.convert_ids_to_tokens(A , skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase : Tuple = [] UpperCAmelCase : Dict = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) UpperCAmelCase : int = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase : List[Any] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(A ) ) else: UpperCAmelCase : str = """""".join(A ) UpperCAmelCase : List[str] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase : List[Any] = self.clean_up_tokenization(A ) return clean_text else: return text def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: UpperCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] UpperCAmelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : int = [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1