code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from math import factorial A__ : Optional[int] = {str(digit): factorial(digit) for digit in range(10)} def a ( lowerCamelCase_ ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__UpperCamelCase ) ) def a ( lowerCamelCase_ = 60 , lowerCamelCase_ = 100_0000 ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length lowercase__ = 0 # the cached sizes of the previous chains lowercase__ = {} for start_chain_element in range(1 , __UpperCamelCase ): # The temporary set will contain the elements of the chain lowercase__ = set() lowercase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowercase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__UpperCamelCase ) chain_set_length += 1 lowercase__ = digit_factorial_sum(__UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowercase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution()}")
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A__ : str = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase ,unittest.TestCase ): """simple docstring""" lowercase__ = DebertaVaTokenizer lowercase__ = DebertaVaTokenizerFast lowercase__ = True lowercase__ = True def lowercase__ ( self : Any ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : str, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ), _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ), _lowerCAmelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<pad>''' ) self.assertEqual(vocab_keys[1], '''<unk>''' ) self.assertEqual(vocab_keys[-1], '''[PAD]''' ) self.assertEqual(len(_lowerCAmelCase ), 30_001 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 30_000 ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) lowercase__ = rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(_lowerCAmelCase ) lowercase__ = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4_398, 25, 21, 1_289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, keep_accents=_lowerCAmelCase ) lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, keep_accents=_lowerCAmelCase ) lowercase__ = tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(_lowerCAmelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase, _lowerCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], _lowerCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], _lowerCAmelCase, ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase, model_name='''microsoft/deberta-v2-xlarge''', revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''', )
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : int, lowerCamelCase : Union[str, Any]=13, lowerCamelCase : Dict=32, lowerCamelCase : Tuple=3, lowerCamelCase : List[str]=4, lowerCamelCase : int=[10, 20, 30, 40], lowerCamelCase : int=[2, 2, 3, 2], lowerCamelCase : List[str]=True, lowerCamelCase : int=True, lowerCamelCase : List[Any]=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Optional[Any]=10, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"], lowerCamelCase : int=[2, 3, 4], lowerCamelCase : Optional[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_stages lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = out_features lowercase__ = out_indices lowercase__ = scope def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=_a, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def lowercase__ ( self : List[Any], lowerCamelCase : List[str], lowerCamelCase : str, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = ConvNextModel(config=_a ) model.to(_a ) model.eval() lowercase__ = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() lowercase__ = model(_a, labels=_a ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() lowercase__ = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() lowercase__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( UpperCamelCase__ ,UpperCamelCase__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = ConvNextModelTester(self ) lowercase__ = ConfigTester(self, config_class=_a, has_text_modality=_a, hidden_size=37 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def lowercase__ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def lowercase__ ( self : Any ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1], _a ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def lowercase__ ( self : Dict ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : int ): lowercase__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_a, _a ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_a ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_a, _a, _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_a, _a, _a ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_a, return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): lowercase__ = model(**_a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, _a ) lowercase__ = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _a, atol=1E-4 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ,UpperCamelCase__ ): """simple docstring""" lowercase__ = (ConvNextBackbone,) if is_torch_available() else () lowercase__ = ConvNextConfig lowercase__ = False def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = ConvNextModelTester(self )
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = abs(__UpperCamelCase ) lowercase__ = 0 while n > 0: res += n % 10 n //= 10 return res def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = abs(__UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def a ( lowerCamelCase_ ): '''simple docstring''' return sum(int(__UpperCamelCase ) for c in str(abs(__UpperCamelCase ) ) ) def a ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) -> None: lowercase__ = F"""{func.__name__}({value})""" lowercase__ = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__UpperCamelCase , __UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
def a ( lowerCamelCase_ = 1000 ): '''simple docstring''' lowercase__ = -1 lowercase__ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowercase__ = (n * n - 2 * a * n) // (2 * n - 2 * a) lowercase__ = n - a - b if c * c == (a * a + b * b): lowercase__ = a * b * c if candidate >= product: lowercase__ = candidate return product if __name__ == "__main__": print(F"{solution() = }")
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = len(__snake_case ) // 2 # choose the middle 3 elements lowercase__ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) lowercase__ = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowercase__ = components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowercase__ = '''.'''.join(UpperCamelCase__ ) return test_module_path def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_module_path(UpperCamelCase__ ) lowercase__ = importlib.import_module(UpperCamelCase__ ) return test_module def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # sort with class names return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): lowercase__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase__ = getattr(UpperCamelCase__ , '''all_model_classes''' , [] ) if len(UpperCamelCase__ ) > 0: test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_test_classes(UpperCamelCase__ ) lowercase__ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = test_class() if hasattr(UpperCamelCase__ , '''setUp''' ): test.setUp() lowercase__ = None if hasattr(UpperCamelCase__ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase__ = test.model_tester.__class__ return model_tester def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_test_classes(UpperCamelCase__ ) lowercase__ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) lowercase__ = [] for test_class in test_classes: lowercase__ = get_model_tester_from_test_class(UpperCamelCase__ ) if tester_class is not None: tester_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_test_classes(UpperCamelCase__ ) lowercase__ = {test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes} return test_tester_mapping def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_model_classes(UpperCamelCase__ ) lowercase__ = { model_class: get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes } return model_test_mapping def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_model_classes(UpperCamelCase__ ) lowercase__ = { model_class: get_tester_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes } return model_to_tester_mapping def a ( lowerCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return o elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return o.__name__ elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_json(UpperCamelCase__ ) for x in o] elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()} else: return o
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _UpperCAmelCase ( __UpperCAmelCase ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : str = "▁", lowerCamelCase : bool = True, lowerCamelCase : Union[str, AddedToken] = "<unk>", lowerCamelCase : Union[str, AddedToken] = "</s>", lowerCamelCase : Union[str, AddedToken] = "<pad>", ): '''simple docstring''' lowercase__ = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } lowercase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowercase__ = token_dict['''token'''] lowercase__ = Tokenizer(Unigram() ) lowercase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ), ''' ''' ), normalizers.Lowercase(), ] ) lowercase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__SCREAMING_SNAKE_CASE, add_prefix_space=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) lowercase__ = decoders.Metaspace(replacement=__SCREAMING_SNAKE_CASE, add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase__ = TemplateProcessing( single=F"""$A {self.special_tokens['eos']['token']}""", special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])], ) lowercase__ = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Optional[int], lowerCamelCase : Union[str, List[str]], lowerCamelCase : int = 8_000, lowerCamelCase : bool = True, ): '''simple docstring''' lowercase__ = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE, special_tokens=self.special_tokens_list, show_progress=__SCREAMING_SNAKE_CASE, ) if isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): lowercase__ = [files] self._tokenizer.train(__SCREAMING_SNAKE_CASE, trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase__ ( self : int, lowerCamelCase : Union[Iterator[str], Iterator[Iterator[str]]], lowerCamelCase : int = 8_000, lowerCamelCase : bool = True, ): '''simple docstring''' lowercase__ = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE, special_tokens=self.special_tokens_list, show_progress=__SCREAMING_SNAKE_CASE, ) self._tokenizer.train_from_iterator(__SCREAMING_SNAKE_CASE, trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = json.loads(self._tokenizer.to_str() ) lowercase__ = self.special_tokens['''unk''']['''id'''] lowercase__ = Tokenizer.from_str(json.dumps(__SCREAMING_SNAKE_CASE ) )
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A__ : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=UpperCamelCase_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default="""NER""" ,metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) lowercase__ = field( default=UpperCamelCase_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field(default=UpperCamelCase_ ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__ = field( default=UpperCamelCase_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) lowercase__ = field( default=UpperCamelCase_ ,metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} ,) lowercase__ = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=UpperCamelCase_ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ = import_module('''tasks''' ) try: lowercase__ = getattr(lowerCamelCase_ , model_args.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ = token_classification_task.get_labels(data_args.labels ) lowercase__ = dict(enumerate(lowerCamelCase_ ) ) lowercase__ = len(lowerCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid={label: i for i, label in enumerate(lowerCamelCase_ )} , cache_dir=model_args.cache_dir , ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ = ( TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ = ( TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCamelCase_ , lowerCamelCase_ ) -> Tuple[List[int], List[int]]: lowercase__ = np.argmax(lowerCamelCase_ , axis=2 ) lowercase__ = preds.shape lowercase__ = [[] for _ in range(lowerCamelCase_ )] lowercase__ = [[] for _ in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCamelCase_ ) -> Dict: lowercase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCamelCase_ , lowerCamelCase_ ), "precision": precision_score(lowerCamelCase_ , lowerCamelCase_ ), "recall": recall_score(lowerCamelCase_ , lowerCamelCase_ ), "f1": fa_score(lowerCamelCase_ , lowerCamelCase_ ), } # Data collator lowercase__ = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , lowerCamelCase_ , lowerCamelCase_ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowerCamelCase_ ) # Predict if training_args.do_predict: lowercase__ = TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ = trainer.predict(lowerCamelCase_ ) lowercase__ = align_predictions(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , lowerCamelCase_ , lowerCamelCase_ ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return results def a ( lowerCamelCase_ ): '''simple docstring''' main() if __name__ == "__main__": main()
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Any = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def lowercase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase__ = dict(zip(A__, range(len(A__ ) ) ) ) lowercase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase__ = {"""unk_token""": """<unk>"""} lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) def lowercase__ ( self : Optional[int], **lowerCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A__ ) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A__ ) def lowercase__ ( self : Optional[int], lowerCamelCase : str ): '''simple docstring''' lowercase__ = """lower newer""" lowercase__ = """lower newer""" return input_text, output_text def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase__ = """lower newer""" lowercase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase__ = tokenizer.tokenize(A__ ) # , add_prefix_space=True) self.assertListEqual(A__, A__ ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ), A__ ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''', add_special_tokens=A__ ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''', add_special_tokens=A__ ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=A__ ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=A__ ) lowercase__ = tokenizer.encode( '''sequence builders''', add_special_tokens=A__, add_prefix_space=A__ ) lowercase__ = tokenizer.encode( '''sequence builders''', '''multi-sequence build''', add_special_tokens=A__, add_prefix_space=A__ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(A__ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(A__, A__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = """Encode this sequence.""" lowercase__ = tokenizer.byte_encoder[""" """.encode('''utf-8''' )[0]] # Testing encoder arguments lowercase__ = tokenizer.encode(A__, add_special_tokens=A__, add_prefix_space=A__ ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A__, A__ ) lowercase__ = tokenizer.encode(A__, add_special_tokens=A__, add_prefix_space=A__ ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A__, A__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowercase__ = tokenizer.encode(A__, add_special_tokens=A__ ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A__, A__ ) # Testing spaces after special tokens lowercase__ = """<mask>""" tokenizer.add_special_tokens( {'''mask_token''': AddedToken(A__, lstrip=A__, rstrip=A__ )} ) # mask token has a left space lowercase__ = tokenizer.convert_tokens_to_ids(A__ ) lowercase__ = """Encode <mask> sequence""" lowercase__ = """Encode <mask>sequence""" lowercase__ = tokenizer.encode(A__ ) lowercase__ = encoded.index(A__ ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A__, A__ ) lowercase__ = tokenizer.encode(A__ ) lowercase__ = encoded.index(A__ ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A__, A__ ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ = self.rust_tokenizer_class.from_pretrained(A__, **A__ ) lowercase__ = self.tokenizer_class.from_pretrained(A__, **A__ ) lowercase__ = """A, <mask> AllenNLP sentence.""" lowercase__ = tokenizer_r.encode_plus(A__, add_special_tokens=A__, return_token_type_ids=A__ ) lowercase__ = tokenizer_p.encode_plus(A__, add_special_tokens=A__, return_token_type_ids=A__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ), sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ), sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ), ) lowercase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A__, ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A__, ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowercase__ ( self : List[Any] ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): lowercase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''], A__ ) self.assertEqual(post_processor_state['''add_prefix_space'''], A__ ) self.assertEqual(post_processor_state['''trim_offsets'''], A__ ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ = F"""{text_of_1_token} {text_of_1_token}""" lowercase__ = self.rust_tokenizer_class.from_pretrained( A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )), ) lowercase__ = self.rust_tokenizer_class.from_pretrained( A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )), ) lowercase__ = self.rust_tokenizer_class.from_pretrained( A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(A__ ), len(A__ ) + 1 + len(A__ )), ) lowercase__ = self.rust_tokenizer_class.from_pretrained( A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(A__ ), len(A__ ) + 1 + len(A__ )), ) lowercase__ = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__ = self.rust_tokenizer_class.from_pretrained( A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A__ ) + 1, 1 + len(A__ ) + 1 + len(A__ )), ) lowercase__ = self.rust_tokenizer_class.from_pretrained( A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A__ ), 1 + len(A__ ) + 1 + len(A__ )), ) lowercase__ = self.rust_tokenizer_class.from_pretrained( A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ ) lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A__ ), 1 + len(A__ ) + 1 + len(A__ )), )
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
from functools import reduce A__ : Optional[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCAmelCase__ ) * int(lowerCAmelCase__ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase__ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = '''gelu''' lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : int, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = TFDistilBertModel(config=UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) lowercase__ = [input_ids, input_mask] lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : int, lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = TFDistilBertForMaskedLM(config=UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = TFDistilBertForQuestionAnswering(config=UpperCamelCase__ ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFDistilBertForSequenceClassification(UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFDistilBertForMultipleChoice(UpperCamelCase__ ) lowercase__ = tf.tile(tf.expand_dims(UpperCamelCase__, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(UpperCamelCase__, 1 ), (1, self.num_choices, 1) ) lowercase__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any, lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFDistilBertForTokenClassification(UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowercase__ = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = TFDistilBertModelTester(self ) lowercase__ = ConfigTester(self, config_class=UpperCamelCase__, dim=37 ) def lowercase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) @slow def lowercase__ ( self : str ): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase__ = TFDistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(UpperCamelCase__ )[0] lowercase__ = [1, 6, 768] self.assertEqual(output.shape, UpperCamelCase__ ) lowercase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3], UpperCamelCase__, atol=1E-4 )
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
import argparse from collections import defaultdict import yaml A__ : Dict = 'docs/source/en/_toctree.yml' def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = defaultdict(SCREAMING_SNAKE_CASE_ ) for doc in model_doc: counts[doc["local"]] += 1 lowercase__ = [key for key, value in counts.items() if value > 1] lowercase__ = [] for duplicate_key in duplicates: lowercase__ = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE_ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCamelCase_ : s["title"].lower() ) def a ( lowerCamelCase_=False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]["sections"] # Then to the model doc lowercase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase__ = api_doc[model_idx]["sections"] lowercase__ = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE_ ) if "sections" in section] lowercase__ = False for idx, modality_doc in modalities_docs: lowercase__ = modality_doc["sections"] lowercase__ = clean_model_doc_toc(SCREAMING_SNAKE_CASE_ ) if old_modality_doc != new_modality_doc: lowercase__ = True if overwrite: lowercase__ = new_modality_doc if diff: if overwrite: lowercase__ = model_doc lowercase__ = api_doc with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE_ , allow_unicode=SCREAMING_SNAKE_CASE_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A__ : Union[str, Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A__ : List[Any] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = AlbertTokenizer lowercase__ = AlbertTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = True def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = AlbertTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = 'this is a test' lowercase__ = 'this is a test' return input_text, output_text def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = '<pad>' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ), lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ), lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<pad>''' ) self.assertEqual(vocab_keys[1], '''<unk>''' ) self.assertEqual(vocab_keys[-1], '''▁eloquent''' ) self.assertEqual(len(lowerCamelCase ), 30_000 ) def lowercase__ ( self : List[str] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 30_000 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCamelCase ) lowercase__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) lowercase__ = rust_tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCamelCase ) lowercase__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = AlbertTokenizer(lowerCamelCase, keep_accents=lowerCamelCase ) lowercase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase, ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [48, 25, 21, 1_289] ) lowercase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase, ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual(lowerCamelCase, [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase, ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''], ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = AlbertTokenizer(lowerCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase, model_name='''albert-base-v2''', revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''', )
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
from ....utils import logging A__ : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( __A ): """simple docstring""" def __init__( self : Any, lowerCamelCase : List[Any], lowerCamelCase : str=None, lowerCamelCase : Union[str, Any]=2_048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
from __future__ import annotations import math def a ( lowerCamelCase_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = str(__snake_case ) lowercase__ = [n] for i in range(1 , len(__snake_case ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def a ( lowerCamelCase_ ): '''simple docstring''' if len(str(__snake_case ) ) > 3: if not is_prime(int(str(__snake_case )[-3:] ) ) or not is_prime(int(str(__snake_case )[:3] ) ): return False return True def a ( lowerCamelCase_ = 11 ): '''simple docstring''' lowercase__ = [] lowercase__ = 13 while len(__snake_case ) != count: if validate(__snake_case ): lowercase__ = list_truncated_nums(__snake_case ) if all(is_prime(__snake_case ) for i in list_nums ): list_truncated_primes.append(__snake_case ) num += 2 return list_truncated_primes def a ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"{sum(compute_truncated_primes(11)) = }")
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : List[str]=13, lowerCamelCase : int=30, lowerCamelCase : int=2, lowerCamelCase : List[str]=3, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : str=32, lowerCamelCase : Dict=5, lowerCamelCase : int=4, lowerCamelCase : Dict=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : List[Any]=10, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : Union[str, Any]=3, lowerCamelCase : str=0.6, lowerCamelCase : Optional[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=snake_case__, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = ViTMAEModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : str ): '''simple docstring''' lowercase__ = ViTMAEForPreTraining(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase__ = model(snake_case__ ) lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTMAEForPreTraining(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(snake_case__ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( __a ,__a ,unittest.TestCase ): """simple docstring""" lowercase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase__ = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = ViTMAEModelTester(self ) lowercase__ = ConfigTester(self, config_class=snake_case__, has_text_modality=snake_case__, hidden_size=37 ) def lowercase__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__, nn.Linear ) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(snake_case__ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], snake_case__ ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def lowercase__ ( self : List[str], lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Optional[int] ): '''simple docstring''' # make masks reproducible np.random.seed(2 ) lowercase__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = torch.from_numpy(snake_case__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = pt_noise super().check_pt_tf_models(snake_case__, snake_case__, snake_case__ ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) lowercase__ = outputs[0].cpu().numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowercase__ = model_class.from_pretrained(snake_case__ ) model.to(snake_case__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) # Make sure we don't have nans lowercase__ = after_outputs[0].cpu().numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__, 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowercase__ ( self : str ): '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass @slow def lowercase__ ( self : Any ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTMAEModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Optional[int] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowercase__ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(snake_case__ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=snake_case__, return_tensors='''pt''' ).to(snake_case__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowercase__ = model(**snake_case__, noise=torch.from_numpy(snake_case__ ).to(device=snake_case__ ) ) # verify the logits lowercase__ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape, snake_case__ ) lowercase__ = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(snake_case__ ), atol=1E-4 ) )
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def a ( lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' try: lowercase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ = default else: # KEY is set, convert it to True or False. try: lowercase__ = strtobool(lowerCAmelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value A__ : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) A__ : int = parse_flag_from_env('RUN_REMOTE', default=False) A__ : Optional[Any] = parse_flag_from_env('RUN_LOCAL', default=True) A__ : List[str] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression A__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') A__ : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') A__ : str = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio A__ : Any = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam A__ : List[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility A__ : Optional[int] = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows A__ : List[Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def a ( lowerCamelCase_ ): '''simple docstring''' try: import faiss # noqa except ImportError: lowercase__ = unittest.skip('''test requires faiss''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' try: import regex # noqa except ImportError: lowercase__ = unittest.skip('''test requires regex''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: lowercase__ = unittest.skip('''test requires elasticsearch''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: lowercase__ = unittest.skip('''test requires sqlalchemy''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not config.TORCH_AVAILABLE: lowercase__ = unittest.skip('''test requires PyTorch''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not config.TF_AVAILABLE: lowercase__ = unittest.skip('''test requires TensorFlow''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not config.JAX_AVAILABLE: lowercase__ = unittest.skip('''test requires JAX''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not config.PIL_AVAILABLE: lowercase__ = unittest.skip('''test requires Pillow''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(lowerCAmelCase_ ) else: return test_case def a ( lowerCamelCase_ ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(lowerCAmelCase_ ) else: return test_case def a ( lowerCamelCase_ ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(lowerCAmelCase_ ) else: return test_case def a ( lowerCamelCase_ ): '''simple docstring''' def _require_spacy_model(lowerCamelCase_ ): try: import spacy # noqa F401 spacy.load(lowerCAmelCase_ ) except ImportError: return unittest.skip('''test requires spacy''' )(lowerCAmelCase_ ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(lowerCAmelCase_ ) )(lowerCAmelCase_ ) else: return test_case return _require_spacy_model def a ( lowerCamelCase_ ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(lowerCAmelCase_ ) else: return test_case def a ( lowerCamelCase_ ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(lowerCAmelCase_ ) else: return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: lowercase__ = unittest.skip('''test is slow''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: lowercase__ = unittest.skip('''test is local''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: lowercase__ = unittest.skip('''test is packaged''' )(lowerCAmelCase_ ) return test_case def a ( lowerCamelCase_ ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: lowercase__ = unittest.skip('''test requires remote''' )(lowerCAmelCase_ ) return test_case def a ( *lowerCamelCase_ ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowerCAmelCase_ ) and name.startswith('''test''' ): for decorator in decorators: lowercase__ = decorator(lowerCAmelCase_ ) setattr(cls , lowerCAmelCase_ , lowerCAmelCase_ ) return cls return decorate class _UpperCAmelCase ( __lowerCamelCase ): """simple docstring""" pass class _UpperCAmelCase ( __lowerCamelCase ): """simple docstring""" lowercase__ = 0 lowercase__ = 1 lowercase__ = 2 @contextmanager def a ( lowerCamelCase_=OfflineSimulationMode.CONNECTION_FAILS , lowerCamelCase_=1e-16 ): '''simple docstring''' lowercase__ = requests.Session().request def timeout_request(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): # Change the url to an invalid url so that the connection hangs lowercase__ = "https://10.255.255.1" if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) lowercase__ = timeout try: return online_request(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowercase__ = url lowercase__ = e.args[0] lowercase__ = (max_retry_error.args[0].replace('''10.255.255.1''' , F"""OfflineMock[{url}]""" ),) lowercase__ = (max_retry_error,) raise def raise_connection_error(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=lowerCAmelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def a ( *lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCAmelCase_ , **lowerCAmelCase_ ) as tmp_dir: try: os.chdir(lowerCAmelCase_ ) yield finally: os.chdir(lowerCAmelCase_ ) @contextmanager def a ( ): '''simple docstring''' import gc gc.collect() lowercase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def a ( ): '''simple docstring''' import gc gc.collect() lowercase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() def a ( lowerCamelCase_ ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ): try: return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) except HTTPError as err: if str(lowerCAmelCase_ ).startswith('''500''' ) or str(lowerCAmelCase_ ).startswith('''502''' ): pytest.xfail(str(lowerCAmelCase_ ) ) raise err return decorator.decorator(_wrapper , lowerCAmelCase_ ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : List[str], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = returncode lowercase__ = stdout lowercase__ = stderr async def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' while True: lowercase__ = await stream.readline() if line: callback(lowerCAmelCase_ ) else: break async def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False ): '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(lowerCAmelCase_ ) ) lowercase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCAmelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ = [] lowercase__ = [] def tee(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="" ): lowercase__ = line.decode('''utf-8''' ).rstrip() sink.append(lowerCAmelCase_ ) if not quiet: print(lowerCAmelCase_ , lowerCAmelCase_ , file=lowerCAmelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCamelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda lowerCamelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stderr , label='''stderr:''' ) ), ] , timeout=lowerCAmelCase_ , ) return _RunOutput(await p.wait() , lowerCAmelCase_ , lowerCAmelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=180 , lowerCamelCase_=False , lowerCamelCase_=True ): '''simple docstring''' lowercase__ = asyncio.get_event_loop() lowercase__ = loop.run_until_complete( _stream_subprocess(lowerCAmelCase_ , env=lowerCAmelCase_ , stdin=lowerCAmelCase_ , timeout=lowerCAmelCase_ , quiet=lowerCAmelCase_ , echo=lowerCAmelCase_ ) ) lowercase__ = " ".join(lowerCAmelCase_ ) if result.returncode > 0: lowercase__ = "\n".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def a ( ): '''simple docstring''' lowercase__ = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) lowercase__ = re.sub(r'''^gw''' , '''''' , lowerCAmelCase_ , 0 , re.M ) return int(lowerCAmelCase_ ) def a ( ): '''simple docstring''' lowercase__ = 2_9500 lowercase__ = pytest_xdist_worker_id() return port + uniq_delta
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a ( lowerCamelCase_ ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a ( ): '''simple docstring''' lowercase__ = '''mock-s3-bucket''' lowercase__ = F"""s3://{mock_bucket}""" lowercase__ = extract_path_from_uri(_snake_case ) assert dataset_path.startswith('''s3://''' ) is False lowercase__ = '''./local/path''' lowercase__ = extract_path_from_uri(_snake_case ) assert dataset_path == new_dataset_path def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = is_remote_filesystem(_snake_case ) assert is_remote is True lowercase__ = fsspec.filesystem('''file''' ) lowercase__ = is_remote_filesystem(_snake_case ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , _snake_case ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase__ = input_paths[compression_fs_class.protocol] if input_path is None: lowercase__ = F"""for \'{compression_fs_class.protocol}\' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) lowercase__ = fsspec.filesystem(compression_fs_class.protocol , fo=_snake_case ) assert isinstance(_snake_case , _snake_case ) lowercase__ = os.path.basename(_snake_case ) lowercase__ = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(_snake_case , '''r''' , encoding='''utf-8''' ) as f, open(_snake_case , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase__ = compressed_file_paths[protocol] lowercase__ = '''dataset.jsonl''' lowercase__ = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase__ , *lowercase__ = fsspec.get_fs_token_paths(_snake_case ) assert fs.isfile(_snake_case ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = hf_api.dataset_info(_snake_case , token=_snake_case ) lowercase__ = HfFileSystem(repo_info=_snake_case , token=_snake_case ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(_snake_case ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def a ( ): '''simple docstring''' lowercase__ = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_snake_case , _snake_case , clobber=_snake_case ) with pytest.warns(_snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_snake_case ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A__ : Tuple = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A__ : Dict = logging.WARNING def a ( ): '''simple docstring''' lowercase__ = os.getenv('''DATASETS_VERBOSITY''' , _A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def a ( ): '''simple docstring''' return __name__.split('''.''' )[0] def a ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def a ( ): '''simple docstring''' lowercase__ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def a ( ): '''simple docstring''' lowercase__ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def a ( lowerCamelCase_ = None ): '''simple docstring''' if name is None: lowercase__ = _get_library_name() return logging.getLogger(_A ) def a ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def a ( lowerCamelCase_ ): '''simple docstring''' _get_library_root_logger().setLevel(_A ) def a ( ): '''simple docstring''' return set_verbosity(_A ) def a ( ): '''simple docstring''' return set_verbosity(_A ) def a ( ): '''simple docstring''' return set_verbosity(_A ) def a ( ): '''simple docstring''' return set_verbosity(_A ) def a ( ): '''simple docstring''' lowercase__ = False def a ( ): '''simple docstring''' lowercase__ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], *lowerCamelCase : int, **lowerCamelCase : str ): # pylint: disable=unused-argument '''simple docstring''' lowercase__ = args[0] if args else None def __iter__( self : Union[str, Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' def empty_fn(*lowerCamelCase : Any, **lowerCamelCase : Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Union[str, Any] ): '''simple docstring''' return self def __exit__( self : int, lowerCamelCase : str, lowerCamelCase : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' return A__ : int = True class _UpperCAmelCase : """simple docstring""" def __call__( self : Tuple, *lowerCamelCase : Any, lowerCamelCase : Tuple=False, **lowerCamelCase : Any ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) else: return EmptyTqdm(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) def lowercase__ ( self : List[Any], *lowerCamelCase : Dict, **lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Any ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() A__ : Union[str, Any] = _tqdm_cls() def a ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def a ( ): '''simple docstring''' global _tqdm_active lowercase__ = True def a ( ): '''simple docstring''' global _tqdm_active lowercase__ = False
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
from math import log from scipy.constants import Boltzmann, physical_constants A__ : int = 3_00 # TEMPERATURE (unit = K) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): '''simple docstring''' if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = len(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowercase__ = arr[i + 1], arr[i] return arr if __name__ == "__main__": A__ : Optional[Any] = list(range(10, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(__snake_case ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(__snake_case ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(__snake_case ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(__snake_case ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(__snake_case ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(__snake_case ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(__snake_case ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(__snake_case ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(__snake_case ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(__snake_case ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(__snake_case ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(__snake_case ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(__snake_case ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(__snake_case ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(__snake_case ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(__snake_case ) torch.save(__snake_case , args.output ) if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') A__ : str = parser.parse_args() convert_tf_gptsan_to_pt(args)
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : List[Any] = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } A__ : List[Any] = { 'google/realm-cc-news-pretrained-embedder': 5_12, 'google/realm-cc-news-pretrained-encoder': 5_12, 'google/realm-cc-news-pretrained-scorer': 5_12, 'google/realm-cc-news-pretrained-openqa': 5_12, 'google/realm-orqa-nq-openqa': 5_12, 'google/realm-orqa-nq-reader': 5_12, 'google/realm-orqa-wq-openqa': 5_12, 'google/realm-orqa-wq-reader': 5_12, } A__ : Union[str, Any] = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class _UpperCAmelCase ( lowercase_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = RealmTokenizer def __init__( self : Any, lowerCamelCase : Optional[int]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Tuple="[SEP]", lowerCamelCase : Union[str, Any]="[PAD]", lowerCamelCase : Optional[int]="[CLS]", lowerCamelCase : Tuple="[MASK]", lowerCamelCase : int=True, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : int, ): '''simple docstring''' super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, tokenize_chinese_chars=lowerCamelCase_, strip_accents=lowerCamelCase_, **lowerCamelCase_, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase_ ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase_, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase_ ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : Any, **lowerCamelCase : int ): '''simple docstring''' lowercase__ = PaddingStrategy.MAX_LENGTH lowercase__ = text lowercase__ = kwargs.pop('''text_pair''', lowerCamelCase_ ) lowercase__ = kwargs.pop('''return_tensors''', lowerCamelCase_ ) lowercase__ = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(lowerCamelCase_ ): if batch_text_pair is not None: lowercase__ = batch_text_pair[idx] else: lowercase__ = None lowercase__ = super().__call__(lowerCamelCase_, lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) lowercase__ = encoded_candidates.get('''input_ids''' ) lowercase__ = encoded_candidates.get('''attention_mask''' ) lowercase__ = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(lowerCamelCase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCamelCase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCamelCase_ ) lowercase__ = {key: item for key, item in output_data.items() if len(lowerCamelCase_ ) != 0} return BatchEncoding(lowerCamelCase_, tensor_type=lowerCamelCase_ ) def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Tuple=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
from math import isqrt def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , A__ , A__ ): lowercase__ = False return [i for i in range(2 , A__ ) if is_prime[i]] def a ( lowerCamelCase_ = 10**8 ): '''simple docstring''' lowercase__ = calculate_prime_numbers(max_number // 2 ) lowercase__ = 0 lowercase__ = 0 lowercase__ = len(A__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"{solution() = }")
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{\"default\": {\"dataset_size\": 42}}''' ) lowercase__ = DatasetInfosDict.from_directory(lowerCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = str(lowerCamelCase__ ) dataset_info.write_to_directory(lowerCamelCase__ ) lowercase__ = DatasetInfo.from_directory(lowerCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase__ , '''dataset_info.json''' ) ) def a ( ): '''simple docstring''' lowercase__ = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowercase__ = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowercase__ = yaml.safe_dump(lowerCamelCase__ ) lowercase__ = yaml.safe_load(lowerCamelCase__ ) assert dataset_info_yaml_dict == reloaded def a ( ): '''simple docstring''' lowercase__ = DatasetInfo() lowercase__ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1337 ), } ), ] , ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = str(lowerCamelCase__ ) dataset_infos_dict.write_to_directory(lowerCamelCase__ ) lowercase__ = DatasetInfosDict.from_directory(lowerCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowercase__ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowercase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase__ , '''README.md''' ) )
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( enum.Enum ): """simple docstring""" lowercase__ = 0 lowercase__ = 1 @add_end_docstrings(A__ ) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """generated""" def __init__( self : Any, *lowerCamelCase : Dict, **lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(*lowercase_, **lowercase_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowercase__ ( self : Optional[int], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Optional[int]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = {} if truncation is not None: lowercase__ = truncation lowercase__ = generate_kwargs lowercase__ = {} if return_tensors is not None and return_type is None: lowercase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase__ = return_type if clean_up_tokenization_spaces is not None: lowercase__ = clean_up_tokenization_spaces if stop_sequence is not None: lowercase__ = self.tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) if len(lowercase_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' return True def lowercase__ ( self : Dict, *lowerCamelCase : List[str], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0], lowercase_ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase__ = ([prefix + arg for arg in args[0]],) lowercase__ = True elif isinstance(args[0], lowercase_ ): lowercase__ = (prefix + args[0],) lowercase__ = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase__ = self.tokenizer(*lowercase_, padding=lowercase_, truncation=lowercase_, return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[Any], *lowerCamelCase : Any, **lowerCamelCase : int ): '''simple docstring''' lowercase__ = super().__call__(*lowercase_, **lowercase_ ) if ( isinstance(args[0], lowercase_ ) and all(isinstance(lowercase_, lowercase_ ) for el in args[0] ) and all(len(lowercase_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowercase__ ( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE, **lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = self._parse_and_tokenize(lowercase_, truncation=lowercase_, **lowercase_ ) return inputs def lowercase__ ( self : str, lowerCamelCase : str, **lowerCamelCase : str ): '''simple docstring''' if self.framework == "pt": lowercase__ , lowercase__ = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase__ , lowercase__ = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase__ = generate_kwargs.get('''min_length''', self.model.config.min_length ) lowercase__ = generate_kwargs.get('''max_length''', self.model.config.max_length ) self.check_inputs(lowercase_, generate_kwargs['''min_length'''], generate_kwargs['''max_length'''] ) lowercase__ = self.model.generate(**lowercase_, **lowercase_ ) lowercase__ = output_ids.shape[0] if self.framework == "pt": lowercase__ = output_ids.reshape(lowercase_, out_b // in_b, *output_ids.shape[1:] ) elif self.framework == "tf": lowercase__ = tf.reshape(lowercase_, (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowercase__ ( self : Dict, lowerCamelCase : str, lowerCamelCase : int=ReturnType.TEXT, lowerCamelCase : int=False ): '''simple docstring''' lowercase__ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase__ = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase__ = { F"""{self.return_name}_text""": self.tokenizer.decode( lowercase_, skip_special_tokens=lowercase_, clean_up_tokenization_spaces=lowercase_, ) } records.append(lowercase_ ) return records @add_end_docstrings(A__ ) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """summary""" def __call__( self : Optional[Any], *lowerCamelCase : int, **lowerCamelCase : Dict ): '''simple docstring''' return super().__call__(*lowercase_, **lowercase_ ) def lowercase__ ( self : List[str], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})""" ) @add_end_docstrings(A__ ) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """translation""" def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowercase__ ( self : Tuple, *lowerCamelCase : Any, lowerCamelCase : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE, lowerCamelCase : Any=None, lowerCamelCase : Optional[Any]=None ): '''simple docstring''' if getattr(self.tokenizer, '''_build_translation_inputs''', lowercase_ ): return self.tokenizer._build_translation_inputs( *lowercase_, return_tensors=self.framework, truncation=lowercase_, src_lang=lowercase_, tgt_lang=lowercase_ ) else: return super()._parse_and_tokenize(*lowercase_, truncation=lowercase_ ) def lowercase__ ( self : List[str], lowerCamelCase : Dict=None, lowerCamelCase : str=None, **lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ = super()._sanitize_parameters(**lowercase_ ) if src_lang is not None: lowercase__ = src_lang if tgt_lang is not None: lowercase__ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase__ = kwargs.get('''task''', self.task ) lowercase__ = task.split('''_''' ) if task and len(lowercase_ ) == 4: # translation, XX, to YY lowercase__ = items[1] lowercase__ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str], *lowerCamelCase : List[str], **lowerCamelCase : str ): '''simple docstring''' return super().__call__(*lowercase_, **lowercase_ )
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A__ : Tuple = 'sshleifer/bart-tiny-random' A__ : Any = 'patrickvonplaten/t5-tiny-random' @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Tuple ): '''simple docstring''' return AutoConfig.from_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.num_hidden_layers, 1 ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=lowerCAmelCase_ ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=lowerCAmelCase_ ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, 1 ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=lowerCAmelCase_, d=lowerCAmelCase_ )
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' from timeit import timeit def a ( lowerCamelCase_ ): '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) lowercase__ = 0 while number: number &= number - 1 result += 1 return result def a ( lowerCamelCase_ ): '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) lowercase__ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a ( ): '''simple docstring''' def do_benchmark(lowerCamelCase_ ) -> None: lowercase__ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(lowerCamelCase_ ) = }""" ) lowercase__ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=lowerCamelCase_ ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(lowerCamelCase_ ) = }""" ) lowercase__ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=lowerCamelCase_ , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() A__ : Optional[Any] = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowercase__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowercase__ = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) lowercase__ = config_class.from_json_file(lowerCamelCase_ ) lowercase__ = True lowercase__ = True print(F"""Building TensorFlow model from configuration: {config}""" ) lowercase__ = model_class(lowerCamelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowercase__ = cached_file( lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowercase__ = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase_ , lowerCamelCase_ ) if compare_with_pt_model: lowercase__ = tf_model(tf_model.dummy_inputs , training=lowerCamelCase_ ) # build the network lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' ) lowercase__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ ) with torch.no_grad(): lowercase__ = pt_model(**pt_model.dummy_inputs ) lowercase__ = pto[0].numpy() lowercase__ = tfo[0].numpy() lowercase__ = np.amax(np.abs(np_pt - np_tf ) ) print(F"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2e-2, F"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(F"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(lowerCamelCase_ , save_format='''h5''' ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , ): '''simple docstring''' if args_model_type is None: lowercase__ = list(MODEL_CLASSES.keys() ) else: lowercase__ = [args_model_type] for j, model_type in enumerate(lowerCamelCase_ , start=1 ): print('''=''' * 100 ) print(F""" Converting model type {j}/{len(lowerCamelCase_ )}: {model_type}""" ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowercase__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowercase__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowercase__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCamelCase_ , lowerCamelCase_ ) , start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue lowercase__ = model_shortcut_name elif only_convert_finetuned_models: print(F""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( F""" Converting checkpoint {i}/{len(lowerCamelCase_ )}: {model_shortcut_name} - model_type {model_type}""" ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: lowercase__ = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) else: lowercase__ = config_shortcut_name if model_shortcut_name in aws_model_maps: lowercase__ = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) else: lowercase__ = model_shortcut_name if os.path.isfile(lowerCamelCase_ ): lowercase__ = "converted_model" convert_pt_checkpoint_to_tf( model_type=lowerCamelCase_ , pytorch_checkpoint_path=lowerCamelCase_ , config_file=lowerCamelCase_ , tf_dump_path=os.path.join(lowerCamelCase_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=lowerCamelCase_ , ) if remove_cached_files: os.remove(lowerCamelCase_ ) os.remove(lowerCamelCase_ ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') A__ : List[str] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A__ : Tuple = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase : """simple docstring""" lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = """gelu""" def __init__( self : Dict, lowerCamelCase : List[Any], lowerCamelCase : List[Any]=13, lowerCamelCase : Any=7, lowerCamelCase : Dict=True, lowerCamelCase : Tuple=False, lowerCamelCase : List[str]=99, lowerCamelCase : Optional[Any]=32, lowerCamelCase : Any=5, lowerCamelCase : List[str]=4, lowerCamelCase : Tuple=37, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : int=20, lowerCamelCase : str=2, lowerCamelCase : List[Any]=1, lowerCamelCase : Dict=0, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = bos_token_id def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ).clip(3, self.vocab_size ) lowercase__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ), 1 ) lowercase__ = np.concatenate([input_ids, eos_tensor], axis=1 ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowercase__ = prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def lowercase__ ( self : List[Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : Any ): '''simple docstring''' lowercase__ = 20 lowercase__ = model_class_name(SCREAMING_SNAKE_CASE_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ = model.init_cache(decoder_input_ids.shape[0], SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) lowercase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowercase__ = model.decode( decoder_input_ids[:, :-1], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowercase__ = model.decode( decoder_input_ids[:, -1:], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=outputs_cache.past_key_values, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) lowercase__ = model.decode(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F"""Max diff is {diff}""" ) def lowercase__ ( self : Any, lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = 20 lowercase__ = model_class_name(SCREAMING_SNAKE_CASE_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) lowercase__ = model.init_cache(decoder_input_ids.shape[0], SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowercase__ = model.decode( decoder_input_ids[:, :-1], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowercase__ = model.decode( decoder_input_ids[:, -1:], SCREAMING_SNAKE_CASE_, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) lowercase__ = model.decode(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F"""Max diff is {diff}""" ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , ): '''simple docstring''' if attention_mask is None: lowercase__ = np.not_equal(__a , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase ( __lowerCamelCase ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = FlaxPegasusModelTester(self ) lowercase__ = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) lowercase__ = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def encode_jitted(lowerCamelCase : Tuple, lowerCamelCase : Optional[int]=None, **lowerCamelCase : Union[str, Any] ): return model.encode(input_ids=SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) with self.subTest('''JIT Enabled''' ): lowercase__ = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape, output.shape ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] ) lowercase__ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase : Any, lowerCamelCase : Tuple, lowerCamelCase : str ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, encoder_outputs=SCREAMING_SNAKE_CASE_, ) with self.subTest('''JIT Enabled''' ): lowercase__ = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape, output.shape ) @slow def lowercase__ ( self : str ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''google/pegasus-large''', from_pt=SCREAMING_SNAKE_CASE_ ) lowercase__ = np.ones((1, 1) ) lowercase__ = model(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) lowercase__ = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) lowercase__ = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \'Oh I think you\'re nominated\'\", said Dappy.\"And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around.\"At the end of the day we\'re grateful to be where we are in our careers.\"If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ''', ] lowercase__ = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] lowercase__ = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='''np''', truncation=SCREAMING_SNAKE_CASE_, max_length=512, padding=SCREAMING_SNAKE_CASE_ ) lowercase__ = model.generate(**SCREAMING_SNAKE_CASE_, num_beams=2 ).sequences lowercase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_ ) assert tgt_text == decoded
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
import numpy as np def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return np.where(vector > 0 , lowerCamelCase_ , (alpha * (np.exp(lowerCamelCase_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import os from pathlib import Path def a ( ): '''simple docstring''' from torch.utils.cpp_extension import load lowercase__ = Path(lowerCamelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' lowercase__ = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , lowerCamelCase_ , with_cuda=lowerCamelCase_ , extra_include_paths=[str(lowerCamelCase_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel A__ : int = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } A__ : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def a ( lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' lowercase__ , lowercase__ = create_model( '''HTSAT-tiny''' , '''roberta''' , _lowerCAmelCase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_lowerCAmelCase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {} lowercase__ = r'''.*sequential.(\d+).*''' lowercase__ = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase__ = key.replace(_lowerCAmelCase , _lowerCAmelCase ) if re.match(_lowerCAmelCase , _lowerCAmelCase ): # replace sequential layers with list lowercase__ = re.match(_lowerCAmelCase , _lowerCAmelCase ).group(1 ) lowercase__ = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(_lowerCAmelCase )//3}.linear.""" ) elif re.match(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ = int(re.match(_lowerCAmelCase , _lowerCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase__ = 1 if projecton_layer == 0 else 2 lowercase__ = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase__ = value lowercase__ = mixed_qkv.size(0 ) // 3 lowercase__ = mixed_qkv[:qkv_dim] lowercase__ = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase__ = mixed_qkv[qkv_dim * 2 :] lowercase__ = query_layer lowercase__ = key_layer lowercase__ = value_layer else: lowercase__ = value return model_state_dict def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' lowercase__ , lowercase__ = init_clap(_lowerCAmelCase , enable_fusion=_lowerCAmelCase ) clap_model.eval() lowercase__ = clap_model.state_dict() lowercase__ = rename_state_dict(_lowerCAmelCase ) lowercase__ = ClapConfig() lowercase__ = enable_fusion lowercase__ = ClapModel(_lowerCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) transformers_config.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') A__ : Dict = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [0 for i in range(r + 1 )] # nc0 = 1 lowercase__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool A__ : List[str] = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class _UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" lowercase__ = """facebook/nllb-200-distilled-600M""" lowercase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowercase__ = """translator""" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = LANGUAGE_CODES lowercase__ = ["""text""", """text""", """text"""] lowercase__ = ["""text"""] def lowercase__ ( self : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) lowercase__ = self.lang_to_code[src_lang] lowercase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _lowercase, return_tensors='''pt''', src_lang=_lowercase, tgt_lang=_lowercase ) def lowercase__ ( self : int, lowerCamelCase : Dict ): '''simple docstring''' return self.model.generate(**_lowercase ) def lowercase__ ( self : List[Any], lowerCamelCase : Any ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=_lowercase )
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ : Union[str, Any] = TypeVar('T') A__ : Any = TypeVar('U') class _UpperCAmelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' lowercase__ = key lowercase__ = val lowercase__ = None lowercase__ = None def __repr__( self : Optional[Any] ): '''simple docstring''' return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _UpperCAmelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : str ): '''simple docstring''' lowercase__ = DoubleLinkedListNode(lowercase_, lowercase_ ) lowercase__ = DoubleLinkedListNode(lowercase_, lowercase_ ) lowercase__ = self.rear, self.head def __repr__( self : Any ): '''simple docstring''' lowercase__ = ["DoubleLinkedList"] lowercase__ = self.head while node.next is not None: rep.append(str(lowercase_ ) ) lowercase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def lowercase__ ( self : str, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase__ = node lowercase__ = previous lowercase__ = node lowercase__ = self.rear def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' if node.prev is None or node.next is None: return None lowercase__ = node.next lowercase__ = node.prev lowercase__ = None lowercase__ = None return node class _UpperCAmelCase ( Generic[T, U] ): """simple docstring""" lowercase__ = {} def __init__( self : Tuple, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = DoubleLinkedList() lowercase__ = capacity lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def __repr__( self : int ): '''simple docstring''' return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Optional[Any], lowerCamelCase : Dict ): '''simple docstring''' return key in self.cache def lowercase__ ( self : Any, lowerCamelCase : Tuple ): '''simple docstring''' # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase__ = self.cache[key] lowercase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def lowercase__ ( self : List[str], lowerCamelCase : str, lowerCamelCase : Optional[Any] ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase__ = DoubleLinkedListNode(lowercase_, lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowercase__ = value self.list.add(lowercase_ ) @classmethod def lowercase__ ( cls : List[Any], lowerCamelCase : Optional[int] = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Any ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : str ) -> U: if func not in cls.decorator_function_to_instance_map: lowercase__ = LRUCache(lowercase_ ) lowercase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowercase__ = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0], lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_, '''cache_info''', lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : List[str], lowerCamelCase : Dict=13, lowerCamelCase : Union[str, Any]=32, lowerCamelCase : int=2, lowerCamelCase : int=3, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Optional[int]=[1, 2, 1], lowerCamelCase : str=[2, 2, 4], lowerCamelCase : Optional[Any]=2, lowerCamelCase : Any=2.0, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[Any]=0.0, lowerCamelCase : Union[str, Any]=0.0, lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=False, lowerCamelCase : Any=True, lowerCamelCase : Tuple=0.02, lowerCamelCase : Dict=1E-5, lowerCamelCase : str=True, lowerCamelCase : int=None, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : int=10, lowerCamelCase : Optional[int]=8, lowerCamelCase : Union[str, Any]=["stage1", "stage2", "stage3"], lowerCamelCase : List[Any]=[1, 2, 3], ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = MaskFormerSwinModel(config=A_ ) model.to(A_ ) model.eval() lowercase__ = model(A_ ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = MaskFormerSwinBackbone(config=A_ ) model.to(A_ ) model.eval() lowercase__ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(A_ ): lowercase__ = ['''stem'''] lowercase__ = MaskFormerSwinBackbone(config=A_ ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = MaskFormerSwinModelTester(self ) lowercase__ = ConfigTester(self, config_class=A_, embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' pass def lowercase__ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : int ): '''simple docstring''' return def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) @unittest.skip('''Swin does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Swin does not support feedforward chunking''' ) def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_, nn.Linear ) ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(A_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], A_ ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def lowercase__ ( self : Any ): '''simple docstring''' pass def lowercase__ ( self : Dict, lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(A_, A_ ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester, '''expected_num_hidden_layers''', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ), A_ ) # Swin has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(A_, A_, A_, A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(A_, A_, A_, A_ ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(A_, A_, A_, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(A_, A_, A_, (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase : List[str] ): lowercase__ = 0 return t def check_equivalence(lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str]={} ): with torch.no_grad(): lowercase__ = model(**A_, return_dict=A_, **A_ ) lowercase__ = model(**A_, return_dict=A_, **A_ ).to_tuple() def recursive_check(lowerCamelCase : List[Any], lowerCamelCase : List[str] ): if isinstance(A_, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(A_, A_ ): recursive_check(A_, A_ ) elif isinstance(A_, A_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(A_, A_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(A_ ), set_nan_tensor_to_zero(A_ ), atol=1E-5 ), msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(A_ ).any()} and `inf`: {torch.isinf(A_ )}. Dict has""" F""" `nan`: {torch.isnan(A_ ).any()} and `inf`: {torch.isinf(A_ )}.""" ), ) recursive_check(A_, A_ ) for model_class in self.all_model_classes: lowercase__ = model_class(A_ ) model.to(A_ ) model.eval() lowercase__ = self._prepare_for_class(A_, A_ ) lowercase__ = self._prepare_for_class(A_, A_ ) check_equivalence(A_, A_, A_ ) lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ ) lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ ) check_equivalence(A_, A_, A_ ) lowercase__ = self._prepare_for_class(A_, A_ ) lowercase__ = self._prepare_for_class(A_, A_ ) check_equivalence(A_, A_, A_, {'''output_hidden_states''': True} ) lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ ) lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ ) check_equivalence(A_, A_, A_, {'''output_hidden_states''': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase ,_UpperCAmelCase ): """simple docstring""" lowercase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__ = MaskFormerSwinConfig def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = MaskFormerSwinModelTester(self ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: lowercase__ = backbone_class(A_ ) backbone.to(A_ ) backbone.eval() lowercase__ = backbone(**A_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, A_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ = backbone(**A_, output_hidden_states=A_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ = backbone(**A_, output_attentions=A_ ) self.assertIsNotNone(outputs.attentions )
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): """simple docstring""" lowercase__ = """facebook/bart-large-mnli""" lowercase__ = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) lowercase__ = """text_classifier""" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSequenceClassification lowercase__ = ["""text""", ["""text"""]] lowercase__ = ["""text"""] def lowercase__ ( self : str ): '''simple docstring''' super().setup() lowercase__ = self.model.config lowercase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): lowercase__ = int(lowerCamelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowercase__ ( self : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = labels return self.pre_processor( [text] * len(lowerCamelCase ), [F"""This example is {label}""" for label in labels], return_tensors='''pt''', padding='''max_length''', ) def lowercase__ ( self : Any, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = outputs.logits lowercase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A__ : Optional[int] = data_utils.TransfoXLTokenizer A__ : Any = data_utils.TransfoXLCorpus A__ : str = data_utils A__ : List[Any] = data_utils def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as fp: lowercase__ = pickle.load(_SCREAMING_SNAKE_CASE , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase__ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowercase__ = corpus.vocab.__dict__ torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , _SCREAMING_SNAKE_CASE ) lowercase__ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase__ = os.path.abspath(_SCREAMING_SNAKE_CASE ) lowercase__ = os.path.abspath(_SCREAMING_SNAKE_CASE ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowercase__ = TransfoXLConfig() else: lowercase__ = TransfoXLConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__ = TransfoXLLMHeadModel(_SCREAMING_SNAKE_CASE ) lowercase__ = load_tf_weights_in_transfo_xl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F"""Save PyTorch model to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F"""Save configuration file to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A__ : str = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : List[Any] = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Union[str, Any] = {'vocab_file': 'spm_char.model'} A__ : Dict = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } A__ : Tuple = { 'microsoft/speecht5_asr': 10_24, 'microsoft/speecht5_tts': 10_24, 'microsoft/speecht5_vc': 10_24, } class _UpperCAmelCase ( __A ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : Any="<s>", lowerCamelCase : List[str]="</s>", lowerCamelCase : List[Any]="<unk>", lowerCamelCase : Optional[int]="<pad>", lowerCamelCase : Optional[Any] = None, **lowerCamelCase : List[Any], ): '''simple docstring''' lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, pad_token=UpperCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase__, ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.sp_model.get_piece_size() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Any, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[Any], lowerCamelCase : Dict ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase__, out_type=UpperCamelCase__ ) def lowercase__ ( self : str, lowerCamelCase : Dict ): '''simple docstring''' return self.sp_model.piece_to_id(UpperCamelCase__ ) def lowercase__ ( self : int, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def lowercase__ ( self : List[Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = [] lowercase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowercase__ = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def lowercase__ ( self : Dict, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[str] = None, lowerCamelCase : Dict = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + suffix_ones return ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : str = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( UpperCamelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ : str = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = ['ChineseCLIPFeatureExtractor'] A__ : Dict = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( lowercase_ ): """simple docstring""" def lowercase__ ( self : List[Any], lowerCamelCase : str=None, lowerCamelCase : List[Any]=None, lowerCamelCase : List[Any]=None, **lowerCamelCase : int ): '''simple docstring''' if tokenize_kwargs is None: lowercase__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) lowercase__ = truncation lowercase__ = tokenize_kwargs lowercase__ = {} if return_tensors is not None: lowercase__ = return_tensors return preprocess_params, {}, postprocess_params def lowercase__ ( self : List[str], lowerCamelCase : Dict, **lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.framework lowercase__ = self.tokenizer(UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ) return model_inputs def lowercase__ ( self : List[str], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.model(**UpperCamelCase__ ) return model_outputs def lowercase__ ( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : int, *lowerCamelCase : Optional[Any], **lowerCamelCase : str ): '''simple docstring''' return super().__call__(*UpperCamelCase__, **UpperCamelCase__ )
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
import sys A__ : Union[str, Any] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def a ( lowerCamelCase_ = N ): '''simple docstring''' lowercase__ = -sys.maxsize - 1 for i in range(len(__lowerCAmelCase ) - 12 ): lowercase__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase__ = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Optional[Any] = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" lowercase__ = """altclip_text_model""" def __init__( self : List[Any], lowerCamelCase : Union[str, Any]=250_002, lowerCamelCase : Optional[int]=1_024, lowerCamelCase : Union[str, Any]=24, lowerCamelCase : Any=16, lowerCamelCase : List[str]=4_096, lowerCamelCase : str="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : Dict=0.1, lowerCamelCase : List[str]=514, lowerCamelCase : Union[str, Any]=1, lowerCamelCase : str=0.02, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : Optional[int]=1E-05, lowerCamelCase : List[Any]=1, lowerCamelCase : int=0, lowerCamelCase : List[str]=2, lowerCamelCase : List[str]="absolute", lowerCamelCase : Optional[int]=True, lowerCamelCase : Union[str, Any]=768, **lowerCamelCase : Optional[int], ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = initializer_factor lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = project_dim class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" lowercase__ = """altclip_vision_model""" def __init__( self : List[str], lowerCamelCase : Dict=768, lowerCamelCase : int=3_072, lowerCamelCase : Tuple=512, lowerCamelCase : int=12, lowerCamelCase : Tuple=12, lowerCamelCase : Any=3, lowerCamelCase : int=224, lowerCamelCase : List[str]=32, lowerCamelCase : int="quick_gelu", lowerCamelCase : Union[str, Any]=1E-5, lowerCamelCase : str=0.0, lowerCamelCase : str=0.02, lowerCamelCase : List[str]=1.0, **lowerCamelCase : int, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = projection_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = initializer_factor lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def lowercase__ ( cls : Union[str, Any], lowerCamelCase : List[str], **lowerCamelCase : Optional[Any] ): '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__ = cls.get_config_dict(_UpperCAmelCase, **_UpperCAmelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": lowercase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase, **_UpperCAmelCase ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" lowercase__ = """altclip""" lowercase__ = True def __init__( self : Tuple, lowerCamelCase : Optional[int]=None, lowerCamelCase : Optional[int]=None, lowerCamelCase : Tuple=768, lowerCamelCase : List[str]=2.6592, **lowerCamelCase : List[Any] ): '''simple docstring''' # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase__ = kwargs.pop('''text_config_dict''', _UpperCAmelCase ) lowercase__ = kwargs.pop('''vision_config_dict''', _UpperCAmelCase ) super().__init__(**_UpperCAmelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase__ = {} # This is the complete result when using `text_config_dict`. lowercase__ = AltCLIPTextConfig(**_UpperCAmelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase__ = ( F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ F"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowercase__ = ( F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ F"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(_UpperCAmelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase__ = {} # This is the complete result when using `vision_config_dict`. lowercase__ = AltCLIPVisionConfig(**_UpperCAmelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase__ = { str(_UpperCAmelCase ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase__ = ( F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowercase__ = ( F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ F"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(_UpperCAmelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase__ = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: lowercase__ = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) lowercase__ = AltCLIPTextConfig(**_UpperCAmelCase ) lowercase__ = AltCLIPVisionConfig(**_UpperCAmelCase ) lowercase__ = projection_dim lowercase__ = logit_scale_init_value lowercase__ = 1.0 @classmethod def lowercase__ ( cls : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Any, **lowerCamelCase : Dict ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **_UpperCAmelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.text_config.to_dict() lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def a ( lowerCamelCase_ , lowerCamelCase_=10 ): '''simple docstring''' lowercase__ = [] for _ in range(UpperCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def a ( lowerCamelCase_ , lowerCamelCase_=10 ): '''simple docstring''' lowercase__ = [] for step in range(UpperCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCAmelCase__ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , UpperCAmelCase__ ) lowercase__ = torch.load(UpperCAmelCase__ ) scheduler.load_state_dict(UpperCAmelCase__ ) return lrs @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : int ): '''simple docstring''' self.assertEqual(len(_A ), len(_A ) ) for a, b in zip(_A, _A ): self.assertAlmostEqual(_A, _A, delta=_A ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = torch.tensor([0.1, -0.2, -0.1], requires_grad=_A ) lowercase__ = torch.tensor([0.4, 0.2, -0.5] ) lowercase__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase__ = AdamW(params=[w], lr=2E-1, weight_decay=0.0 ) for _ in range(100 ): lowercase__ = criterion(_A, _A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = torch.tensor([0.1, -0.2, -0.1], requires_grad=_A ) lowercase__ = torch.tensor([0.4, 0.2, -0.5] ) lowercase__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase__ = Adafactor( params=[w], lr=1E-2, eps=(1E-30, 1E-3), clip_threshold=1.0, decay_rate=-0.8, betaa=_A, weight_decay=0.0, relative_step=_A, scale_parameter=_A, warmup_init=_A, ) for _ in range(1_000 ): lowercase__ = criterion(_A, _A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = nn.Linear(50 ,50 ) if is_torch_available() else None lowercase__ = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None lowercase__ = 10 def lowercase__ ( self : int, lowerCamelCase : Optional[Any], lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : Dict=None ): '''simple docstring''' self.assertEqual(len(_A ), len(_A ) ) for a, b in zip(_A, _A ): self.assertAlmostEqual(_A, _A, delta=_A, msg=_A ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowercase__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowercase__ , lowercase__ = data lowercase__ = scheduler_func(self.optimizer, **_A ) self.assertEqual(len([scheduler.get_lr()[0]] ), 1 ) lowercase__ = unwrap_schedule(_A, self.num_steps ) self.assertListAlmostEqual( _A, _A, tol=1E-2, msg=F"""failed for {scheduler_func} in normal scheduler""", ) lowercase__ = scheduler_func(self.optimizer, **_A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_A ) # wrap to test picklability of the schedule lowercase__ = unwrap_and_save_reload_schedule(_A, self.num_steps ) self.assertListEqual(_A, _A, msg=F"""failed for {scheduler_func} in save and reload""" ) class _UpperCAmelCase : """simple docstring""" def __init__( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = fn def __call__( self : int, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.fn(*_A, **_A ) @classmethod def lowercase__ ( self : Union[str, Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = list(map(self, scheduler.lr_lambdas ) )
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Callable, lowerCamelCase : Optional[Features] = None, lowerCamelCase : str = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : Optional[dict] = None, lowerCamelCase : Optional[int] = None, **lowerCamelCase : List[str], ): '''simple docstring''' super().__init__( features=__UpperCamelCase, cache_dir=__UpperCamelCase, keep_in_memory=__UpperCamelCase, streaming=__UpperCamelCase, num_proc=__UpperCamelCase, **__UpperCamelCase, ) lowercase__ = Generator( cache_dir=__UpperCamelCase, features=__UpperCamelCase, generator=__UpperCamelCase, gen_kwargs=__UpperCamelCase, **__UpperCamelCase, ) def lowercase__ ( self : str ): '''simple docstring''' # Build iterable dataset if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=__UpperCamelCase, download_mode=__UpperCamelCase, verification_mode=__UpperCamelCase, base_path=__UpperCamelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split='''train''', verification_mode=__UpperCamelCase, in_memory=self.keep_in_memory ) return dataset
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A__ : Union[str, Any] = False A__ : int = logging.get_logger(__name__) A__ : Optional[int] = 'ybelkada/fonts' def a ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ '''Pix2StructImageProcessor. Please upgrade torch.''' ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' requires_backends(_UpperCamelCase , ['''torch'''] ) _check_torch_version() lowercase__ = image_tensor.unsqueeze(0 ) lowercase__ = torch.nn.functional.unfold(_UpperCamelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _UpperCamelCase , _UpperCamelCase , -1 ) lowercase__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def a ( lowerCamelCase_ , lowerCamelCase_ = 36 , lowerCamelCase_ = "black" , lowerCamelCase_ = "white" , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = None , lowerCamelCase_ = None , ): '''simple docstring''' requires_backends(_UpperCamelCase , '''vision''' ) # Add new lines so that each line is no more than 80 characters. lowercase__ = textwrap.TextWrapper(width=80 ) lowercase__ = wrapper.wrap(text=_UpperCamelCase ) lowercase__ = '''\n'''.join(_UpperCamelCase ) if font_bytes is not None and font_path is None: lowercase__ = io.BytesIO(_UpperCamelCase ) elif font_path is not None: lowercase__ = font_path else: lowercase__ = hf_hub_download(_UpperCamelCase , '''Arial.TTF''' ) lowercase__ = ImageFont.truetype(_UpperCamelCase , encoding='''UTF-8''' , size=_UpperCamelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase__ = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , _UpperCamelCase ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = temp_draw.textbbox((0, 0) , _UpperCamelCase , _UpperCamelCase ) # Create the actual image with a bit of padding around the text. lowercase__ = text_width + left_padding + right_padding lowercase__ = text_height + top_padding + bottom_padding lowercase__ = Image.new('''RGB''' , (image_width, image_height) , _UpperCamelCase ) lowercase__ = ImageDraw.Draw(_UpperCamelCase ) draw.text(xy=(left_padding, top_padding) , text=_UpperCamelCase , fill=_UpperCamelCase , font=_UpperCamelCase ) return image def a ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' requires_backends(_UpperCamelCase , '''vision''' ) # Convert to PIL image if necessary lowercase__ = to_pil_image(_UpperCamelCase ) lowercase__ = render_text(_UpperCamelCase , **_UpperCamelCase ) lowercase__ = max(header_image.width , image.width ) lowercase__ = int(image.height * (new_width / image.width) ) lowercase__ = int(header_image.height * (new_width / header_image.width) ) lowercase__ = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase__ = to_numpy_array(_UpperCamelCase ) if infer_channel_dimension_format(_UpperCamelCase ) == ChannelDimension.LAST: lowercase__ = to_channel_dimension_format(_UpperCamelCase , ChannelDimension.LAST ) return new_image class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""flattened_patches"""] def __init__( self : str, lowerCamelCase : List[Any] = True, lowerCamelCase : Tuple = True, lowerCamelCase : Any = None, lowerCamelCase : Optional[Any] = 2_048, lowerCamelCase : Optional[Any] = False, **lowerCamelCase : Optional[Any], ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} lowercase__ = do_normalize lowercase__ = do_convert_rgb lowercase__ = max_patches lowercase__ = is_vqa def lowercase__ ( self : Any, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self.extract_flattened_patches, '''torch''' ) _check_torch_version() # convert to torch lowercase__ = to_channel_dimension_format(lowerCamelCase, ChannelDimension.FIRST ) lowercase__ = torch.from_numpy(lowerCamelCase ) lowercase__ , lowercase__ = patch_size['''height'''], patch_size['''width'''] lowercase__ , lowercase__ = get_image_size(lowerCamelCase ) # maximize scale s.t. lowercase__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase__ = max(min(math.floor(scale * image_height / patch_height ), lowerCamelCase ), 1 ) lowercase__ = max(min(math.floor(scale * image_width / patch_width ), lowerCamelCase ), 1 ) lowercase__ = max(num_feasible_rows * patch_height, 1 ) lowercase__ = max(num_feasible_cols * patch_width, 1 ) lowercase__ = torch.nn.functional.interpolate( image.unsqueeze(0 ), size=(resized_height, resized_width), mode='''bilinear''', align_corners=lowerCamelCase, antialias=lowerCamelCase, ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase__ = torch_extract_patches(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = patches.shape lowercase__ = patches_shape[1] lowercase__ = patches_shape[2] lowercase__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase__ = torch.arange(lowerCamelCase ).reshape([rows, 1] ).repeat(1, lowerCamelCase ).reshape([rows * columns, 1] ) lowercase__ = torch.arange(lowerCamelCase ).reshape([1, columns] ).repeat(lowerCamelCase, 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase__ = row_ids.to(torch.floataa ) lowercase__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase__ = torch.cat([row_ids, col_ids, patches], -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase__ = torch.nn.functional.pad(lowerCamelCase, [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase__ = to_numpy_array(lowerCamelCase ) return result def lowercase__ ( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any] = None, **lowerCamelCase : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase__ = image.astype(np.floataa ) # take mean across the whole `image` lowercase__ = np.mean(lowerCamelCase ) lowercase__ = np.std(lowerCamelCase ) lowercase__ = max(lowerCamelCase, 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any] = None, lowerCamelCase : Union[str, Any] = None, lowerCamelCase : Dict = None, lowerCamelCase : Optional[Any] = None, lowerCamelCase : Optional[Any] = None, lowerCamelCase : List[str] = None, lowerCamelCase : Dict = ChannelDimension.FIRST, **lowerCamelCase : Tuple, ): '''simple docstring''' lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ = patch_size if patch_size is not None else self.patch_size lowercase__ = max_patches if max_patches is not None else self.max_patches lowercase__ = self.is_vqa if kwargs.get('''data_format''', lowerCamelCase ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) lowercase__ = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(lowerCamelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) lowercase__ = kwargs.pop('''font_bytes''', lowerCamelCase ) lowercase__ = kwargs.pop('''font_path''', lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [header_text] * len(lowerCamelCase ) lowercase__ = [ render_header(lowerCamelCase, header_text[i], font_bytes=lowerCamelCase, font_path=lowerCamelCase ) for i, image in enumerate(lowerCamelCase ) ] if do_normalize: lowercase__ = [self.normalize(image=lowerCamelCase ) for image in images] # convert to torch tensor and permute lowercase__ = [ self.extract_flattened_patches(image=lowerCamelCase, max_patches=lowerCamelCase, patch_size=lowerCamelCase ) for image in images ] # create attention mask in numpy lowercase__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase__ = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks}, tensor_type=lowerCamelCase ) return encoded_outputs
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A__ : str = logging.get_logger(__name__) class _UpperCAmelCase ( __UpperCAmelCase ): """simple docstring""" def __init__( self : Tuple, *lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Optional[int] = logging.get_logger(__name__) A__ : Optional[int] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCAmelCase ( __lowerCAmelCase ): """simple docstring""" lowercase__ = "xlm-roberta-xl" def __init__( self : int, lowerCamelCase : str=250_880, lowerCamelCase : Optional[Any]=2_560, lowerCamelCase : str=36, lowerCamelCase : List[Any]=32, lowerCamelCase : Union[str, Any]=10_240, lowerCamelCase : List[Any]="gelu", lowerCamelCase : Any=0.1, lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]=514, lowerCamelCase : int=1, lowerCamelCase : Dict=0.02, lowerCamelCase : int=1E-05, lowerCamelCase : Any=1, lowerCamelCase : Union[str, Any]=0, lowerCamelCase : Optional[Any]=2, lowerCamelCase : Optional[Any]="absolute", lowerCamelCase : Any=True, lowerCamelCase : int=None, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class _UpperCAmelCase ( __lowerCAmelCase ): """simple docstring""" @property def lowercase__ ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
from typing import List import numpy as np def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {key: len(snake_case_ ) for key, value in gen_kwargs.items() if isinstance(snake_case_ , snake_case_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) lowercase__ = max(lists_lengths.values() , default=0 ) return max(1 , snake_case_ ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for group_idx in range(snake_case_ ): lowercase__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase__ = range(snake_case_ , start + num_shards_to_add ) shards_indices_per_group.append(snake_case_ ) return shards_indices_per_group def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = _number_of_shards_in_gen_kwargs(snake_case_ ) if num_shards == 1: return [dict(snake_case_ )] else: lowercase__ = _distribute_shards(num_shards=snake_case_ , max_num_jobs=snake_case_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case_ , snake_case_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case_ ) ) ] def a ( lowerCamelCase_ ): '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , snake_case_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = {len(snake_case_ ) for value in gen_kwargs.values() if isinstance(snake_case_ , snake_case_ )} lowercase__ = {} for size in list_sizes: lowercase__ = list(range(snake_case_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase__ = dict(snake_case_ ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case_ , snake_case_ ): lowercase__ = [value[i] for i in indices_per_size[len(snake_case_ )]] return shuffled_kwargs
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( lowercase_ ,lowercase_ ,lowercase_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[str] = False, ): '''simple docstring''' super().__init__() lowercase__ = nn.Embedding(lowerCamelCase, lowerCamelCase ) lowercase__ = nn.Embedding(lowerCamelCase, lowerCamelCase ) lowercase__ = False lowercase__ = nn.Dropout(p=lowerCamelCase ) lowercase__ = TaConfig( vocab_size=lowerCamelCase, d_model=lowerCamelCase, num_heads=lowerCamelCase, d_kv=lowerCamelCase, d_ff=lowerCamelCase, dropout_rate=lowerCamelCase, feed_forward_proj=lowerCamelCase, is_decoder=lowerCamelCase, is_encoder_decoder=lowerCamelCase, ) lowercase__ = nn.ModuleList() for lyr_num in range(lowerCamelCase ): lowercase__ = TaBlock(lowerCamelCase ) self.encoders.append(lowerCamelCase ) lowercase__ = TaLayerNorm(lowerCamelCase ) lowercase__ = nn.Dropout(p=lowerCamelCase ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.token_embedder(lowerCamelCase ) lowercase__ = encoder_input_tokens.shape[1] lowercase__ = torch.arange(lowerCamelCase, device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase ) lowercase__ = self.dropout_pre(lowerCamelCase ) # inverted the attention mask lowercase__ = encoder_input_tokens.size() lowercase__ = self.get_extended_attention_mask(lowerCamelCase, lowerCamelCase ) for lyr in self.encoders: lowercase__ = lyr(lowerCamelCase, lowerCamelCase )[0] lowercase__ = self.layer_norm(lowerCamelCase ) return self.dropout_post(lowerCamelCase ), encoder_inputs_mask
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : List[Any] = logging.get_logger(__name__) A__ : str = {'vocab_file': 'spiece.model'} A__ : Tuple = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } A__ : Optional[int] = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } A__ : str = '▁' class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str], lowerCamelCase : int, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Tuple=False, lowerCamelCase : Tuple="[CLS]", lowerCamelCase : int="[SEP]", lowerCamelCase : Any="<unk>", lowerCamelCase : List[str]="[SEP]", lowerCamelCase : Optional[Any]="<pad>", lowerCamelCase : int="[CLS]", lowerCamelCase : List[str]="[MASK]", lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Optional[int], ): '''simple docstring''' lowercase__ = ( AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase, normalized=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else mask_token ) lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase, remove_space=lowerCamelCase, keep_accents=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase ) @property def lowercase__ ( self : Tuple ): '''simple docstring''' return len(self.sp_model ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : str, lowerCamelCase : List[str] ): '''simple docstring''' if self.remove_space: lowercase__ = ''' '''.join(inputs.strip().split() ) else: lowercase__ = inputs lowercase__ = outputs.replace('''``''', '''"''' ).replace('''\'\'''', '''"''' ) if not self.keep_accents: lowercase__ = unicodedata.normalize('''NFKD''', lowerCamelCase ) lowercase__ = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase )] ) if self.do_lower_case: lowercase__ = outputs.lower() return outputs def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.preprocess_text(lowerCamelCase ) lowercase__ = self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) lowercase__ = [] for piece in pieces: if len(lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase, '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase__ = cur_pieces[1:] else: lowercase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase ) else: new_pieces.append(lowerCamelCase ) return new_pieces def lowercase__ ( self : Tuple, lowerCamelCase : List[Any] ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase ) def lowercase__ ( self : Dict, lowerCamelCase : List[str] ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase ) def lowercase__ ( self : Optional[int], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = [] lowercase__ = '''''' lowercase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase ) + token lowercase__ = True lowercase__ = [] else: current_sub_tokens.append(lowerCamelCase ) lowercase__ = False out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def lowercase__ ( self : List[str], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : Optional[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[str], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,)
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Union[str, Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = (PNDMScheduler,) lowercase__ = (("""num_inference_steps""", 50),) def lowercase__ ( self : Any, **lowerCamelCase : str ): '''simple docstring''' lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self : List[str], lowerCamelCase : int=0, **lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : int ): '''simple docstring''' pass def lowercase__ ( self : Any, lowerCamelCase : Dict=0, **lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : List[Any], **lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample return sample def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase, '''set_timesteps''' ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase, '''set_timesteps''' ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = scheduler.step_prk(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step_plms(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = scheduler.step_plms(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase ) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1 ) lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps, torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ), ) def lowercase__ ( self : List[str] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase, beta_end=lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = 27 for scheduler_class in self.scheduler_classes: lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample def lowercase__ ( self : Tuple ): '''simple docstring''' with self.assertRaises(lowerCamelCase ): lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample ).prev_sample def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.full_loop(prediction_type='''v_prediction''' ) lowercase__ = torch.sum(torch.abs(lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.01 ) lowercase__ = torch.sum(torch.abs(lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.01 ) lowercase__ = torch.sum(torch.abs(lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ : Optional[int] = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = ['PerceiverFeatureExtractor'] A__ : Optional[int] = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = CustomTokenizer pass
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = (DPMSolverSinglestepScheduler,) lowercase__ = (("""num_inference_steps""", 25),) def lowercase__ ( self : List[Any], **lowerCamelCase : str ): '''simple docstring''' lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**lowerCamelCase ) return config def lowercase__ ( self : str, lowerCamelCase : str=0, **lowerCamelCase : int ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ , lowercase__ = sample, sample for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1 ): lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int]=0, **lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str]=None, **lowerCamelCase : Optional[Any] ): '''simple docstring''' if scheduler is None: lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample return sample def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase__ = 50 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def lowercase__ ( self : Tuple ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase__ = self.full_loop(scheduler=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 lowercase__ = DEISMultistepScheduler.from_config(scheduler.config ) lowercase__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase__ = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase__ = self.full_loop(scheduler=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, algorithm_type='''dpmsolver++''', solver_order=lowerCamelCase, solver_type=lowerCamelCase, ) def lowercase__ ( self : Dict ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) lowercase__ = self.full_loop( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) assert not torch.isnan(lowerCamelCase ).any(), "Samples have nan numbers" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase ) self.check_over_configs(lower_order_final=lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowercase__ ( self : Any ): '''simple docstring''' self.check_over_configs(variance_type=lowerCamelCase ) self.check_over_configs(variance_type='''learned_range''' ) def lowercase__ ( self : Dict ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.full_loop(use_karras_sigmas=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.full_loop(prediction_type='''v_prediction''' ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.full_loop(prediction_type='''v_prediction''', use_karras_sigmas=lowerCamelCase ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0 ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A__ : Optional[int] = random.Random() def a ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' if rng is None: lowercase__ = global_rng lowercase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int, lowerCamelCase : List[str], lowerCamelCase : Dict=7, lowerCamelCase : Dict=400, lowerCamelCase : Dict=2_000, lowerCamelCase : Optional[int]=1, lowerCamelCase : Tuple=0.0, lowerCamelCase : Tuple=16_000, lowerCamelCase : Optional[int]=True, lowerCamelCase : List[Any]=80, lowerCamelCase : str=16, lowerCamelCase : List[Any]=64, lowerCamelCase : List[Any]="hann_window", lowerCamelCase : Any=80, lowerCamelCase : List[Any]=7_600, lowerCamelCase : Any=1E-10, lowerCamelCase : Any=True, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = min_seq_length lowercase__ = max_seq_length lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ = feature_size lowercase__ = padding_value lowercase__ = sampling_rate lowercase__ = do_normalize lowercase__ = num_mel_bins lowercase__ = hop_length lowercase__ = win_length lowercase__ = win_function lowercase__ = fmin lowercase__ = fmax lowercase__ = mel_floor lowercase__ = return_attention_mask def lowercase__ ( self : Dict ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowercase__ ( self : List[str], lowerCamelCase : Dict=False, lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' def _flatten(lowerCamelCase : List[str] ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def lowercase__ ( self : Dict, lowerCamelCase : List[Any]=False, lowerCamelCase : Optional[Any]=False ): '''simple docstring''' if equal_length: lowercase__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = SpeechTaFeatureExtractor def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = SpeechTaFeatureExtractionTester(self ) def lowercase__ ( self : Tuple, lowerCamelCase : List[Any] ): '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCamelCase, axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase, axis=0 ) - 1 ) < 1E-3 ) ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values lowercase__ = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) # Test batched lowercase__ = feat_extract(lowerCamelCase, return_tensors='''np''' ).input_values lowercase__ = feat_extract(lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ = [None, 1_600, None] for max_length, padding in zip(lowerCamelCase, lowerCamelCase ): lowercase__ = feat_extract(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = range(800, 1_400, 200 ) lowercase__ = [floats_list((1, x) )[0] for x in lengths] lowercase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ = [None, 1_600, None] for max_length, padding in zip(lowerCamelCase, lowerCamelCase ): lowercase__ = feat_extract(lowerCamelCase, max_length=lowerCamelCase, padding=lowerCamelCase ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = feat_extract( lowerCamelCase, truncation=lowerCamelCase, max_length=1_000, padding='''max_length''', return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = feat_extract( lowerCamelCase, truncation=lowerCamelCase, max_length=1_000, padding='''longest''', return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = feat_extract( lowerCamelCase, truncation=lowerCamelCase, max_length=2_000, padding='''longest''', return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = np.random.rand(100 ).astype(np.floataa ) lowercase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowercase__ = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ = feature_extractor(audio_target=lowerCamelCase, padding=lowerCamelCase, return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ = feature_extractor(speech_inputs[0], return_tensors='''np''' ).input_values lowercase__ = feature_extractor(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) # Test batched lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ = np.asarray(lowerCamelCase ) lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase, processed_features[input_name] ) ) ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ = BatchFeature({input_name: speech_inputs}, tensor_type='''np''' ) lowercase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}, tensor_type='''pt''' ) lowercase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = feat_extract.num_mel_bins # hack! lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''np''' )[input_name] lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCamelCase ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = feat_extract.num_mel_bins # hack! lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''np''' ) self.assertIn('''attention_mask''', lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCamelCase ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = min(lowerCamelCase ) lowercase__ = feat_extract.num_mel_bins # hack! lowercase__ = feat_extract.pad( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''np''' ) self.assertIn('''attention_mask''', lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] ) def lowercase__ ( self : str, lowerCamelCase : Any ): '''simple docstring''' from datasets import load_dataset lowercase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech lowercase__ = ds.sort('''id''' ).select(range(lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on lowercase__ = self._load_datasamples(1 ) lowercase__ = SpeechTaFeatureExtractor() lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30], lowerCamelCase, atol=1E-6 ) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on lowercase__ = self._load_datasamples(1 ) lowercase__ = SpeechTaFeatureExtractor() lowercase__ = feature_extractor(audio_target=lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30], lowerCamelCase, atol=1E-4 ) )
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A__ : Any = 'facebook/wmt19-en-de' A__ : Union[str, Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A__ : Optional[int] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A__ : str = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test A__ : int = tokenizer(['Making tiny model'], return_tensors='pt') A__ : Union[str, Any] = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save A__ : str = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) A__ : str = 'hf-internal-testing/tiny-random-bert' A__ : Optional[int] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') A__ : List[str] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = cached_file(lowerCamelCase, lowerCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCamelCase, lowerCamelCase ) ) ) with open(os.path.join(lowerCamelCase, '''refs''', '''main''' ) ) as f: lowercase__ = f.read() self.assertEqual(lowerCamelCase, os.path.join(lowerCamelCase, '''snapshots''', lowerCamelCase, lowerCamelCase ) ) self.assertTrue(os.path.isfile(lowerCamelCase ) ) # File is cached at the same place the second time. lowercase__ = cached_file(lowerCamelCase, lowerCamelCase ) self.assertEqual(lowerCamelCase, lowerCamelCase ) # Using a specific revision to test the full commit hash. lowercase__ = cached_file(lowerCamelCase, lowerCamelCase, revision='''9b8c223''' ) self.assertEqual(lowerCamelCase, os.path.join(lowerCamelCase, '''snapshots''', lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase, '''is not a valid model identifier''' ): lowercase__ = cached_file('''tiny-random-bert''', lowerCamelCase ) with self.assertRaisesRegex(lowerCamelCase, '''is not a valid git identifier''' ): lowercase__ = cached_file(lowerCamelCase, lowerCamelCase, revision='''aaaa''' ) with self.assertRaisesRegex(lowerCamelCase, '''does not appear to have a file named''' ): lowercase__ = cached_file(lowerCamelCase, '''conf''' ) def lowercase__ ( self : Any ): '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase, '''does not appear to have a file named''' ): lowercase__ = cached_file(lowerCamelCase, '''conf''' ) with open(os.path.join(lowerCamelCase, '''refs''', '''main''' ) ) as f: lowercase__ = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase, '''.no_exist''', lowerCamelCase, '''conf''' ) ) ) lowercase__ = cached_file(lowerCamelCase, '''conf''', _raise_exceptions_for_missing_entries=lowerCamelCase ) self.assertIsNone(lowerCamelCase ) lowercase__ = cached_file(lowerCamelCase, '''conf''', local_files_only=lowerCamelCase, _raise_exceptions_for_missing_entries=lowerCamelCase ) self.assertIsNone(lowerCamelCase ) lowercase__ = mock.Mock() lowercase__ = 500 lowercase__ = {} lowercase__ = HTTPError lowercase__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''', return_value=lowerCamelCase ) as mock_head: lowercase__ = cached_file(lowerCamelCase, '''conf''', _raise_exceptions_for_connection_errors=lowerCamelCase ) self.assertIsNone(lowerCamelCase ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self : str ): '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''', lowerCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''', lowerCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''', lowerCamelCase ) ) def lowercase__ ( self : str ): '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''', '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCamelCase, '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''', lowerCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCamelCase, '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''', lowerCamelCase, revision='''ahaha''' ) lowercase__ = get_file_from_repo('''bert-base-cased''', lowerCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__ = json.loads(open(lowerCamelCase, '''r''' ).read() ) self.assertEqual(config['''hidden_size'''], 768 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = Path(lowerCamelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(lowerCamelCase, '''a.txt''' ), str(lowerCamelCase ) ) self.assertIsNone(get_file_from_repo(lowerCamelCase, '''b.txt''' ) )
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
import os A__ : List[str] = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00} def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0 lowercase__ = 0 while index < len(lowerCamelCase_ ) - 1: lowercase__ = SYMBOLS[numerals[index]] lowercase__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''''' lowercase__ = num // 1000 numerals += m_count * "M" num %= 1000 lowercase__ = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowercase__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a ( lowerCamelCase_ = "/p089_roman.txt" ): '''simple docstring''' lowercase__ = 0 with open(os.path.dirname(lowerCamelCase_ ) + roman_numerals_filename ) as filea: lowercase__ = filea.readlines() for line in lines: lowercase__ = line.strip() lowercase__ = parse_roman_numerals(lowerCamelCase_ ) lowercase__ = generate_roman_numerals(lowerCamelCase_ ) savings += len(lowerCamelCase_ ) - len(lowerCamelCase_ ) return savings if __name__ == "__main__": print(F"{solution() = }")
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """Pix2StructImageProcessor""" lowercase__ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = False super().__init__(lowerCamelCase, lowerCamelCase ) def __call__( self : str, lowerCamelCase : str=None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = 2_048, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : Any, ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase__ = self.image_processor( lowerCamelCase, return_tensors=lowerCamelCase, max_patches=lowerCamelCase, **lowerCamelCase ) else: # add pixel_values and bbox lowercase__ = self.image_processor( lowerCamelCase, return_tensors=lowerCamelCase, max_patches=lowerCamelCase, header_text=lowerCamelCase, **lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) if "attention_mask" in text_encoding: lowercase__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: lowercase__ = text_encoding.pop('''input_ids''' ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def lowercase__ ( self : List[Any], *lowerCamelCase : Optional[int], **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Union[str, Any], *lowerCamelCase : Any, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def lowercase__ ( self : int ): '''simple docstring''' super().setUp() lowercase__ = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname, legacy_format=lowerCamelCase ) lowercase__ = tokenizer def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ), lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ), lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(vocab_keys[-1], '''<mask>''' ) self.assertEqual(len(lowerCamelCase ), 101_122 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 101_122 ) @require_torch def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__ = [0, 57, 3_018, 70_307, 91, 2] lowercase__ = self.tokenizer( lowerCamelCase, max_length=len(lowerCamelCase ), padding=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase, lowerCamelCase ) self.assertEqual((2, 6), batch.input_ids.shape ) self.assertEqual((2, 6), batch.attention_mask.shape ) lowercase__ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.tokenize(lowerCamelCase ) lowercase__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) lowercase__ = rust_tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCamelCase ) lowercase__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase__ = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase, model_name='''moussaKam/mbarthez''', revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''', sequences=lowerCamelCase, )
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ : Tuple = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = ['ChineseCLIPFeatureExtractor'] A__ : List[Any] = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys A__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ = str(abs(lowerCamelCase_ ) ) lowercase__ = [list(lowerCamelCase_ ) for char in range(len(lowerCamelCase_ ) )] for index in range(len(lowerCamelCase_ ) ): num_transpositions[index].pop(lowerCamelCase_ ) return max( int(''''''.join(list(lowerCamelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0 lowercase__ = len(lowerCamelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCamelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a ( lowerCamelCase_ ): '''simple docstring''' if len(lowerCamelCase_ ) <= 1: return arr, 0 lowercase__ = len(lowerCamelCase_ ) // 2 lowercase__ = arr[0:mid] lowercase__ = arr[mid:] lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ ) lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ ) lowercase__ , lowercase__ = _count_cross_inversions(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = inversion_p + inversions_q + cross_inversions return c, num_inversions def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = lowercase__ = lowercase__ = 0 while i < len(lowerCamelCase_ ) and j < len(lowerCamelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCamelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCamelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a ( ): '''simple docstring''' lowercase__ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase__ = count_inversions_bf(lowerCamelCase_ ) lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , lowerCamelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase__ = count_inversions_bf(lowerCamelCase_ ) lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , lowerCamelCase_ ) # an empty list should also have zero inversions lowercase__ = [] lowercase__ = count_inversions_bf(lowerCamelCase_ ) lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , lowerCamelCase_ ) if __name__ == "__main__": main()
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
import math def a ( lowerCamelCase_ ): '''simple docstring''' return math.sqrt(lowerCamelCase_ ) * math.sqrt(lowerCamelCase_ ) == num def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0 lowercase__ = n while left <= right: lowercase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase__ = mid - 1 else: lowercase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Any ): '''simple docstring''' lowercase__ = data lowercase__ = None class _UpperCAmelCase : """simple docstring""" def __init__( self : str ): '''simple docstring''' lowercase__ = None lowercase__ = None def __iter__( self : Dict ): '''simple docstring''' lowercase__ = self.head while self.head: yield node.data lowercase__ = node.next if node == self.head: break def __len__( self : Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : List[Any] ): '''simple docstring''' return "->".join(str(lowerCamelCase ) for item in iter(self ) ) def lowercase__ ( self : int, lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(len(self ), lowerCamelCase ) def lowercase__ ( self : List[Any], lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(0, lowerCamelCase ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) lowercase__ = Node(lowerCamelCase ) if self.head is None: lowercase__ = new_node # first node points itself lowercase__ = lowercase__ = new_node elif index == 0: # insert at head lowercase__ = self.head lowercase__ = lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node if index == len(self ) - 1: # insert at tail lowercase__ = new_node def lowercase__ ( self : int ): '''simple docstring''' return self.delete_nth(0 ) def lowercase__ ( self : Dict ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) lowercase__ = self.head if self.head == self.tail: # just one node lowercase__ = lowercase__ = None elif index == 0: # delete head node lowercase__ = self.tail.next.next lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next if index == len(self ) - 1: # delete at tail lowercase__ = temp return delete_node.data def lowercase__ ( self : Tuple ): '''simple docstring''' return len(self ) == 0 def a ( ): '''simple docstring''' lowercase__ = CircularLinkedList() assert len(lowerCamelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCamelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCamelCase_ ) == i circular_linked_list.insert_nth(lowerCamelCase_ , i + 1 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowercase__ = False if num < 0: lowercase__ = True lowercase__ = -num lowercase__ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(lowerCamelCase_ ) for e in binary ) return "0b" + "".join(str(lowerCamelCase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """yolos""" def __init__( self : Any, lowerCamelCase : Tuple=768, lowerCamelCase : Optional[Any]=12, lowerCamelCase : Any=12, lowerCamelCase : Any=3_072, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[Any]=0.0, lowerCamelCase : List[str]=0.0, lowerCamelCase : List[Any]=0.02, lowerCamelCase : str=1E-12, lowerCamelCase : List[Any]=[512, 864], lowerCamelCase : Any=16, lowerCamelCase : List[str]=3, lowerCamelCase : int=True, lowerCamelCase : Optional[int]=100, lowerCamelCase : Optional[int]=True, lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[Any]=1, lowerCamelCase : List[str]=5, lowerCamelCase : List[Any]=2, lowerCamelCase : List[Any]=5, lowerCamelCase : Any=2, lowerCamelCase : Dict=0.1, **lowerCamelCase : int, ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = num_detection_tokens lowercase__ = use_mid_position_embeddings lowercase__ = auxiliary_loss # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = version.parse("""1.11""" ) @property def lowercase__ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Any ): '''simple docstring''' return 1E-4 @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return 12
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' def a ( ): '''simple docstring''' return 1 def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCamelCase_ ) def a ( lowerCamelCase_ = 200 ): '''simple docstring''' return two_pound(lowerCamelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : Any ): '''simple docstring''' self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for a, b in zip(lowerCamelCase, lowerCamelCase ): self.assertAlmostEqual(lowerCamelCase, lowerCamelCase, delta=lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step, 3 ) self.assertEqual(len(accumulator.gradients ), 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1E-2 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = None ops.enable_eager_execution_internal() lowercase__ = tf.config.list_physical_devices('''CPU''' ) if len(lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowercase__ = tf.config.list_logical_devices(device_type='''CPU''' ) lowercase__ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowercase__ = GradientAccumulator() lowercase__ = tf.Variable([4.0, 3.0] ) lowercase__ , lowercase__ = create_optimizer(5E-5, 10, 5 ) lowercase__ = tf.Variable([0.0, 0.0], trainable=lowerCamelCase ) def accumulate_on_replica(lowerCamelCase : Tuple ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients, [variable] ) ) ) @tf.function def accumulate(lowerCamelCase : str, lowerCamelCase : Optional[Any] ): with strategy.scope(): lowercase__ = strategy.experimental_local_results(lowerCamelCase ) local_variables[0].assign(lowerCamelCase ) local_variables[1].assign(lowerCamelCase ) strategy.run(lowerCamelCase, args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowerCamelCase ) def _check_local_values(lowerCamelCase : Dict, lowerCamelCase : Optional[Any] ): lowercase__ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value(), lowerCamelCase, tol=1E-2 ) self.assertListAlmostEqual(values[1].value(), lowerCamelCase, tol=1E-2 ) accumulate([1.0, 2.0], [-1.0, 1.0] ) accumulate([3.0, -1.0], [-1.0, -1.0] ) accumulate([-2.0, 2.0], [3.0, -2.0] ) self.assertEqual(accumulator.step, 3 ) _check_local_values([2.0, 3.0], [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) _check_local_values([0.0, 0.0], [0.0, 0.0] )
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Dict=13, lowerCamelCase : Dict=64, lowerCamelCase : Any=3, lowerCamelCase : List[Any]=[16, 48, 96], lowerCamelCase : List[Any]=[1, 3, 6], lowerCamelCase : List[str]=[1, 2, 10], lowerCamelCase : Optional[Any]=[7, 3, 3], lowerCamelCase : Tuple=[4, 2, 2], lowerCamelCase : Union[str, Any]=[2, 1, 1], lowerCamelCase : Tuple=[2, 2, 2], lowerCamelCase : Optional[int]=[False, False, True], lowerCamelCase : Optional[int]=[0.0, 0.0, 0.0], lowerCamelCase : Tuple=0.02, lowerCamelCase : Any=1E-12, lowerCamelCase : int=True, lowerCamelCase : str=True, lowerCamelCase : List[str]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = stride_kv lowercase__ = depth lowercase__ = cls_token lowercase__ = attention_drop_rate lowercase__ = initializer_range lowercase__ = layer_norm_eps def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: # create a random int32 tensor of given shape lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ): '''simple docstring''' return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = TFCvtModel(config=lowerCamelCase ) lowercase__ = model(lowerCamelCase, training=lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFCvtForImageClassification(lowerCamelCase ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase, training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = TFCvtModelTester(self ) lowercase__ = TFCvtConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def lowercase__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) def lowercase__ ( self : List[Any] ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(lowerCamelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): lowercase__ = model_class(lowerCamelCase ) lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Any ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFCvtModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''tf''' ) # forward pass lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), lowerCamelCase, atol=1E-4 ) )
720
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = 1 @register_to_config def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ): '''simple docstring''' # standard deviation of the initial noise distribution lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase, lowerCamelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device ) lowercase__ = torch.zeros_like(lowerCamelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
671
0
A__ : int = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() # keep track of all the paths to be checked lowercase__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase__ = queue.pop(0 ) # get the last node from the path lowercase__ = path[-1] if node not in explored: lowercase__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase__ = list(lowerCamelCase_ ) new_path.append(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCamelCase_ ) # in case there's no path between the 2 nodes return [] def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase__ = [start] lowercase__ = set(lowerCamelCase_ ) # Keep tab on distances from `start` node. lowercase__ = {start: 0, target: -1} while queue: lowercase__ = queue.pop(0 ) if node == target: lowercase__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) lowercase__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
721
from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
671
0
import argparse import os import re A__ : Dict = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict A__ : List[Any] = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings A__ : Union[str, Any] = re.compile(r'\s*\(\s*"(\S[^"]+)"') def a ( lowerCamelCase_ , lowerCamelCase_ = False ): '''simple docstring''' with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = f.read() lowercase__ = content.split('''\n''' ) lowercase__ = [] lowercase__ = 0 while line_idx < len(lowerCamelCase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowercase__ = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowercase__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowercase__ = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowercase__ = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : _re_identifier.search(lowerCamelCase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) elif "\n".join(lowerCamelCase_ ) != content: return True def a ( lowerCamelCase_ = False ): '''simple docstring''' lowercase__ = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for f in os.listdir(lowerCamelCase_ ) if f.endswith('''.py''' )] lowercase__ = [sort_auto_mapping(lowerCamelCase_ , overwrite=lowerCamelCase_ ) for fname in fnames] if not overwrite and any(lowerCamelCase_ ): lowercase__ = [f for f, d in zip(lowerCamelCase_ , lowerCamelCase_ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowerCamelCase_ )}. Run `make style` to fix""" ''' this.''' ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : Dict = parser.parse_args() sort_all_auto_mappings(not args.check_only)
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
A__ : Optional[int] = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) A__ : str = frozenset(['prompt', 'negative_prompt']) A__ : Tuple = frozenset([]) A__ : Optional[Any] = frozenset(['image']) A__ : Union[str, Any] = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) A__ : Tuple = frozenset(['image']) A__ : Any = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) A__ : Union[str, Any] = frozenset(['prompt', 'image', 'negative_prompt']) A__ : Optional[Any] = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) A__ : List[str] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) A__ : Dict = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) A__ : Tuple = frozenset(['image', 'mask_image']) A__ : Optional[int] = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) A__ : List[str] = frozenset(['example_image', 'image', 'mask_image']) A__ : str = frozenset(['class_labels']) A__ : List[str] = frozenset(['class_labels']) A__ : Dict = frozenset(['batch_size']) A__ : int = frozenset([]) A__ : Dict = frozenset(['batch_size']) A__ : Optional[Any] = frozenset([]) A__ : str = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) A__ : Union[str, Any] = frozenset(['prompt', 'negative_prompt']) A__ : Union[str, Any] = frozenset(['input_tokens']) A__ : int = frozenset(['input_tokens'])
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Tuple = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """xlm-prophetnet""" lowercase__ = ["""past_key_values"""] lowercase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : List[Any], lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[Union[str, Callable]] = "gelu", lowerCamelCase : Optional[int] = 30_522, lowerCamelCase : Optional[int] = 1_024, lowerCamelCase : Optional[int] = 4_096, lowerCamelCase : Optional[int] = 12, lowerCamelCase : Optional[int] = 16, lowerCamelCase : Optional[int] = 4_096, lowerCamelCase : Optional[int] = 12, lowerCamelCase : Optional[int] = 16, lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[int] = 512, lowerCamelCase : Optional[float] = 0.02, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[int] = 0, lowerCamelCase : Optional[int] = 2, lowerCamelCase : Optional[int] = 32, lowerCamelCase : Optional[int] = 128, lowerCamelCase : Optional[bool] = False, lowerCamelCase : Optional[float] = 0.0, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[int] = 0, lowerCamelCase : Optional[int] = 1, lowerCamelCase : Optional[int] = 2, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = encoder_ffn_dim lowercase__ = num_encoder_layers lowercase__ = num_encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = num_decoder_layers lowercase__ = num_decoder_attention_heads lowercase__ = max_position_embeddings lowercase__ = init_std # Normal(0, this parameter) lowercase__ = activation_function # parameters for xlmprophetnet lowercase__ = ngram lowercase__ = num_buckets lowercase__ = relative_max_distance lowercase__ = disable_ngram_loss lowercase__ = eps # 3 Types of Dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = dropout lowercase__ = use_cache super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, add_cross_attention=lowerCamelCase, decoder_start_token_id=lowerCamelCase, **lowerCamelCase, ) @property def lowercase__ ( self : str ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any] ): '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
702
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
0
from math import asin, atan, cos, radians, sin, sqrt, tan A__ : str = 6_37_81_37.0 A__ : Tuple = 6_35_67_52.31_42_45 A__ : str = 6_37_81_37 def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = radians(lowerCamelCase_ ) lowercase__ = radians(lowerCamelCase_ ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(lowerCamelCase_ ) * cos(lowerCamelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
703
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ): '''simple docstring''' # Mapping from the first character of the prefix of the node lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 0 for q, w in zip(self.prefix, lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.nodes.get(word[0], lowerCamelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ): '''simple docstring''' lowercase__ = '''banana bananas bandana band apple all beast'''.split() lowercase__ = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ): '''simple docstring''' assert test_trie() def a ( ): '''simple docstring''' lowercase__ = RadixNode() lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase_ ) print('''Words:''' , lowerCamelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : str = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = ViTImageProcessor if is_vision_available() else None @property def lowercase__ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = (3, 32, 128) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) lowercase__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) return image_input def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''test''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = torch.randn(1, 27, 38 ) lowercase__ = torch.randn(1, 27, 50_257 ) lowercase__ = torch.randn(1, 27, 30_522 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
671
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow A__ : Any = False class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any]=32 ): '''simple docstring''' set_seed(0 ) lowercase__ = UNetaDModel(sample_size=lowerCamelCase, in_channels=3, out_channels=3 ) lowercase__ = torch.optim.SGD(model.parameters(), lr=0.0001 ) return model, optimizer @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase__ = DDPMScheduler( num_train_timesteps=1_000, beta_start=0.0001, beta_end=0.02, beta_schedule='''linear''', clip_sample=lowerCamelCase, ) lowercase__ = DDIMScheduler( num_train_timesteps=1_000, beta_start=0.0001, beta_end=0.02, beta_schedule='''linear''', clip_sample=lowerCamelCase, ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase__ = [torch.randn((4, 3, 32, 32) ).clip(-1, 1 ).to(lowerCamelCase ) for _ in range(4 )] lowercase__ = [torch.randn((4, 3, 32, 32) ).to(lowerCamelCase ) for _ in range(4 )] lowercase__ = [torch.randint(0, 1_000, (4,) ).long().to(lowerCamelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase__ , lowercase__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase ) for i in range(4 ): optimizer.zero_grad() lowercase__ = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i] ) lowercase__ = model(lowerCamelCase, timesteps[i] ).sample lowercase__ = torch.nn.functional.mse_loss(lowerCamelCase, noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase__ , lowercase__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase ) for i in range(4 ): optimizer.zero_grad() lowercase__ = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i] ) lowercase__ = model(lowerCamelCase, timesteps[i] ).sample lowercase__ = torch.nn.functional.mse_loss(lowerCamelCase, noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) ) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) )
705
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ): '''simple docstring''' lowercase__ = base for _ in range(1 , lowerCamelCase_ ): lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
671
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple=100, lowerCamelCase : Any=13, lowerCamelCase : Union[str, Any]=30, lowerCamelCase : Dict=2, lowerCamelCase : Optional[int]=3, lowerCamelCase : int=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]=32, lowerCamelCase : Any=4, lowerCamelCase : int=4, lowerCamelCase : int=37, lowerCamelCase : Tuple="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : int=0.02, lowerCamelCase : List[str]=3, lowerCamelCase : List[Any]=None, lowerCamelCase : List[str]=[0, 1, 2, 3], ): '''simple docstring''' lowercase__ = parent lowercase__ = 100 lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = out_indices lowercase__ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = BeitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = BeitForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.type_sequence_label_size lowercase__ = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = BeitForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = BeitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def lowercase__ ( self : Any ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : str ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling]: continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = BeitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Tuple ): '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).pixel_values.to(lowerCamelCase ) # prepare bool_masked_pos lowercase__ = torch.ones((1, 196), dtype=torch.bool ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(pixel_values=lowerCamelCase, bool_masked_pos=lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], lowerCamelCase, atol=1E-2 ) ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) ) lowercase__ = 281 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase ) @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) ) lowercase__ = 2_396 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase ) lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) lowercase__ = Image.open(ds[0]['''file'''] ) lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: lowercase__ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ], device=lowerCamelCase, ) else: lowercase__ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase ) lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) lowercase__ = Image.open(ds[0]['''file'''] ) lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits.detach().cpu() lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(500, 300)] ) lowercase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, lowerCamelCase ) lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) lowercase__ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, lowerCamelCase )
706
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[ 0 ] if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = 1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = len(lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" F""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to( self.device ) else: lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # predict the noise residual lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(lowerCamelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
671
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = StableDiffusionInstructPixaPixPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) lowercase__ = CLIPTextModel(lowerCamelCase ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase__ ( self : Optional[Any], lowerCamelCase : List[Any], lowerCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = image.cpu().permute(0, 2, 3, 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ) if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = sd_pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = '''french fries''' lowercase__ = sd_pipe(**lowerCamelCase, negative_prompt=lowerCamelCase ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = [inputs['''prompt''']] * 2 lowercase__ = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 lowercase__ = torch.from_numpy(lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) lowercase__ = image / 2 + 0.5 lowercase__ = image.permute(0, 3, 1, 2 ) lowercase__ = image.repeat(2, 1, 1, 1 ) lowercase__ = sd_pipe(**lowerCamelCase ).images lowercase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''' ) lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = sd_pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [round(lowerCamelCase, 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) lowercase__ = VaeImageProcessor(do_resize=lowerCamelCase, do_normalize=lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase, input_image_type='''pt''' ) )[0] lowercase__ = components['''vae'''] lowercase__ = self.get_dummy_inputs_by_type(lowerCamelCase, input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase__ = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase__ = pipe(**lowerCamelCase )[0] lowercase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase, 1E-4, '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' lowercase__ = torch.manual_seed(lowerCamelCase ) lowercase__ = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) lowercase__ = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase ) lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = 0 def callback_fn(lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor ) -> None: lowercase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase__ = False lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase, torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() pipe(**lowerCamelCase, callback=lowerCamelCase, callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase, torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ = inputs['''image'''].resize((504, 504) ) lowercase__ = '''timbrooks/instruct-pix2pix''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ = pipe(**lowerCamelCase ) lowercase__ = output.images[0] lowercase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [[] for _ in range(lowerCamelCase )] lowercase__ = size def __getitem__( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowercase__ ( self : str ): '''simple docstring''' return self._size def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase, lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
671
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A__ : Union[str, Any] = pytest.mark.integration @require_faiss class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def lowercase__ ( self : str ): '''simple docstring''' import faiss lowercase__ = self._create_dummy_dataset() lowercase__ = dset.map( lambda lowerCamelCase, lowerCamelCase : {"vecs": i * np.ones(5, dtype=np.floataa )}, with_indices=lowerCamelCase, keep_in_memory=lowerCamelCase ) lowercase__ = dset.add_faiss_index('''vecs''', batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs''', np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def lowercase__ ( self : str ): '''simple docstring''' import faiss lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''', batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT, ) lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs''', np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' import faiss lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''', metric_type=faiss.METRIC_INNER_PRODUCT, ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase ) as tmp_file: dset.save_faiss_index('''vecs''', tmp_file.name ) dset.load_faiss_index('''vecs2''', tmp_file.name ) os.unlink(tmp_file.name ) lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs2''', np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(lowerCamelCase, partial(dset.get_nearest_examples, '''vecs2''', np.ones(5, dtype=np.floataa ) ) ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' from elasticsearch import Elasticsearch lowercase__ = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowercase__ = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} lowercase__ = Elasticsearch() dset.add_elasticsearch_index('''filename''', es_client=lowerCamelCase ) lowercase__ , lowercase__ = dset.get_nearest_examples('''filename''', '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' ) @require_faiss class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal, 5 ) index.add_vectors(np.zeros((5, 5), dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal, 10 ) # single query lowercase__ = np.zeros(5, dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(lowerCamelCase ) self.assertRaises(lowerCamelCase, index.search, query.reshape(-1, 1 ) ) self.assertGreater(scores[0], 0 ) self.assertEqual(indices[0], 1 ) # batched queries lowercase__ = np.eye(5, dtype=np.floataa )[::-1] lowercase__ , lowercase__ = index.search_batch(lowerCamelCase ) self.assertRaises(lowerCamelCase, index.search_batch, queries[0] ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase ), 0 ) self.assertListEqual([4, 3, 2, 1, 0], lowerCamelCase ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' import faiss lowercase__ = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexFlat ) lowercase__ = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexLSH ) with self.assertRaises(lowerCamelCase ): lowercase__ = FaissIndex(string_factory='''Flat''', custom_index=faiss.IndexFlat(5 ) ) def lowercase__ ( self : Tuple ): '''simple docstring''' import faiss lowercase__ = faiss.IndexFlat(5 ) lowercase__ = FaissIndex(custom_index=lowerCamelCase ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexFlat ) def lowercase__ ( self : List[str] ): '''simple docstring''' import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) lowercase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowercase__ = np.zeros(5, dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(lowerCamelCase ) self.assertGreater(scores[0], 0 ) self.assertEqual(indices[0], 1 ) @require_faiss def a ( lowerCamelCase_ ): '''simple docstring''' import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowercase__ = '''index.faiss''' lowercase__ = F"""mock://{index_name}""" index.save(lowerCamelCase_ , storage_options=mockfs.storage_options ) lowercase__ = FaissIndex.load(lowerCamelCase_ , storage_options=mockfs.storage_options ) lowercase__ = np.zeros(5 , dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(lowerCamelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Dict ): '''simple docstring''' from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowercase__ = Elasticsearch() lowercase__ = {'''acknowledged''': True} lowercase__ = ElasticSearchIndex(es_client=lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query lowercase__ = '''foo''' lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase__ , lowercase__ = index.search(lowerCamelCase ) self.assertEqual(scores[0], 1 ) self.assertEqual(indices[0], 0 ) # single query with timeout lowercase__ = '''foo''' lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase__ , lowercase__ = index.search(lowerCamelCase, request_timeout=30 ) self.assertEqual(scores[0], 1 ) self.assertEqual(indices[0], 0 ) # batched queries lowercase__ = ['''foo''', '''bar''', '''foobar'''] lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase__ , lowercase__ = index.search_batch(lowerCamelCase ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase ), 0 ) self.assertListEqual([1, 1, 1], lowerCamelCase ) # batched queries with timeout lowercase__ = ['''foo''', '''bar''', '''foobar'''] lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase__ , lowercase__ = index.search_batch(lowerCamelCase, request_timeout=30 ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase ), 0 ) self.assertListEqual([1, 1, 1], lowerCamelCase )
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = KandinskyVaaControlnetImgaImgPipeline lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase__ = False @property def lowercase__ ( self : str ): '''simple docstring''' return 32 @property def lowercase__ ( self : str ): '''simple docstring''' return 32 @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def lowercase__ ( self : Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase__ ( self : Tuple ): '''simple docstring''' return 100 @property def lowercase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ = UNetaDConditionModel(**lowerCamelCase ) return model @property def lowercase__ ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ = DDIMScheduler(**lowerCamelCase ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowercase__ = image.cpu().permute(0, 2, 3, 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**lowerCamelCase ) lowercase__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(lowerCamelCase ), return_dict=lowerCamelCase, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ = init_image.resize((512, 512) ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ = torch.from_numpy(np.array(lowerCamelCase ) ).float() / 255.0 lowercase__ = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowercase__ = '''A robot, 4k photo''' lowercase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) lowercase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''', torch_dtype=torch.floataa ) lowercase__ = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( lowerCamelCase, image=lowerCamelCase, strength=0.85, generator=lowerCamelCase, negative_prompt='''''', ).to_tuple() lowercase__ = pipeline( image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, hint=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=100, height=512, width=512, strength=0.5, output_type='''np''', ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase )
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A__ : Optional[Any] = False A__ : Optional[int] = logging.get_logger(__name__) A__ : Tuple = 'ybelkada/fonts' def a ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ '''Pix2StructImageProcessor. Please upgrade torch.''' ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' requires_backends(lowerCamelCase_ , ['''torch'''] ) _check_torch_version() lowercase__ = image_tensor.unsqueeze(0 ) lowercase__ = torch.nn.functional.unfold(lowerCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCamelCase_ , lowerCamelCase_ , -1 ) lowercase__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def a ( lowerCamelCase_ , lowerCamelCase_ = 36 , lowerCamelCase_ = "black" , lowerCamelCase_ = "white" , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = None , lowerCamelCase_ = None , ): '''simple docstring''' requires_backends(lowerCamelCase_ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. lowercase__ = textwrap.TextWrapper(width=80 ) lowercase__ = wrapper.wrap(text=lowerCamelCase_ ) lowercase__ = '''\n'''.join(lowerCamelCase_ ) if font_bytes is not None and font_path is None: lowercase__ = io.BytesIO(lowerCamelCase_ ) elif font_path is not None: lowercase__ = font_path else: lowercase__ = hf_hub_download(lowerCamelCase_ , '''Arial.TTF''' ) lowercase__ = ImageFont.truetype(lowerCamelCase_ , encoding='''UTF-8''' , size=lowerCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase__ = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , lowerCamelCase_ ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = temp_draw.textbbox((0, 0) , lowerCamelCase_ , lowerCamelCase_ ) # Create the actual image with a bit of padding around the text. lowercase__ = text_width + left_padding + right_padding lowercase__ = text_height + top_padding + bottom_padding lowercase__ = Image.new('''RGB''' , (image_width, image_height) , lowerCamelCase_ ) lowercase__ = ImageDraw.Draw(lowerCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=lowerCamelCase_ , fill=lowerCamelCase_ , font=lowerCamelCase_ ) return image def a ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' requires_backends(lowerCamelCase_ , '''vision''' ) # Convert to PIL image if necessary lowercase__ = to_pil_image(lowerCamelCase_ ) lowercase__ = render_text(lowerCamelCase_ , **lowerCamelCase_ ) lowercase__ = max(header_image.width , image.width ) lowercase__ = int(image.height * (new_width / image.width) ) lowercase__ = int(header_image.height * (new_width / header_image.width) ) lowercase__ = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase__ = to_numpy_array(lowerCamelCase_ ) if infer_channel_dimension_format(lowerCamelCase_ ) == ChannelDimension.LAST: lowercase__ = to_channel_dimension_format(lowerCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""flattened_patches"""] def __init__( self : str, lowerCamelCase : bool = True, lowerCamelCase : bool = True, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : int = 2_048, lowerCamelCase : bool = False, **lowerCamelCase : Optional[Any], ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} lowercase__ = do_normalize lowercase__ = do_convert_rgb lowercase__ = max_patches lowercase__ = is_vqa def lowercase__ ( self : Optional[int], lowerCamelCase : np.ndarray, lowerCamelCase : int, lowerCamelCase : dict, **lowerCamelCase : Dict ): '''simple docstring''' requires_backends(self.extract_flattened_patches, '''torch''' ) _check_torch_version() # convert to torch lowercase__ = to_channel_dimension_format(lowerCamelCase, ChannelDimension.FIRST ) lowercase__ = torch.from_numpy(lowerCamelCase ) lowercase__ , lowercase__ = patch_size['''height'''], patch_size['''width'''] lowercase__ , lowercase__ = get_image_size(lowerCamelCase ) # maximize scale s.t. lowercase__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase__ = max(min(math.floor(scale * image_height / patch_height ), lowerCamelCase ), 1 ) lowercase__ = max(min(math.floor(scale * image_width / patch_width ), lowerCamelCase ), 1 ) lowercase__ = max(num_feasible_rows * patch_height, 1 ) lowercase__ = max(num_feasible_cols * patch_width, 1 ) lowercase__ = torch.nn.functional.interpolate( image.unsqueeze(0 ), size=(resized_height, resized_width), mode='''bilinear''', align_corners=lowerCamelCase, antialias=lowerCamelCase, ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase__ = torch_extract_patches(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = patches.shape lowercase__ = patches_shape[1] lowercase__ = patches_shape[2] lowercase__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase__ = torch.arange(lowerCamelCase ).reshape([rows, 1] ).repeat(1, lowerCamelCase ).reshape([rows * columns, 1] ) lowercase__ = torch.arange(lowerCamelCase ).reshape([1, columns] ).repeat(lowerCamelCase, 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase__ = row_ids.to(torch.floataa ) lowercase__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase__ = torch.cat([row_ids, col_ids, patches], -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase__ = torch.nn.functional.pad(lowerCamelCase, [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase__ = to_numpy_array(lowerCamelCase ) return result def lowercase__ ( self : List[str], lowerCamelCase : np.ndarray, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : int ): '''simple docstring''' if image.dtype == np.uinta: lowercase__ = image.astype(np.floataa ) # take mean across the whole `image` lowercase__ = np.mean(lowerCamelCase ) lowercase__ = np.std(lowerCamelCase ) lowercase__ = max(lowerCamelCase, 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : Dict, lowerCamelCase : ImageInput, lowerCamelCase : Optional[str] = None, lowerCamelCase : bool = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Dict[str, int]] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : ChannelDimension = ChannelDimension.FIRST, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ = patch_size if patch_size is not None else self.patch_size lowercase__ = max_patches if max_patches is not None else self.max_patches lowercase__ = self.is_vqa if kwargs.get('''data_format''', lowerCamelCase ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) lowercase__ = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(lowerCamelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) lowercase__ = kwargs.pop('''font_bytes''', lowerCamelCase ) lowercase__ = kwargs.pop('''font_path''', lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [header_text] * len(lowerCamelCase ) lowercase__ = [ render_header(lowerCamelCase, header_text[i], font_bytes=lowerCamelCase, font_path=lowerCamelCase ) for i, image in enumerate(lowerCamelCase ) ] if do_normalize: lowercase__ = [self.normalize(image=lowerCamelCase ) for image in images] # convert to torch tensor and permute lowercase__ = [ self.extract_flattened_patches(image=lowerCamelCase, max_patches=lowerCamelCase, patch_size=lowerCamelCase ) for image in images ] # create attention mask in numpy lowercase__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase__ = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks}, tensor_type=lowerCamelCase ) return encoded_outputs
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : int, lowerCamelCase : Dict=13, lowerCamelCase : Optional[Any]=7, lowerCamelCase : Optional[int]=6, lowerCamelCase : List[Any]=17, lowerCamelCase : Optional[Any]=23, lowerCamelCase : Any=11, lowerCamelCase : List[Any]=True, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = act_dim lowercase__ = state_dim lowercase__ = hidden_size lowercase__ = max_length lowercase__ = is_training def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = ids_tensor((self.batch_size, self.seq_length), vocab_size=1_000 ) lowercase__ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowercase__ ( self : str ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size, seq_length=self.seq_length, act_dim=self.act_dim, state_dim=self.state_dim, hidden_size=self.hidden_size, max_length=self.max_length, ) def lowercase__ ( self : int, lowerCamelCase : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = DecisionTransformerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) self.parent.assertEqual(result.state_preds.shape, states.shape ) self.parent.assertEqual(result.action_preds.shape, actions.shape ) self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (DecisionTransformerModel,) if is_torch_available() else () lowercase__ = () lowercase__ = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = DecisionTransformerModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = DecisionTransformerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(lowerCamelCase )], lowerCamelCase ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = 2 # number of steps of autoregressive prediction we will perform lowercase__ = 10 # defined by the RL environment, may be normalized lowercase__ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = model.config torch.manual_seed(0 ) lowercase__ = torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase, dtype=torch.floataa ) # env.reset() lowercase__ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]], device=lowerCamelCase ) lowercase__ = torch.tensor(lowerCamelCase, device=lowerCamelCase, dtype=torch.floataa ).reshape(1, 1, 1 ) lowercase__ = state lowercase__ = torch.zeros(1, 0, config.act_dim, device=lowerCamelCase, dtype=torch.floataa ) lowercase__ = torch.zeros(1, 0, device=lowerCamelCase, dtype=torch.floataa ) lowercase__ = torch.tensor(0, device=lowerCamelCase, dtype=torch.long ).reshape(1, 1 ) for step in range(lowerCamelCase ): lowercase__ = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=lowerCamelCase )], dim=1 ) lowercase__ = torch.cat([rewards, torch.zeros(1, 1, device=lowerCamelCase )], dim=1 ) lowercase__ = torch.ones(1, states.shape[1] ).to(dtype=torch.long, device=states.device ) with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ = model( states=lowerCamelCase, actions=lowerCamelCase, rewards=lowerCamelCase, returns_to_go=lowerCamelCase, timesteps=lowerCamelCase, attention_mask=lowerCamelCase, return_dict=lowerCamelCase, ) self.assertEqual(action_pred.shape, actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1E-4 ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = ( # env.step(action) torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase, dtype=torch.floataa ), 1.0, False, {}, ) lowercase__ = action_pred[0, -1] lowercase__ = torch.cat([states, state], dim=1 ) lowercase__ = returns_to_go[0, -1] - reward lowercase__ = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1 )], dim=1 ) lowercase__ = torch.cat( [timesteps, torch.ones((1, 1), device=lowerCamelCase, dtype=torch.long ) * (step + 1)], dim=1 )
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = None lowercase__ = None def a ( ): '''simple docstring''' lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def a ( lowerCamelCase_ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a ( lowerCamelCase_ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase_ , lowerCamelCase_ ) return output def a ( lowerCamelCase_ ): '''simple docstring''' if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(lowerCamelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) ) lowercase__ = 0 return output def a ( ): # Main function for testing. '''simple docstring''' lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' ) print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowerCamelCase_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(lowerCamelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
671
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A__ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') A__ : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) A__ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , '''rb''' ) as f: lowercase__ = Image.open(lowerCamelCase_ ) return im.convert('''RGB''' ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default=A__ ,metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """A folder containing the training data."""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """A folder containing the validation data."""} ) lowercase__ = field( default=0.15 ,metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase__ = field( default=A__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) lowercase__ = field( default=A__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) def lowercase__ ( self : Any ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( default="""google/vit-base-patch16-224-in21k""" ,metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(A__ )} ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase__ = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) lowercase__ = field(default=A__ ,metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase__ = field( default=A__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} ,) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowerCamelCase_ , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase__ = {} if data_args.train_dir is not None: lowercase__ = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: lowercase__ = os.path.join(data_args.validation_dir , '''**''' ) lowercase__ = load_dataset( '''imagefolder''' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase_ ) and data_args.train_val_split > 0.0: lowercase__ = dataset['''train'''].train_test_split(data_args.train_val_split ) lowercase__ = split['''train'''] lowercase__ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase__ = dataset['''train'''].features['''labels'''].names lowercase__ , lowercase__ = {}, {} for i, label in enumerate(lowerCamelCase_ ): lowercase__ = str(lowerCamelCase_ ) lowercase__ = label # Load the accuracy metric from the datasets package lowercase__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel=lowerCamelCase_ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase__ = image_processor.size['''shortest_edge'''] else: lowercase__ = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase__ = Compose( [ RandomResizedCrop(lowerCamelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase__ = Compose( [ Resize(lowerCamelCase_ ), CenterCrop(lowerCamelCase_ ), ToTensor(), normalize, ] ) def train_transforms(lowerCamelCase_ ): lowercase__ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowerCamelCase_ ): lowercase__ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCamelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCamelCase_ ) # Initalize our trainer lowercase__ = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCamelCase_ ) trainer.save_metrics('''eval''' , lowerCamelCase_ ) # Write model card and (optionally) push to hub lowercase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) if __name__ == "__main__": main()
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
from datetime import datetime as dt import os from github import Github A__ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def a ( ): '''simple docstring''' lowercase__ = Github(os.environ['''GITHUB_TOKEN'''] ) lowercase__ = g.get_repo('''huggingface/transformers''' ) lowercase__ = repo.get_issues(state='''open''' ) for issue in open_issues: lowercase__ = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) lowercase__ = comments[0] if len(lowerCamelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
713
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
0
import collections import os import re from pathlib import Path A__ : Optional[Any] = 'src/transformers' # Matches is_xxx_available() A__ : List[str] = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} A__ : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A__ : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available A__ : Optional[int] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") A__ : Dict = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A__ : Any = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", A__ : Dict = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], A__ : Tuple = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo A__ : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: A__ : Any = re.compile(r'^\s*try:') # Catches a line with else: A__ : Optional[Any] = re.compile(r'^\s*else:') def a ( lowerCamelCase_ ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None lowercase__ = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase__ = f.readlines() lowercase__ = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowercase__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowercase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): lowercase__ = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] lowercase__ = re.findall(r'''\[([^\]]+)\]''' , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowercase__ = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: lowercase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowercase__ = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: lowercase__ = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: lowercase__ = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowercase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase__ = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' def find_duplicates(lowerCamelCase_ ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase__ = [] for key in import_dict_objects.keys(): lowercase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowercase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase__ = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def a ( ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = os.path.join(lowerCamelCase_ , '''__init__.py''' ) lowercase__ = parse_init(lowerCamelCase_ ) if objects is not None: lowercase__ = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowercase__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError('''\n\n'''.join(lowerCamelCase_ ) ) def a ( ): '''simple docstring''' lowercase__ = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob('''*.py''' ) ) ) == 0: continue lowercase__ = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) lowercase__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowercase__ = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) lowercase__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules A__ : List[str] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def a ( ): '''simple docstring''' from transformers.utils import direct_transformers_import lowercase__ = direct_transformers_import(lowerCamelCase_ ) lowercase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , '''r''' ) as f: lowercase__ = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , lowerCamelCase_ ) ) ) lowercase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: lowercase__ = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
714
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def a ( lowerCamelCase_ ): '''simple docstring''' if "visual_encoder" in key: lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ ) if "blocks" in key: lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ ) if "attn" in key: lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ ) if "norm1" in key: lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ ) if "norm2" in key: lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ ) if "encoder.norm" in key: lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ ) if "self_attn" in key: lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ ) return key @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if config_path is not None: lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value hf_model.load_state_dict(lowerCamelCase_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = tokenizer(['''a picture of'''] ).input_ids lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) lowercase__ = ['''How many dogs are in this image?'''] lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(lowerCamelCase_ ) lowercase__ = rename_key(lowerCamelCase_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ ) lowercase__ = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ = tokenizer( lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
671
0
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 1 lowercase__ = 2 while i * i <= n: lowercase__ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def a ( ): '''simple docstring''' lowercase__ = 1 lowercase__ = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase_ ) > 500: break return t_num if __name__ == "__main__": print(solution())
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCamelCase_ ) , lowerCamelCase_ ) return number - int(lowerCamelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ : int = 16 A__ : int = 32 def a ( lowerCamelCase_ , lowerCamelCase_ = 16 ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( lowerCamelCase_ , padding='''longest''' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) lowercase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A__ : Dict = mocked_dataloaders # noqa: F811 def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCamelCase_ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['''lr'''] lowercase__ = int(config['''num_epochs'''] ) lowercase__ = int(config['''seed'''] ) lowercase__ = int(config['''batch_size'''] ) lowercase__ = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowerCamelCase_ ) lowercase__ , lowercase__ = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase_ ): lowercase__ = model(**lowerCamelCase_ ) lowercase__ = output.loss accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**lowerCamelCase_ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCamelCase_ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ = parser.parse_args() lowercase__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
'''simple docstring''' from collections import defaultdict from math import gcd def a ( lowerCamelCase_ = 150_0000 ): '''simple docstring''' lowercase__ = defaultdict(lowerCamelCase_ ) lowercase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue lowercase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
718
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Tuple = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """convbert""" def __init__( self : int, lowerCamelCase : Any=30_522, lowerCamelCase : Optional[int]=768, lowerCamelCase : Optional[Any]=12, lowerCamelCase : List[str]=12, lowerCamelCase : Optional[Any]=3_072, lowerCamelCase : str="gelu", lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Optional[int]=512, lowerCamelCase : Dict=2, lowerCamelCase : str=0.02, lowerCamelCase : List[Any]=1E-12, lowerCamelCase : Union[str, Any]=1, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Optional[int]=2, lowerCamelCase : Optional[Any]=768, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : str=9, lowerCamelCase : List[Any]=1, lowerCamelCase : str=None, **lowerCamelCase : str, ): '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = embedding_size lowercase__ = head_ratio lowercase__ = conv_kernel_size lowercase__ = num_groups lowercase__ = classifier_dropout class _UpperCAmelCase ( A__ ): """simple docstring""" @property def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
719
from functools import reduce A__ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( lowerCamelCase_ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
671
0