code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from math import factorial
A__ : Optional[int] = {str(digit): factorial(digit) for digit in range(10)}
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__UpperCamelCase ) )
def a ( lowerCamelCase_ = 60 , lowerCamelCase_ = 100_0000 ):
'''simple docstring'''
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
lowercase__ = 0
# the cached sizes of the previous chains
lowercase__ = {}
for start_chain_element in range(1 , __UpperCamelCase ):
# The temporary set will contain the elements of the chain
lowercase__ = set()
lowercase__ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowercase__ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__UpperCamelCase )
chain_set_length += 1
lowercase__ = digit_factorial_sum(__UpperCamelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowercase__ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"{solution()}") | 708 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
# we need a list not a string, so do something to change the type
lowercase__ = arr.split(''',''' )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = [int(self.array[0] )] * len(self.array )
lowercase__ = [int(self.array[0] )] * len(self.array )
for i in range(1, len(self.array ) ):
lowercase__ = max(
int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) )
lowercase__ = max(sum_value[i], rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
A__ : Dict = input('please input some numbers:')
A__ : Union[str, Any] = SubArray(whole_array)
A__ : int = array.solve_sub_array()
print(('the results is:', re))
| 671 | 0 |
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
A__ : str = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = DebertaVaTokenizer
lowercase__ = DebertaVaTokenizerFast
lowercase__ = True
lowercase__ = True
def lowercase__ ( self : Any ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : str, lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = '''this is a test'''
lowercase__ = '''this is a test'''
return input_text, output_text
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = '''<pad>'''
lowercase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ), _lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ), _lowerCAmelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '''<pad>''' )
self.assertEqual(vocab_keys[1], '''<unk>''' )
self.assertEqual(vocab_keys[-1], '''[PAD]''' )
self.assertEqual(len(_lowerCAmelCase ), 30_001 )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 30_000 )
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def lowercase__ ( self : int ):
'''simple docstring'''
pass
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = ''' \tHeLLo!how \n Are yoU? '''
lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, do_lower_case=_lowerCAmelCase, split_by_punct=_lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase ) )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase )
lowercase__ = rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(_lowerCAmelCase )
lowercase__ = rust_tokenizer.encode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = '''This is a test'''
lowercase__ = [13, 1, 4_398, 25, 21, 1_289]
lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase, keep_accents=_lowerCAmelCase )
lowercase__ = DebertaVaTokenizerFast(_lowerCAmelCase, keep_accents=_lowerCAmelCase )
lowercase__ = tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = rust_tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
# fmt: off
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
lowercase__ = tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = rust_tokenizer.encode(_lowerCAmelCase, add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = rust_tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
lowercase__ = rust_tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase, _lowerCAmelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = DebertaVaTokenizer(_lowerCAmelCase )
lowercase__ = tokenizer.encode('''sequence builders''' )
lowercase__ = tokenizer.encode('''multi-sequence build''' )
lowercase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase, _lowerCAmelCase )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], _lowerCAmelCase )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], _lowerCAmelCase, )
@slow
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = {'''input_ids''': [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCAmelCase, model_name='''microsoft/deberta-v2-xlarge''', revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''', )
| 709 |
from itertools import count
def a ( lowerCamelCase_ = 50 ):
'''simple docstring'''
lowercase__ = [1] * min_block_length
for n in count(lowerCamelCase_ ):
fill_count_functions.append(1 )
for block_length in range(lowerCamelCase_ , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 100_0000:
break
return n
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any], lowerCamelCase : int, lowerCamelCase : Union[str, Any]=13, lowerCamelCase : Dict=32, lowerCamelCase : Tuple=3, lowerCamelCase : List[str]=4, lowerCamelCase : int=[10, 20, 30, 40], lowerCamelCase : int=[2, 2, 3, 2], lowerCamelCase : List[str]=True, lowerCamelCase : int=True, lowerCamelCase : List[Any]=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Optional[Any]=10, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"], lowerCamelCase : int=[2, 3, 4], lowerCamelCase : Optional[Any]=None, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = num_channels
lowercase__ = num_stages
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = num_labels
lowercase__ = initializer_range
lowercase__ = out_features
lowercase__ = out_indices
lowercase__ = scope
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size], self.num_labels )
lowercase__ = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=_a, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, )
def lowercase__ ( self : List[Any], lowerCamelCase : List[str], lowerCamelCase : str, lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = ConvNextModel(config=_a )
model.to(_a )
model.eval()
lowercase__ = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
lowercase__ = model(_a, labels=_a )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
lowercase__ = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowercase__ = None
lowercase__ = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
lowercase__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ), 1 )
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] )
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ = config_and_inputs
lowercase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( UpperCamelCase__ ,UpperCamelCase__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = (
{"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification}
if is_torch_available()
else {}
)
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = ConvNextModelTester(self )
lowercase__ = ConfigTester(self, config_class=_a, has_text_modality=_a, hidden_size=37 )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : List[str] ):
'''simple docstring'''
return
@unittest.skip(reason='''ConvNext does not use inputs_embeds''' )
def lowercase__ ( self : int ):
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNext does not support input and output embeddings''' )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNext does not use feedforward chunking''' )
def lowercase__ ( self : Any ):
'''simple docstring'''
pass
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(_a )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], _a )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def lowercase__ ( self : Dict ):
'''simple docstring'''
def check_hidden_states_output(lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : int ):
lowercase__ = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
lowercase__ = model(**self._prepare_for_class(_a, _a ) )
lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase__ = self.model_tester.num_stages
self.assertEqual(len(_a ), expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = True
check_hidden_states_output(_a, _a, _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ = True
check_hidden_states_output(_a, _a, _a )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def lowercase__ ( self : List[str] ):
'''simple docstring'''
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def a ( ):
'''simple docstring'''
lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase__ ( self : str ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None
@slow
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_a )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=_a, return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
lowercase__ = model(**_a )
# verify the logits
lowercase__ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, _a )
lowercase__ = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3], _a, atol=1E-4 ) )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ,UpperCamelCase__ ):
"""simple docstring"""
lowercase__ = (ConvNextBackbone,) if is_torch_available() else ()
lowercase__ = ConvNextConfig
lowercase__ = False
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = ConvNextModelTester(self )
| 710 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
A__ : Tuple = logging.get_logger(__name__)
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""input_features""", """is_longer"""]
def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, )
lowercase__ = top_db
lowercase__ = truncation
lowercase__ = padding
lowercase__ = fft_window_size
lowercase__ = (fft_window_size >> 1) + 1
lowercase__ = hop_length
lowercase__ = max_length_s
lowercase__ = max_length_s * sampling_rate
lowercase__ = sampling_rate
lowercase__ = frequency_min
lowercase__ = frequency_max
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', )
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ):
'''simple docstring'''
lowercase__ = spectrogram(
lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', )
return log_mel_spectrogram.T
def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
# randomly choose index for each part
lowercase__ = np.random.choice(ranges[0] )
lowercase__ = np.random.choice(ranges[1] )
lowercase__ = np.random.choice(ranges[2] )
lowercase__ = mel[idx_front : idx_front + chunk_frames, :]
lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :]
lowercase__ = mel[idx_back : idx_back + chunk_frames, :]
lowercase__ = torch.tensor(mel[None, None, :] )
lowercase__ = torch.nn.functional.interpolate(
lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase )
lowercase__ = mel_shrink[0][0].numpy()
lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 )
return mel_fusion
def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowercase__ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowercase__ = len(lowerCamelCase ) - max_length
lowercase__ = np.random.randint(0, overflow + 1 )
lowercase__ = waveform[idx : idx + max_length]
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowercase__ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowercase__ = np.stack([mel, mel, mel, mel], axis=0 )
lowercase__ = False
else:
lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = True
else:
raise NotImplementedError(F"""data_truncating {truncation} not implemented""" )
else:
lowercase__ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) )
lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 )
if truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 )
else:
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ):
'''simple docstring'''
lowercase__ = truncation if truncation is not None else self.truncation
lowercase__ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
lowercase__ = is_batched_numpy or (
isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ):
lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa )
elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray(lowerCamelCase )]
# convert to mel spectrogram, truncate and pad if needed.
lowercase__ = [
self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase )
for waveform in raw_speech
]
lowercase__ = []
lowercase__ = []
for mel, longer in padded_inputs:
input_mel.append(lowerCamelCase )
is_longer.append(lowerCamelCase )
if truncation == "fusion" and sum(lowerCamelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowercase__ = np.random.randint(0, len(lowerCamelCase ) )
lowercase__ = True
if isinstance(input_mel[0], lowerCamelCase ):
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowercase__ = [[longer] for longer in is_longer]
lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer}
lowercase__ = BatchFeature(lowerCamelCase )
if return_tensors is not None:
lowercase__ = input_features.convert_to_tensors(lowerCamelCase )
return input_features
| 671 | 0 |
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = abs(__UpperCamelCase )
lowercase__ = 0
while n > 0:
res += n % 10
n //= 10
return res
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = abs(__UpperCamelCase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def a ( lowerCamelCase_ ):
'''simple docstring'''
return sum(int(__UpperCamelCase ) for c in str(abs(__UpperCamelCase ) ) )
def a ( ):
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) -> None:
lowercase__ = F"""{func.__name__}({value})"""
lowercase__ = timeit(F"""__main__.{call}""" , setup='''import __main__''' )
print(F"""{call:56} = {func(__UpperCamelCase )} -- {timing:.4f} seconds""" )
for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__UpperCamelCase , __UpperCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 711 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = None
lowercase__ = None
def a ( ):
'''simple docstring'''
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ ):
'''simple docstring'''
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(lowerCamelCase_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 0
return output
def a ( ): # Main function for testing.
'''simple docstring'''
lowercase__ = make_tree()
print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" )
print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" )
print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' )
print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(lowerCamelCase_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(lowerCamelCase_ ) + 1 ):
print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(lowerCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 671 | 0 |
def a ( lowerCamelCase_ = 1000 ):
'''simple docstring'''
lowercase__ = -1
lowercase__ = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
lowercase__ = (n * n - 2 * a * n) // (2 * n - 2 * a)
lowercase__ = n - a - b
if c * c == (a * a + b * b):
lowercase__ = a * b * c
if candidate >= product:
lowercase__ = candidate
return product
if __name__ == "__main__":
print(F"{solution() = }")
| 712 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = DistilBertTokenizer
lowercase__ = DistilBertTokenizerFast
lowercase__ = True
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 671 | 0 |
from __future__ import annotations
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = len(__snake_case ) // 2
# choose the middle 3 elements
lowercase__ = lst[m - 1 : m + 2]
# if middle element is peak
if three[1] > three[0] and three[1] > three[2]:
return three[1]
# if increasing, recurse on right
elif three[0] < three[2]:
if len(lst[:m] ) == 2:
m -= 1
return peak(lst[m:] )
# decreasing
else:
if len(lst[:m] ) == 2:
m += 1
return peak(lst[:m] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 713 |
from __future__ import annotations
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
if resistor <= 0:
lowercase__ = F"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(lowerCamelCase_ )
first_sum += 1 / float(lowerCamelCase_ )
index += 1
return 1 / first_sum
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowercase__ = F"""Resistor at index {index} has a negative value!"""
raise ValueError(lowerCamelCase_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 714 |
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' )
lowercase__ = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ),
] )
lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ )
return image
def a ( lowerCamelCase_ ):
'''simple docstring'''
if "visual_encoder" in key:
lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ )
if "blocks" in key:
lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ )
if "attn" in key:
lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ )
if "norm1" in key:
lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ )
if "norm2" in key:
lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ )
if "encoder.norm" in key:
lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ )
if "encoder.patch_embed.proj" in key:
lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ )
if "encoder.pos_embed" in key:
lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ )
if "encoder.cls_token" in key:
lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ )
if "self_attn" in key:
lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ )
return key
@torch.no_grad()
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
if config_path is not None:
lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ )
else:
lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval()
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' )
lowercase__ = pt_model.eval()
lowercase__ = pt_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
hf_model.load_state_dict(lowerCamelCase_ )
lowercase__ = 384
lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' )
lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' )
lowercase__ = tokenizer(['''a picture of'''] ).input_ids
lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
lowercase__ = hf_model.generate(lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowerCamelCase_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
lowercase__ = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
vqa_model.eval()
lowercase__ = vqa_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ )
hf_vqa_model.load_state_dict(lowerCamelCase_ )
lowercase__ = ['''How many dogs are in this image?''']
lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids
lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
itm_model.eval()
lowercase__ = itm_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ )
lowercase__ = ['''A picture of a woman with a dog sitting in a beach''']
lowercase__ = tokenizer(
lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(lowerCamelCase_ )
hf_itm_model.eval()
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
assert out[0].item() == 0.21_10_68_74_94_27_79_54
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
A__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
A__ : List[Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 671 | 0 |
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('.')
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
F"""{test_file} instead.""" )
lowercase__ = components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" )
lowercase__ = components[:-1] + [test_fn.replace('''.py''' , '''''' )]
lowercase__ = '''.'''.join(UpperCamelCase__ )
return test_module_path
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = get_module_path(UpperCamelCase__ )
lowercase__ = importlib.import_module(UpperCamelCase__ )
return test_module
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
lowercase__ = get_test_module(UpperCamelCase__ )
for attr in dir(UpperCamelCase__ ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(UpperCamelCase__ , UpperCamelCase__ ) )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
lowercase__ = get_test_module(UpperCamelCase__ )
for attr in dir(UpperCamelCase__ ):
lowercase__ = getattr(UpperCamelCase__ , UpperCamelCase__ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
lowercase__ = getattr(UpperCamelCase__ , '''all_model_classes''' , [] )
if len(UpperCamelCase__ ) > 0:
test_classes.append(UpperCamelCase__ )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = get_test_classes(UpperCamelCase__ )
lowercase__ = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = test_class()
if hasattr(UpperCamelCase__ , '''setUp''' ):
test.setUp()
lowercase__ = None
if hasattr(UpperCamelCase__ , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
lowercase__ = test.model_tester.__class__
return model_tester
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = get_test_classes(UpperCamelCase__ )
lowercase__ = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(UpperCamelCase__ )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ )
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ )
lowercase__ = []
for test_class in test_classes:
lowercase__ = get_model_tester_from_test_class(UpperCamelCase__ )
if tester_class is not None:
tester_classes.append(UpperCamelCase__ )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda lowerCamelCase_ : x.__name__ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = get_test_classes(UpperCamelCase__ )
lowercase__ = {test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes}
return test_tester_mapping
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = get_model_classes(UpperCamelCase__ )
lowercase__ = {
model_class: get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes
}
return model_test_mapping
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = get_model_classes(UpperCamelCase__ )
lowercase__ = {
model_class: get_tester_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes
}
return model_to_tester_mapping
def a ( lowerCamelCase_ ):
'''simple docstring'''
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return o
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return o.__name__
elif isinstance(UpperCamelCase__ , (list, tuple) ):
return [to_json(UpperCamelCase__ ) for x in o]
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()}
else:
return o
| 715 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ):
'''simple docstring'''
lowercase__ = size if size is not None else {'''shortest_edge''': 20}
lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = min_resolution
lowercase__ = max_resolution
lowercase__ = do_resize
lowercase__ = size
lowercase__ = do_center_crop
lowercase__ = crop_size
def lowercase__ ( self : Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} )
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase__ ( self : Any ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, Image.Image )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, np.ndarray )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, torch.Tensor )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
| 671 | 0 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class _UpperCAmelCase ( __UpperCAmelCase ):
"""simple docstring"""
def __init__( self : List[str], lowerCamelCase : str = "▁", lowerCamelCase : bool = True, lowerCamelCase : Union[str, AddedToken] = "<unk>", lowerCamelCase : Union[str, AddedToken] = "</s>", lowerCamelCase : Union[str, AddedToken] = "<pad>", ):
'''simple docstring'''
lowercase__ = {
'''pad''': {'''id''': 0, '''token''': pad_token},
'''eos''': {'''id''': 1, '''token''': eos_token},
'''unk''': {'''id''': 2, '''token''': unk_token},
}
lowercase__ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
lowercase__ = token_dict['''token''']
lowercase__ = Tokenizer(Unigram() )
lowercase__ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(''' {2,}''' ), ''' ''' ),
normalizers.Lowercase(),
] )
lowercase__ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=__SCREAMING_SNAKE_CASE, add_prefix_space=__SCREAMING_SNAKE_CASE ),
pre_tokenizers.Digits(individual_digits=__SCREAMING_SNAKE_CASE ),
pre_tokenizers.Punctuation(),
] )
lowercase__ = decoders.Metaspace(replacement=__SCREAMING_SNAKE_CASE, add_prefix_space=__SCREAMING_SNAKE_CASE )
lowercase__ = TemplateProcessing(
single=F"""$A {self.special_tokens['eos']['token']}""", special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])], )
lowercase__ = {
'''model''': '''SentencePieceUnigram''',
'''replacement''': replacement,
'''add_prefix_space''': add_prefix_space,
}
super().__init__(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
def lowercase__ ( self : Optional[int], lowerCamelCase : Union[str, List[str]], lowerCamelCase : int = 8_000, lowerCamelCase : bool = True, ):
'''simple docstring'''
lowercase__ = trainers.UnigramTrainer(
vocab_size=__SCREAMING_SNAKE_CASE, special_tokens=self.special_tokens_list, show_progress=__SCREAMING_SNAKE_CASE, )
if isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ):
lowercase__ = [files]
self._tokenizer.train(__SCREAMING_SNAKE_CASE, trainer=__SCREAMING_SNAKE_CASE )
self.add_unk_id()
def lowercase__ ( self : int, lowerCamelCase : Union[Iterator[str], Iterator[Iterator[str]]], lowerCamelCase : int = 8_000, lowerCamelCase : bool = True, ):
'''simple docstring'''
lowercase__ = trainers.UnigramTrainer(
vocab_size=__SCREAMING_SNAKE_CASE, special_tokens=self.special_tokens_list, show_progress=__SCREAMING_SNAKE_CASE, )
self._tokenizer.train_from_iterator(__SCREAMING_SNAKE_CASE, trainer=__SCREAMING_SNAKE_CASE )
self.add_unk_id()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = json.loads(self._tokenizer.to_str() )
lowercase__ = self.special_tokens['''unk''']['''id''']
lowercase__ = Tokenizer.from_str(json.dumps(__SCREAMING_SNAKE_CASE ) )
| 716 |
import argparse
import os
import re
A__ : Optional[int] = 'src/transformers'
# Pattern that looks at the indentation in a line.
A__ : Union[str, Any] = re.compile(r'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
A__ : List[str] = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
A__ : int = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A__ : Tuple = re.compile(r'\[([^\]]+)\]')
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = _re_indent.search(lowerCamelCase_ )
return "" if search is None else search.groups()[0]
def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(lowerCamelCase_ ):
index += 1
lowercase__ = ['''\n'''.join(lines[:index] )]
else:
lowercase__ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ = [lines[index]]
index += 1
while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(lowerCamelCase_ ) )
if index < len(lowerCamelCase_ ) - 1:
lowercase__ = [lines[index + 1]]
index += 1
else:
lowercase__ = []
else:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
lowercase__ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCamelCase_ ) > 0:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCamelCase_ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def a ( lowerCamelCase_ ):
'''simple docstring'''
def _inner(lowerCamelCase_ ):
return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' )
return _inner
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(lowerCamelCase_ ):
return x
if key is None:
lowercase__ = noop
# Constants are all uppercase, they go first.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()]
lowercase__ = ignore_underscore(lowerCamelCase_ )
return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(lowerCamelCase_ ):
lowercase__ = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]"
lowercase__ = import_statement.split('''\n''' )
if len(lowerCamelCase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ = 2 if lines[1].strip() == '''[''' else 1
lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )
lowercase__ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCamelCase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase__ = _re_bracket_content.sub(_replace , lines[1] )
else:
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] )
return "\n".join(lowerCamelCase_ )
else:
# Finally we have to deal with imports fitting on one line
lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ )
return import_statement
def a ( lowerCamelCase_ , lowerCamelCase_=True ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding='''utf-8''' ) as f:
lowercase__ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ = split_code_in_indented_blocks(
lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ = main_blocks[block_idx]
lowercase__ = block.split('''\n''' )
# Get to the start of the imports.
lowercase__ = 0
while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ = len(lowerCamelCase_ )
else:
line_idx += 1
if line_idx >= len(lowerCamelCase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ = '''\n'''.join(block_lines[line_idx:-1] )
lowercase__ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None]
lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ = 0
lowercase__ = []
for i in range(len(lowerCamelCase_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowerCamelCase_ )
count += 1
# And we put our main block back together with its first and last line.
lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCamelCase_ ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(lowerCamelCase_ ) )
def a ( lowerCamelCase_=True ):
'''simple docstring'''
lowercase__ = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ )
if result:
lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )]
if len(lowerCamelCase_ ) > 0:
raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
A__ : int = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 671 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A__ : int = logging.getLogger(__name__)
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
lowercase__ = field(
default=UpperCamelCase_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
lowercase__ = field(
default="""NER""" ,metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
lowercase__ = field(
default=UpperCamelCase_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
lowercase__ = field(default=UpperCamelCase_ ,metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase__ = field(
default=UpperCamelCase_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,)
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
lowercase__ = field(
default=UpperCamelCase_ ,metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} ,)
lowercase__ = field(
default=128 ,metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} ,)
lowercase__ = field(
default=UpperCamelCase_ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def a ( ):
'''simple docstring'''
lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
lowercase__ = import_module('''tasks''' )
try:
lowercase__ = getattr(lowerCamelCase_ , model_args.task_type )
lowercase__ = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ = token_classification_task.get_labels(data_args.labels )
lowercase__ = dict(enumerate(lowerCamelCase_ ) )
lowercase__ = len(lowerCamelCase_ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid={label: i for i, label in enumerate(lowerCamelCase_ )} , cache_dir=model_args.cache_dir , )
lowercase__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ = (
TokenClassificationDataset(
token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ = (
TokenClassificationDataset(
token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(lowerCamelCase_ , lowerCamelCase_ ) -> Tuple[List[int], List[int]]:
lowercase__ = np.argmax(lowerCamelCase_ , axis=2 )
lowercase__ = preds.shape
lowercase__ = [[] for _ in range(lowerCamelCase_ )]
lowercase__ = [[] for _ in range(lowerCamelCase_ )]
for i in range(lowerCamelCase_ ):
for j in range(lowerCamelCase_ ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(lowerCamelCase_ ) -> Dict:
lowercase__ = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(lowerCamelCase_ , lowerCamelCase_ ),
"precision": precision_score(lowerCamelCase_ , lowerCamelCase_ ),
"recall": recall_score(lowerCamelCase_ , lowerCamelCase_ ),
"f1": fa_score(lowerCamelCase_ , lowerCamelCase_ ),
}
# Data collator
lowercase__ = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ = Trainer(
model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ = trainer.evaluate()
lowercase__ = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(lowerCamelCase_ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , lowerCamelCase_ , lowerCamelCase_ )
writer.write('''%s = %s\n''' % (key, value) )
results.update(lowerCamelCase_ )
# Predict
if training_args.do_predict:
lowercase__ = TokenClassificationDataset(
token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ = trainer.predict(lowerCamelCase_ )
lowercase__ = align_predictions(lowerCamelCase_ , lowerCamelCase_ )
lowercase__ = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(lowerCamelCase_ , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , lowerCamelCase_ , lowerCamelCase_ )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
lowercase__ = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(lowerCamelCase_ , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return results
def a ( lowerCamelCase_ ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 717 |
from math import sqrt
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
lowercase__ = True
# 0 and 1 are none primes.
if number <= 1:
lowercase__ = False
for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowercase__ = False
break
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool"
return status
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowercase__ = list(range(2 , n + 1 ) )
lowercase__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase_ ) ):
for j in range(i + 1 , len(lowerCamelCase_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowercase__ = 0
# filters actual prime numbers.
lowercase__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
lowercase__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(lowerCamelCase_ ):
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0"
lowercase__ = [] # this list will be returns of the function.
# potential prime number factors.
lowercase__ = 2
lowercase__ = number
if number == 0 or number == 1:
ans.append(lowerCamelCase_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase_ ):
while quotient != 1:
if is_prime(lowerCamelCase_ ) and (quotient % factor == 0):
ans.append(lowerCamelCase_ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = max(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = min(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 == 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 != 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ )
), "'number' must been an int, even and > 2"
lowercase__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowercase__ = get_prime_numbers(lowerCamelCase_ )
lowercase__ = len(lowerCamelCase_ )
# run variable for while-loops.
lowercase__ = 0
lowercase__ = None
# exit variable. for break up the loops
lowercase__ = True
while i < len_pn and loop:
lowercase__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowercase__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (len(lowerCamelCase_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 0
while numbera != 0:
lowercase__ = numbera % numbera
lowercase__ = numbera
lowercase__ = rest
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = prime_factorization(lowerCamelCase_ )
elif numbera == 1 or numbera == 1:
lowercase__ = []
lowercase__ = []
lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ )
lowercase__ = 0
lowercase__ = 0
lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ):
ans *= n
else:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int"
lowercase__ = 0
lowercase__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase_ ):
ans += 1
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime(
lowerCamelCase_ ), "'ans' must been a prime number and from type int"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowercase__ = p_number_a + 1 # jump to the next number
lowercase__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase_ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and ans[0] != p_number_a
and ans[len(lowerCamelCase_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1"
lowercase__ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(lowerCamelCase_ )
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number > 1
), "'number' must been an int and >= 1"
lowercase__ = get_divisors(lowerCamelCase_ )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0"
lowercase__ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0"
lowercase__ = 0
lowercase__ = 1
lowercase__ = 1 # this will be return
for _ in range(n - 1 ):
lowercase__ = ans
ans += fiba
lowercase__ = tmp
return ans
| 671 | 0 |
'''simple docstring'''
def a ( lowerCamelCase_ = 50 ):
'''simple docstring'''
lowercase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 718 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = args.log_outputs
lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
lowercase__ = load_metric('''wer''' )
lowercase__ = load_metric('''cer''' )
# compute metrics
lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}"""
print(lowerCamelCase_ )
with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowerCamelCase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
lowercase__ = F"""log_{dataset_id}_predictions.txt"""
lowercase__ = F"""log_{dataset_id}_targets.txt"""
with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowerCamelCase_ , lowerCamelCase_ ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) )
return text
def a ( lowerCamelCase_ ):
'''simple docstring'''
# load dataset
lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id )
lowercase__ = feature_extractor.sampling_rate
# resample audio
lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) )
# load eval pipeline
if args.device is None:
lowercase__ = 0 if torch.cuda.is_available() else -1
lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowerCamelCase_ ):
lowercase__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
lowercase__ = prediction['''text''']
lowercase__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
A__ : Union[str, Any] = parser.parse_args()
main(args)
| 671 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ : Any = {
'configuration_blenderbot': [
'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotConfig',
'BlenderbotOnnxConfig',
],
'tokenization_blenderbot': ['BlenderbotTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = ['BlenderbotTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = [
'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotForCausalLM',
'BlenderbotForConditionalGeneration',
'BlenderbotModel',
'BlenderbotPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[str] = [
'TFBlenderbotForConditionalGeneration',
'TFBlenderbotModel',
'TFBlenderbotPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : int = [
'FlaxBlenderbotForConditionalGeneration',
'FlaxBlenderbotModel',
'FlaxBlenderbotPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 719 |
from functools import reduce
A__ : Union[str, Any] = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def a ( lowerCamelCase_ = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) )
for i in range(len(lowerCamelCase_ ) - 12 ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = LongformerTokenizer
lowercase__ = True
lowercase__ = LongformerTokenizerFast
lowercase__ = True
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
lowercase__ = dict(zip(A__, range(len(A__ ) ) ) )
lowercase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
lowercase__ = {"""unk_token""": """<unk>"""}
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write(json.dumps(A__ ) + '''\n''' )
with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(A__ ) )
def lowercase__ ( self : Optional[int], **lowerCamelCase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A__ )
def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Any ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A__ )
def lowercase__ ( self : Optional[int], lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = """lower newer"""
lowercase__ = """lower newer"""
return input_text, output_text
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
lowercase__ = """lower newer"""
lowercase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
lowercase__ = tokenizer.tokenize(A__ ) # , add_prefix_space=True)
self.assertListEqual(A__, A__ )
lowercase__ = tokens + [tokenizer.unk_token]
lowercase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ), A__ )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''', add_special_tokens=A__ ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''', add_special_tokens=A__ ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=A__ )
lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=A__ )
lowercase__ = tokenizer.encode(
'''sequence builders''', add_special_tokens=A__, add_prefix_space=A__ )
lowercase__ = tokenizer.encode(
'''sequence builders''', '''multi-sequence build''', add_special_tokens=A__, add_prefix_space=A__ )
lowercase__ = tokenizer.build_inputs_with_special_tokens(A__ )
lowercase__ = tokenizer.build_inputs_with_special_tokens(A__, A__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = """Encode this sequence."""
lowercase__ = tokenizer.byte_encoder[""" """.encode('''utf-8''' )[0]]
# Testing encoder arguments
lowercase__ = tokenizer.encode(A__, add_special_tokens=A__, add_prefix_space=A__ )
lowercase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A__, A__ )
lowercase__ = tokenizer.encode(A__, add_special_tokens=A__, add_prefix_space=A__ )
lowercase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A__, A__ )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
lowercase__ = tokenizer.encode(A__, add_special_tokens=A__ )
lowercase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A__, A__ )
# Testing spaces after special tokens
lowercase__ = """<mask>"""
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(A__, lstrip=A__, rstrip=A__ )} ) # mask token has a left space
lowercase__ = tokenizer.convert_tokens_to_ids(A__ )
lowercase__ = """Encode <mask> sequence"""
lowercase__ = """Encode <mask>sequence"""
lowercase__ = tokenizer.encode(A__ )
lowercase__ = encoded.index(A__ )
lowercase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A__, A__ )
lowercase__ = tokenizer.encode(A__ )
lowercase__ = encoded.index(A__ )
lowercase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A__, A__ )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowercase__ = self.rust_tokenizer_class.from_pretrained(A__, **A__ )
lowercase__ = self.tokenizer_class.from_pretrained(A__, **A__ )
lowercase__ = """A, <mask> AllenNLP sentence."""
lowercase__ = tokenizer_r.encode_plus(A__, add_special_tokens=A__, return_token_type_ids=A__ )
lowercase__ = tokenizer_p.encode_plus(A__, add_special_tokens=A__, return_token_type_ids=A__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ), sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ), sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ), )
lowercase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
lowercase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A__, ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
A__, ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
lowercase__ = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowercase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''], A__ )
self.assertEqual(post_processor_state['''add_prefix_space'''], A__ )
self.assertEqual(post_processor_state['''trim_offsets'''], A__ )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowercase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
lowercase__ = F"""{text_of_1_token} {text_of_1_token}"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(
A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )), )
lowercase__ = self.rust_tokenizer_class.from_pretrained(
A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )), )
lowercase__ = self.rust_tokenizer_class.from_pretrained(
A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A__ ), len(A__ ) + 1 + len(A__ )), )
lowercase__ = self.rust_tokenizer_class.from_pretrained(
A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0], (0, len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A__ ), len(A__ ) + 1 + len(A__ )), )
lowercase__ = F""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowercase__ = self.rust_tokenizer_class.from_pretrained(
A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A__ ) + 1, 1 + len(A__ ) + 1 + len(A__ )), )
lowercase__ = self.rust_tokenizer_class.from_pretrained(
A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A__ ), 1 + len(A__ ) + 1 + len(A__ )), )
lowercase__ = self.rust_tokenizer_class.from_pretrained(
A__, use_fast=A__, add_prefix_space=A__, trim_offsets=A__ )
lowercase__ = tokenizer_r(A__, return_offsets_mapping=A__, add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A__ ), 1 + len(A__ ) + 1 + len(A__ )), )
| 720 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase ( A__ ,A__ ):
"""simple docstring"""
lowercase__ = 1
@register_to_config
def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ):
'''simple docstring'''
# standard deviation of the initial noise distribution
lowercase__ = sigma_max
# setable values
lowercase__ = None
self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
return sample
def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ):
'''simple docstring'''
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase )
def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ):
'''simple docstring'''
lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min
lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(lowerCamelCase, lowerCamelCase )
lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) )
lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ):
'''simple docstring'''
return torch.where(
timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), )
def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
lowercase__ = timestep * torch.ones(
sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
lowercase__ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
lowercase__ = timesteps.to(self.discrete_sigmas.device )
lowercase__ = self.discrete_sigmas[timesteps].to(sample.device )
lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device )
lowercase__ = torch.zeros_like(lowerCamelCase )
lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
lowercase__ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
lowercase__ = diffusion.unsqueeze(-1 )
lowercase__ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
lowercase__ = randn_tensor(
sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype )
lowercase__ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
lowercase__ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
lowercase__ = step_size.unsqueeze(-1 )
lowercase__ = sample + step_size * model_output
lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ):
'''simple docstring'''
# Make sure sigmas and timesteps have the same device and dtype as original_samples
lowercase__ = timesteps.to(original_samples.device )
lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps]
lowercase__ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None]
)
lowercase__ = noise + original_samples
return noisy_samples
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 671 | 0 |
from functools import reduce
A__ : Optional[Any] = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def a ( lowerCamelCase_ = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCAmelCase__ ) * int(lowerCAmelCase__ ) ) , n[i : i + 13] ) )
for i in range(len(lowerCAmelCase__ ) - 12 ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 721 |
from collections import defaultdict
from math import gcd
def a ( lowerCamelCase_ = 150_0000 ):
'''simple docstring'''
lowercase__ = defaultdict(lowerCamelCase_ )
lowercase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ):
if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1:
continue
lowercase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], lowerCamelCase : Optional[Any], ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = 13
lowercase__ = 7
lowercase__ = True
lowercase__ = True
lowercase__ = False
lowercase__ = True
lowercase__ = 99
lowercase__ = 32
lowercase__ = 2
lowercase__ = 4
lowercase__ = 37
lowercase__ = '''gelu'''
lowercase__ = 0.1
lowercase__ = 0.1
lowercase__ = 512
lowercase__ = 16
lowercase__ = 2
lowercase__ = 0.02
lowercase__ = 3
lowercase__ = 4
lowercase__ = None
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
lowercase__ = ids_tensor([self.batch_size], self.num_choices )
lowercase__ = DistilBertConfig(
vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : int, lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = TFDistilBertModel(config=UpperCamelCase__ )
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase__ = model(UpperCamelCase__ )
lowercase__ = [input_ids, input_mask]
lowercase__ = model(UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : int, lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict ):
'''simple docstring'''
lowercase__ = TFDistilBertForMaskedLM(config=UpperCamelCase__ )
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase__ = model(UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowercase__ = TFDistilBertForQuestionAnswering(config=UpperCamelCase__ )
lowercase__ = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
lowercase__ = model(UpperCamelCase__ )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.num_labels
lowercase__ = TFDistilBertForSequenceClassification(UpperCamelCase__ )
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase__ = model(UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.num_choices
lowercase__ = TFDistilBertForMultipleChoice(UpperCamelCase__ )
lowercase__ = tf.tile(tf.expand_dims(UpperCamelCase__, 1 ), (1, self.num_choices, 1) )
lowercase__ = tf.tile(tf.expand_dims(UpperCamelCase__, 1 ), (1, self.num_choices, 1) )
lowercase__ = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
lowercase__ = model(UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) )
def lowercase__ ( self : Any, lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = self.num_labels
lowercase__ = TFDistilBertForTokenClassification(UpperCamelCase__ )
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase__ = model(UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs
lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
lowercase__ = (
{
"feature-extraction": TFDistilBertModel,
"fill-mask": TFDistilBertForMaskedLM,
"question-answering": TFDistilBertForQuestionAnswering,
"text-classification": TFDistilBertForSequenceClassification,
"token-classification": TFDistilBertForTokenClassification,
"zero-shot": TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = TFDistilBertModelTester(self )
lowercase__ = ConfigTester(self, config_class=UpperCamelCase__, dim=37 )
def lowercase__ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ )
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
lowercase__ = TFDistilBertModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase__ = model(UpperCamelCase__ )[0]
lowercase__ = [1, 6, 768]
self.assertEqual(output.shape, UpperCamelCase__ )
lowercase__ = tf.constant(
[
[
[0.19261885, -0.13732955, 0.4119799],
[0.22150156, -0.07422661, 0.39037204],
[0.22756018, -0.0896414, 0.3701467],
]
] )
tf.debugging.assert_near(output[:, :3, :3], UpperCamelCase__, atol=1E-4 )
| 700 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
A__ : Dict = logging.get_logger(__name__)
A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A__ : Optional[int] = {
'vocab_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'
),
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'
),
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt',
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'
),
'bert-base-multilingual-cased': (
'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'
),
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-cased': (
'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'
),
},
}
A__ : List[str] = {
'bert-base-uncased': 5_12,
'bert-large-uncased': 5_12,
'bert-base-cased': 5_12,
'bert-large-cased': 5_12,
'bert-base-multilingual-uncased': 5_12,
'bert-base-multilingual-cased': 5_12,
'bert-base-chinese': 5_12,
'bert-base-german-cased': 5_12,
'bert-large-uncased-whole-word-masking': 5_12,
'bert-large-cased-whole-word-masking': 5_12,
'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12,
'bert-large-cased-whole-word-masking-finetuned-squad': 5_12,
'bert-base-cased-finetuned-mrpc': 5_12,
'bert-base-german-dbmdz-cased': 5_12,
'bert-base-german-dbmdz-uncased': 5_12,
'TurkuNLP/bert-base-finnish-cased-v1': 5_12,
'TurkuNLP/bert-base-finnish-uncased-v1': 5_12,
'wietsedv/bert-base-dutch-cased': 5_12,
}
A__ : Optional[int] = {
'bert-base-uncased': {'do_lower_case': True},
'bert-large-uncased': {'do_lower_case': True},
'bert-base-cased': {'do_lower_case': False},
'bert-large-cased': {'do_lower_case': False},
'bert-base-multilingual-uncased': {'do_lower_case': True},
'bert-base-multilingual-cased': {'do_lower_case': False},
'bert-base-chinese': {'do_lower_case': False},
'bert-base-german-cased': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking': {'do_lower_case': True},
'bert-large-cased-whole-word-masking': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True},
'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False},
'bert-base-cased-finetuned-mrpc': {'do_lower_case': False},
'bert-base-german-dbmdz-cased': {'do_lower_case': False},
'bert-base-german-dbmdz-uncased': {'do_lower_case': True},
'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False},
'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True},
'wietsedv/bert-base-dutch-cased': {'do_lower_case': False},
}
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_INIT_CONFIGURATION
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = BertTokenizer
def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, )
lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars
):
lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) )
lowercase__ = do_lower_case
lowercase__ = strip_accents
lowercase__ = tokenize_chinese_chars
lowercase__ = normalizer_class(**lowerCamelCase )
lowercase__ = do_lower_case
def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ):
'''simple docstring'''
lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase )
return tuple(lowerCamelCase )
| 671 | 0 |
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
| 701 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 671 | 0 |
import argparse
from collections import defaultdict
import yaml
A__ : Dict = 'docs/source/en/_toctree.yml'
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = defaultdict(SCREAMING_SNAKE_CASE_ )
for doc in model_doc:
counts[doc["local"]] += 1
lowercase__ = [key for key, value in counts.items() if value > 1]
lowercase__ = []
for duplicate_key in duplicates:
lowercase__ = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(SCREAMING_SNAKE_CASE_ ) > 1:
raise ValueError(
F"""{duplicate_key} is present several times in the documentation table of content at """
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCamelCase_ : s["title"].lower() )
def a ( lowerCamelCase_=False ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as f:
lowercase__ = yaml.safe_load(f.read() )
# Get to the API doc
lowercase__ = 0
while content[api_idx]["title"] != "API":
api_idx += 1
lowercase__ = content[api_idx]["sections"]
# Then to the model doc
lowercase__ = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
lowercase__ = api_doc[model_idx]["sections"]
lowercase__ = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE_ ) if "sections" in section]
lowercase__ = False
for idx, modality_doc in modalities_docs:
lowercase__ = modality_doc["sections"]
lowercase__ = clean_model_doc_toc(SCREAMING_SNAKE_CASE_ )
if old_modality_doc != new_modality_doc:
lowercase__ = True
if overwrite:
lowercase__ = new_modality_doc
if diff:
if overwrite:
lowercase__ = model_doc
lowercase__ = api_doc
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(SCREAMING_SNAKE_CASE_ , allow_unicode=SCREAMING_SNAKE_CASE_ ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
A__ : Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
A__ : Union[str, Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 702 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
A__ : Dict = 50_00_00
A__ , A__ : str = os.path.split(__file__)
A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.map(**lowerCamelCase_ )
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.filter(**lowerCamelCase_ )
def a ( ):
'''simple docstring'''
lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
lowercase__ = generate_example_dataset(
os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ )
lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ )
def tokenize(lowerCamelCase_ ):
return tokenizer(examples['''text'''] )
lowercase__ = map(lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''numpy''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''pandas''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = filter(lowerCamelCase_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(lowerCamelCase_ , '''wb''' ) as f:
f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 671 | 0 |
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
A__ : List[Any] = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = AlbertTokenizer
lowercase__ = AlbertTokenizerFast
lowercase__ = True
lowercase__ = True
lowercase__ = True
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = AlbertTokenizer(lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Any, lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = 'this is a test'
lowercase__ = 'this is a test'
return input_text, output_text
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = '<pad>'
lowercase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ), lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ), lowerCamelCase )
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '''<pad>''' )
self.assertEqual(vocab_keys[1], '''<unk>''' )
self.assertEqual(vocab_keys[-1], '''▁eloquent''' )
self.assertEqual(len(lowerCamelCase ), 30_000 )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 30_000 )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = 'I was born in 92000, and this is falsé.'
lowercase__ = tokenizer.tokenize(lowerCamelCase )
lowercase__ = rust_tokenizer.tokenize(lowerCamelCase )
self.assertListEqual(lowerCamelCase, lowerCamelCase )
lowercase__ = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase )
lowercase__ = rust_tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase )
self.assertListEqual(lowerCamelCase, lowerCamelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(lowerCamelCase )
lowercase__ = rust_tokenizer.encode(lowerCamelCase )
self.assertListEqual(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = AlbertTokenizer(lowerCamelCase, keep_accents=lowerCamelCase )
lowercase__ = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCamelCase, ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [48, 25, 21, 1_289] )
lowercase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCamelCase, ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] )
lowercase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase )
self.assertListEqual(lowerCamelCase, [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] )
lowercase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase )
self.assertListEqual(
lowerCamelCase, ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''], )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = AlbertTokenizer(lowerCamelCase )
lowercase__ = tokenizer.encode('''sequence builders''' )
lowercase__ = tokenizer.encode('''multi-sequence build''' )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase, model_name='''albert-base-v2''', revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''', )
| 703 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ):
'''simple docstring'''
# Mapping from the first character of the prefix of the node
lowercase__ = {}
# A node will be a leaf if the tree contains its word
lowercase__ = is_leaf
lowercase__ = prefix
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = 0
for q, w in zip(self.prefix, lowerCamelCase ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
lowercase__ = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase )
else:
lowercase__ = self.nodes[word[0]]
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCamelCase )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowercase__ = remaining_prefix
lowercase__ = self.nodes[matching_string[0]]
lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase )
lowercase__ = aux_node
if remaining_word == "":
lowercase__ = True
else:
self.nodes[matching_string[0]].insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCamelCase )
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCamelCase )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowercase__ = list(self.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
self.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowercase__ = False
# If there is 1 edge, we merge it with its child
else:
lowercase__ = list(incoming_node.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
return True
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ):
'''simple docstring'''
if self.prefix != "":
print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def a ( ):
'''simple docstring'''
lowercase__ = '''banana bananas bandana band apple all beast'''.split()
lowercase__ = RadixNode()
root.insert_many(lowerCamelCase_ )
assert all(root.find(lowerCamelCase_ ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def a ( ):
'''simple docstring'''
assert test_trie()
def a ( ):
'''simple docstring'''
lowercase__ = RadixNode()
lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(lowerCamelCase_ )
print('''Words:''' , lowerCamelCase_ )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 671 | 0 |
from ....utils import logging
A__ : List[Any] = logging.get_logger(__name__)
class _UpperCAmelCase ( __A ):
"""simple docstring"""
def __init__( self : Any, lowerCamelCase : List[Any], lowerCamelCase : str=None, lowerCamelCase : Union[str, Any]=2_048 ):
'''simple docstring'''
lowercase__ = config.__dict__
lowercase__ = modal_hidden_size
if num_labels:
lowercase__ = num_labels
| 704 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
lowercase__ = ViTImageProcessor if is_vision_available() else None
@property
def lowercase__ ( self : List[str] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = (3, 32, 128)
lowercase__ = tempfile.mkdtemp()
# fmt: off
lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCamelCase ) + '''\n''' )
lowercase__ = {
'''do_normalize''': False,
'''do_resize''': True,
'''image_processor_type''': '''ViTImageProcessor''',
'''resample''': 3,
'''size''': {'''height''': 32, '''width''': 128},
}
lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase )
with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp:
json.dump(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )
lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) )
return image_input
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' )
lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 )
lowercase__ = MgpstrProcessor.from_pretrained(
self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = self.prepare_image_inputs()
lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' )
lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = processor(text=lowerCamelCase )
lowercase__ = tokenizer(lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key] )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase ):
processor()
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ = processor.char_decode(lowerCamelCase )
lowercase__ = tokenizer.batch_decode(lowerCamelCase )
lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok]
self.assertListEqual(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = None
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = torch.randn(1, 27, 38 )
lowercase__ = torch.randn(1, 27, 50_257 )
lowercase__ = torch.randn(1, 27, 30_522 )
lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
| 671 | 0 |
from __future__ import annotations
import math
def a ( lowerCamelCase_ ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = str(__snake_case )
lowercase__ = [n]
for i in range(1 , len(__snake_case ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def a ( lowerCamelCase_ ):
'''simple docstring'''
if len(str(__snake_case ) ) > 3:
if not is_prime(int(str(__snake_case )[-3:] ) ) or not is_prime(int(str(__snake_case )[:3] ) ):
return False
return True
def a ( lowerCamelCase_ = 11 ):
'''simple docstring'''
lowercase__ = []
lowercase__ = 13
while len(__snake_case ) != count:
if validate(__snake_case ):
lowercase__ = list_truncated_nums(__snake_case )
if all(is_prime(__snake_case ) for i in list_nums ):
list_truncated_primes.append(__snake_case )
num += 2
return list_truncated_primes
def a ( ):
'''simple docstring'''
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(F"{sum(compute_truncated_primes(11)) = }")
| 705 |
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
if exponent == 1:
return base
if exponent % 2 == 0:
lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value
def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ):
'''simple docstring'''
lowercase__ = base
for _ in range(1 , lowerCamelCase_ ):
lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits )
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : List[str]=13, lowerCamelCase : int=30, lowerCamelCase : int=2, lowerCamelCase : List[str]=3, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : str=32, lowerCamelCase : Dict=5, lowerCamelCase : int=4, lowerCamelCase : Dict=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : List[Any]=10, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : Union[str, Any]=3, lowerCamelCase : str=0.6, lowerCamelCase : Optional[Any]=None, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = mask_ratio
lowercase__ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowercase__ = (image_size // patch_size) ** 2
lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size )
lowercase__ = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=snake_case__, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, )
def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Dict ):
'''simple docstring'''
lowercase__ = ViTMAEModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowercase__ = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = ViTMAEForPreTraining(snake_case__ )
model.to(snake_case__ )
model.eval()
lowercase__ = model(snake_case__ )
lowercase__ = (self.image_size // self.patch_size) ** 2
lowercase__ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowercase__ = 1
lowercase__ = ViTMAEForPreTraining(snake_case__ )
model.to(snake_case__ )
model.eval()
lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase__ = model(snake_case__ )
lowercase__ = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __a ,__a ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowercase__ = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = ViTMAEModelTester(self )
lowercase__ = ConfigTester(self, config_class=snake_case__, has_text_modality=snake_case__, hidden_size=37 )
def lowercase__ ( self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def lowercase__ ( self : str ):
'''simple docstring'''
pass
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
lowercase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__, nn.Linear ) )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(snake_case__ )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1], snake_case__ )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def lowercase__ ( self : List[str], lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Optional[int] ):
'''simple docstring'''
# make masks reproducible
np.random.seed(2 )
lowercase__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowercase__ = torch.from_numpy(snake_case__ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowercase__ = pt_noise
super().check_pt_tf_models(snake_case__, snake_case__, snake_case__ )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase__ = model(**self._prepare_for_class(snake_case__, snake_case__ ) )
lowercase__ = outputs[0].cpu().numpy()
lowercase__ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case__ )
lowercase__ = model_class.from_pretrained(snake_case__ )
model.to(snake_case__ )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase__ = model(**self._prepare_for_class(snake_case__, snake_case__ ) )
# Make sure we don't have nans
lowercase__ = after_outputs[0].cpu().numpy()
lowercase__ = 0
lowercase__ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(snake_case__, 1E-5 )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def lowercase__ ( self : str ):
'''simple docstring'''
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def lowercase__ ( self : int ):
'''simple docstring'''
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def lowercase__ ( self : int ):
'''simple docstring'''
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
pass
@slow
def lowercase__ ( self : Any ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = ViTMAEModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def a ( ):
'''simple docstring'''
lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowercase__ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(snake_case__ )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=snake_case__, return_tensors='''pt''' ).to(snake_case__ )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowercase__ = ViTMAEConfig()
lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowercase__ = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
lowercase__ = model(**snake_case__, noise=torch.from_numpy(snake_case__ ).to(device=snake_case__ ) )
# verify the logits
lowercase__ = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape, snake_case__ )
lowercase__ = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(snake_case__ ), atol=1E-4 ) )
| 706 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ):
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, )
def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
lowercase__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
self.enable_attention_slicing(lowerCamelCase )
@torch.no_grad()
def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ):
'''simple docstring'''
lowercase__ = self.speech_processor.feature_extractor(
lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device )
lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 )
lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[
0
]
if isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = 1
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = len(lowerCamelCase )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(lowerCamelCase )}.""" )
# get prompt text embeddings
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', )
lowercase__ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length]
lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape
lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowercase__ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowercase__ = 42
if negative_prompt is None:
lowercase__ = [''''''] * batch_size
elif type(lowerCamelCase ) is not type(lowerCamelCase ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !="""
F""" {type(lowerCamelCase )}.""" )
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = [negative_prompt]
elif batch_size != len(lowerCamelCase ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
''' the batch size of `prompt`.''' )
else:
lowercase__ = negative_prompt
lowercase__ = text_input_ids.shape[-1]
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', )
lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowercase__ = uncond_embeddings.shape[1]
lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowercase__ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
lowercase__ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to(
self.device )
else:
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
lowercase__ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowerCamelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
lowercase__ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
lowercase__ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowercase__ = {}
if accepts_eta:
lowercase__ = eta
for i, t in enumerate(self.progress_bar(lowerCamelCase ) ):
# expand the latents if we are doing classifier free guidance
lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase )
# predict the noise residual
lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample
# perform guidance
if do_classifier_free_guidance:
lowercase__ , lowercase__ = noise_pred.chunk(2 )
lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = 1 / 0.18215 * latents
lowercase__ = self.vae.decode(lowerCamelCase ).sample
lowercase__ = (image / 2 + 0.5).clamp(0, 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy()
if output_type == "pil":
lowercase__ = self.numpy_to_pil(lowerCamelCase )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
| 671 | 0 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def a ( lowerCamelCase_ , lowerCamelCase_=False ):
'''simple docstring'''
try:
lowercase__ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ = strtobool(lowerCAmelCase_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
A__ : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False)
A__ : int = parse_flag_from_env('RUN_REMOTE', default=False)
A__ : Optional[Any] = parse_flag_from_env('RUN_LOCAL', default=True)
A__ : List[str] = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
A__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
A__ : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
A__ : str = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
A__ : Any = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
A__ : List[Any] = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
A__ : Optional[int] = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
A__ : List[Any] = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
lowercase__ = unittest.skip('''test requires faiss''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
lowercase__ = unittest.skip('''test requires regex''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
lowercase__ = unittest.skip('''test requires elasticsearch''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
lowercase__ = unittest.skip('''test requires sqlalchemy''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
lowercase__ = unittest.skip('''test requires PyTorch''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not config.TF_AVAILABLE:
lowercase__ = unittest.skip('''test requires TensorFlow''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
lowercase__ = unittest.skip('''test requires JAX''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
lowercase__ = unittest.skip('''test requires Pillow''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('''test requires transformers''' )(lowerCAmelCase_ )
else:
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('''test requires tiktoken''' )(lowerCAmelCase_ )
else:
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('''test requires spacy''' )(lowerCAmelCase_ )
else:
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
def _require_spacy_model(lowerCamelCase_ ):
try:
import spacy # noqa F401
spacy.load(lowerCAmelCase_ )
except ImportError:
return unittest.skip('''test requires spacy''' )(lowerCAmelCase_ )
except OSError:
return unittest.skip('''test requires spacy model \'{}\''''.format(lowerCAmelCase_ ) )(lowerCAmelCase_ )
else:
return test_case
return _require_spacy_model
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('''test requires pyspark''' )(lowerCAmelCase_ )
else:
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('''test requires joblibspark''' )(lowerCAmelCase_ )
else:
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
lowercase__ = unittest.skip('''test is slow''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
lowercase__ = unittest.skip('''test is local''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
lowercase__ = unittest.skip('''test is packaged''' )(lowerCAmelCase_ )
return test_case
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
lowercase__ = unittest.skip('''test requires remote''' )(lowerCAmelCase_ )
return test_case
def a ( *lowerCamelCase_ ):
'''simple docstring'''
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(lowerCAmelCase_ ) and name.startswith('''test''' ):
for decorator in decorators:
lowercase__ = decorator(lowerCAmelCase_ )
setattr(cls , lowerCAmelCase_ , lowerCAmelCase_ )
return cls
return decorate
class _UpperCAmelCase ( __lowerCamelCase ):
"""simple docstring"""
pass
class _UpperCAmelCase ( __lowerCamelCase ):
"""simple docstring"""
lowercase__ = 0
lowercase__ = 1
lowercase__ = 2
@contextmanager
def a ( lowerCamelCase_=OfflineSimulationMode.CONNECTION_FAILS , lowerCamelCase_=1e-16 ):
'''simple docstring'''
lowercase__ = requests.Session().request
def timeout_request(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ):
# Change the url to an invalid url so that the connection hangs
lowercase__ = "https://10.255.255.1"
if kwargs.get('''timeout''' ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
lowercase__ = timeout
try:
return online_request(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
lowercase__ = url
lowercase__ = e.args[0]
lowercase__ = (max_retry_error.args[0].replace('''10.255.255.1''' , F"""OfflineMock[{url}]""" ),)
lowercase__ = (max_retry_error,)
raise
def raise_connection_error(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ):
raise requests.ConnectionError('''Offline mode is enabled.''' , request=lowerCAmelCase_ )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('''requests.Session.send''' , lowerCAmelCase_ ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('''requests.Session.request''' , lowerCAmelCase_ ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ ):
yield
else:
raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' )
@contextmanager
def a ( *lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = str(Path().resolve() )
with tempfile.TemporaryDirectory(*lowerCAmelCase_ , **lowerCAmelCase_ ) as tmp_dir:
try:
os.chdir(lowerCAmelCase_ )
yield
finally:
os.chdir(lowerCAmelCase_ )
@contextmanager
def a ( ):
'''simple docstring'''
import gc
gc.collect()
lowercase__ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def a ( ):
'''simple docstring'''
import gc
gc.collect()
lowercase__ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
return deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist()
def a ( lowerCamelCase_ ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ):
try:
return func(*lowerCAmelCase_ , **lowerCAmelCase_ )
except HTTPError as err:
if str(lowerCAmelCase_ ).startswith('''500''' ) or str(lowerCAmelCase_ ).startswith('''502''' ):
pytest.xfail(str(lowerCAmelCase_ ) )
raise err
return decorator.decorator(_wrapper , lowerCAmelCase_ )
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : List[str], lowerCamelCase : List[Any] ):
'''simple docstring'''
lowercase__ = returncode
lowercase__ = stdout
lowercase__ = stderr
async def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
while True:
lowercase__ = await stream.readline()
if line:
callback(lowerCAmelCase_ )
else:
break
async def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False ):
'''simple docstring'''
if echo:
print('''\nRunning: ''' , ''' '''.join(lowerCAmelCase_ ) )
lowercase__ = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=lowerCAmelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase_ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ = []
lowercase__ = []
def tee(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="" ):
lowercase__ = line.decode('''utf-8''' ).rstrip()
sink.append(lowerCAmelCase_ )
if not quiet:
print(lowerCAmelCase_ , lowerCAmelCase_ , file=lowerCAmelCase_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda lowerCamelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stdout , label='''stdout:''' ) ),
_read_stream(p.stderr , lambda lowerCamelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stderr , label='''stderr:''' ) ),
] , timeout=lowerCAmelCase_ , )
return _RunOutput(await p.wait() , lowerCAmelCase_ , lowerCAmelCase_ )
def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=180 , lowerCamelCase_=False , lowerCamelCase_=True ):
'''simple docstring'''
lowercase__ = asyncio.get_event_loop()
lowercase__ = loop.run_until_complete(
_stream_subprocess(lowerCAmelCase_ , env=lowerCAmelCase_ , stdin=lowerCAmelCase_ , timeout=lowerCAmelCase_ , quiet=lowerCAmelCase_ , echo=lowerCAmelCase_ ) )
lowercase__ = " ".join(lowerCAmelCase_ )
if result.returncode > 0:
lowercase__ = "\n".join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def a ( ):
'''simple docstring'''
lowercase__ = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' )
lowercase__ = re.sub(r'''^gw''' , '''''' , lowerCAmelCase_ , 0 , re.M )
return int(lowerCAmelCase_ )
def a ( ):
'''simple docstring'''
lowercase__ = 2_9500
lowercase__ = pytest_xdist_worker_id()
return port + uniq_delta | 707 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : str, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = [[] for _ in range(lowerCamelCase )]
lowercase__ = size
def __getitem__( self : Optional[Any], lowerCamelCase : int ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def lowercase__ ( self : str ):
'''simple docstring'''
return self._size
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) )
def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = deque([start_vertex] )
lowercase__ = [None] * self.size
lowercase__ = 0
while queue:
lowercase__ = queue.popleft()
lowercase__ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowercase__ = current_distance + edge.weight
lowercase__ = distances[edge.destination_vertex]
if (
isinstance(lowerCamelCase, lowerCamelCase )
and new_distance >= dest_vertex_distance
):
continue
lowercase__ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def a ( ):
'''simple docstring'''
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def a ( ):
'''simple docstring'''
lowercase__ = '''mock-s3-bucket'''
lowercase__ = F"""s3://{mock_bucket}"""
lowercase__ = extract_path_from_uri(_snake_case )
assert dataset_path.startswith('''s3://''' ) is False
lowercase__ = '''./local/path'''
lowercase__ = extract_path_from_uri(_snake_case )
assert dataset_path == new_dataset_path
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = is_remote_filesystem(_snake_case )
assert is_remote is True
lowercase__ = fsspec.filesystem('''file''' )
lowercase__ = is_remote_filesystem(_snake_case )
assert is_remote is False
@pytest.mark.parametrize('''compression_fs_class''' , _snake_case )
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file}
lowercase__ = input_paths[compression_fs_class.protocol]
if input_path is None:
lowercase__ = F"""for \'{compression_fs_class.protocol}\' compression protocol, """
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(_snake_case )
lowercase__ = fsspec.filesystem(compression_fs_class.protocol , fo=_snake_case )
assert isinstance(_snake_case , _snake_case )
lowercase__ = os.path.basename(_snake_case )
lowercase__ = expected_filename[: expected_filename.rindex('''.''' )]
assert fs.glob('''*''' ) == [expected_filename]
with fs.open(_snake_case , '''r''' , encoding='''utf-8''' ) as f, open(_snake_case , encoding='''utf-8''' ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] )
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path}
lowercase__ = compressed_file_paths[protocol]
lowercase__ = '''dataset.jsonl'''
lowercase__ = F"""{protocol}://{member_file_path}::{compressed_file_path}"""
lowercase__ , *lowercase__ = fsspec.get_fs_token_paths(_snake_case )
assert fs.isfile(_snake_case )
assert not fs.isfile('''non_existing_''' + member_file_path )
@pytest.mark.integration
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = hf_api.dataset_info(_snake_case , token=_snake_case )
lowercase__ = HfFileSystem(repo_info=_snake_case , token=_snake_case )
assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"]
assert hffs.isdir('''data''' )
assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' )
with open(_snake_case ) as f:
assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read()
def a ( ):
'''simple docstring'''
lowercase__ = '''bz2'''
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(_snake_case , _snake_case , clobber=_snake_case )
with pytest.warns(_snake_case ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(_snake_case ) == 1
assert (
str(warning_info[0].message )
== F"""A filesystem protocol was already set for {protocol} and will be overwritten."""
) | 708 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
# we need a list not a string, so do something to change the type
lowercase__ = arr.split(''',''' )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = [int(self.array[0] )] * len(self.array )
lowercase__ = [int(self.array[0] )] * len(self.array )
for i in range(1, len(self.array ) ):
lowercase__ = max(
int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) )
lowercase__ = max(sum_value[i], rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
A__ : Dict = input('please input some numbers:')
A__ : Union[str, Any] = SubArray(whole_array)
A__ : int = array.solve_sub_array()
print(('the results is:', re))
| 671 | 0 |
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
A__ : Tuple = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
A__ : Dict = logging.WARNING
def a ( ):
'''simple docstring'''
lowercase__ = os.getenv('''DATASETS_VERBOSITY''' , _A )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """
F"""has to be one of: { ', '.join(log_levels.keys() ) }""" )
return _default_log_level
def a ( ):
'''simple docstring'''
return __name__.split('''.''' )[0]
def a ( ):
'''simple docstring'''
return logging.getLogger(_get_library_name() )
def a ( ):
'''simple docstring'''
lowercase__ = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def a ( ):
'''simple docstring'''
lowercase__ = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def a ( lowerCamelCase_ = None ):
'''simple docstring'''
if name is None:
lowercase__ = _get_library_name()
return logging.getLogger(_A )
def a ( ):
'''simple docstring'''
return _get_library_root_logger().getEffectiveLevel()
def a ( lowerCamelCase_ ):
'''simple docstring'''
_get_library_root_logger().setLevel(_A )
def a ( ):
'''simple docstring'''
return set_verbosity(_A )
def a ( ):
'''simple docstring'''
return set_verbosity(_A )
def a ( ):
'''simple docstring'''
return set_verbosity(_A )
def a ( ):
'''simple docstring'''
return set_verbosity(_A )
def a ( ):
'''simple docstring'''
lowercase__ = False
def a ( ):
'''simple docstring'''
lowercase__ = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : List[Any], *lowerCamelCase : int, **lowerCamelCase : str ): # pylint: disable=unused-argument
'''simple docstring'''
lowercase__ = args[0] if args else None
def __iter__( self : Union[str, Any] ):
'''simple docstring'''
return iter(self._iterator )
def __getattr__( self : Tuple, lowerCamelCase : List[str] ):
'''simple docstring'''
def empty_fn(*lowerCamelCase : Any, **lowerCamelCase : Optional[Any] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : Union[str, Any] ):
'''simple docstring'''
return self
def __exit__( self : int, lowerCamelCase : str, lowerCamelCase : Tuple, lowerCamelCase : List[str] ):
'''simple docstring'''
return
A__ : int = True
class _UpperCAmelCase :
"""simple docstring"""
def __call__( self : Tuple, *lowerCamelCase : Any, lowerCamelCase : Tuple=False, **lowerCamelCase : Any ):
'''simple docstring'''
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE )
else:
return EmptyTqdm(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE )
def lowercase__ ( self : List[Any], *lowerCamelCase : Dict, **lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowercase__ = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE )
def lowercase__ ( self : Any ):
'''simple docstring'''
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
A__ : Union[str, Any] = _tqdm_cls()
def a ( ):
'''simple docstring'''
global _tqdm_active
return bool(_tqdm_active )
def a ( ):
'''simple docstring'''
global _tqdm_active
lowercase__ = True
def a ( ):
'''simple docstring'''
global _tqdm_active
lowercase__ = False
| 709 |
from itertools import count
def a ( lowerCamelCase_ = 50 ):
'''simple docstring'''
lowercase__ = [1] * min_block_length
for n in count(lowerCamelCase_ ):
fill_count_functions.append(1 )
for block_length in range(lowerCamelCase_ , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 100_0000:
break
return n
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
from math import log
from scipy.constants import Boltzmann, physical_constants
A__ : int = 3_00 # TEMPERATURE (unit = K)
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError('''Donor concentration should be positive''' )
elif acceptor_conc <= 0:
raise ValueError('''Acceptor concentration should be positive''' )
elif intrinsic_conc <= 0:
raise ValueError('''Intrinsic concentration should be positive''' )
elif donor_conc <= intrinsic_conc:
raise ValueError(
'''Donor concentration should be greater than intrinsic concentration''' )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'''Acceptor concentration should be greater than intrinsic concentration''' )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
A__ : Tuple = logging.get_logger(__name__)
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""input_features""", """is_longer"""]
def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, )
lowercase__ = top_db
lowercase__ = truncation
lowercase__ = padding
lowercase__ = fft_window_size
lowercase__ = (fft_window_size >> 1) + 1
lowercase__ = hop_length
lowercase__ = max_length_s
lowercase__ = max_length_s * sampling_rate
lowercase__ = sampling_rate
lowercase__ = frequency_min
lowercase__ = frequency_max
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', )
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ):
'''simple docstring'''
lowercase__ = spectrogram(
lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', )
return log_mel_spectrogram.T
def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
# randomly choose index for each part
lowercase__ = np.random.choice(ranges[0] )
lowercase__ = np.random.choice(ranges[1] )
lowercase__ = np.random.choice(ranges[2] )
lowercase__ = mel[idx_front : idx_front + chunk_frames, :]
lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :]
lowercase__ = mel[idx_back : idx_back + chunk_frames, :]
lowercase__ = torch.tensor(mel[None, None, :] )
lowercase__ = torch.nn.functional.interpolate(
lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase )
lowercase__ = mel_shrink[0][0].numpy()
lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 )
return mel_fusion
def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowercase__ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowercase__ = len(lowerCamelCase ) - max_length
lowercase__ = np.random.randint(0, overflow + 1 )
lowercase__ = waveform[idx : idx + max_length]
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowercase__ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowercase__ = np.stack([mel, mel, mel, mel], axis=0 )
lowercase__ = False
else:
lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = True
else:
raise NotImplementedError(F"""data_truncating {truncation} not implemented""" )
else:
lowercase__ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) )
lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 )
if truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 )
else:
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ):
'''simple docstring'''
lowercase__ = truncation if truncation is not None else self.truncation
lowercase__ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
lowercase__ = is_batched_numpy or (
isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ):
lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa )
elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray(lowerCamelCase )]
# convert to mel spectrogram, truncate and pad if needed.
lowercase__ = [
self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase )
for waveform in raw_speech
]
lowercase__ = []
lowercase__ = []
for mel, longer in padded_inputs:
input_mel.append(lowerCamelCase )
is_longer.append(lowerCamelCase )
if truncation == "fusion" and sum(lowerCamelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowercase__ = np.random.randint(0, len(lowerCamelCase ) )
lowercase__ = True
if isinstance(input_mel[0], lowerCamelCase ):
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowercase__ = [[longer] for longer in is_longer]
lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer}
lowercase__ = BatchFeature(lowerCamelCase )
if return_tensors is not None:
lowercase__ = input_features.convert_to_tensors(lowerCamelCase )
return input_features
| 671 | 0 |
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = len(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
lowercase__ = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
A__ : Optional[Any] = list(range(10, 0, -1))
print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
| 711 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = None
lowercase__ = None
def a ( ):
'''simple docstring'''
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ ):
'''simple docstring'''
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(lowerCamelCase_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 0
return output
def a ( ): # Main function for testing.
'''simple docstring'''
lowercase__ = make_tree()
print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" )
print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" )
print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' )
print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(lowerCamelCase_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(lowerCamelCase_ ) + 1 ):
print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(lowerCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 671 | 0 |
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' )
lowercase__ = json.loads(open(__snake_case ).read() )
if not params:
raise ValueError(
F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" )
if not args.output.endswith('''.pt''' ):
lowercase__ = args.output + '''.pt'''
lowercase__ = OrderedDict()
with tf.device('''/CPU:0''' ):
lowercase__ = tf.train.load_checkpoint(args.tf_model_dir )
lowercase__ = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
lowercase__ = reader.get_tensor(__snake_case ).astype(np.floataa )
if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ):
continue
if key_name.startswith('''pasts/''' ):
if key_name.startswith('''pasts/mlp''' ):
lowercase__ = int(key_name[9] )
elif key_name.startswith('''pasts/out''' ):
lowercase__ = 8
lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase__ = torch.tensor(__snake_case )
elif key_name.startswith('''model/moe''' ):
lowercase__ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/switch_gating/kernel''' ):
lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player
lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/softmlp/kernel''' ):
lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player
lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ):
lowercase__ = key_name[-9:-7]
for i in range(16 ):
lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer)
lowercase__ = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
lowercase__ = torch.tensor(__snake_case )
elif key_name.startswith('''model/mlp''' ):
lowercase__ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/p1/kernel''' ):
lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player
lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/p1/bias''' ):
lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player
lowercase__ = vnp.copy() # same because it is one dimensional
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/p2/kernel''' ):
lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player
lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/p2/bias''' ):
lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player
lowercase__ = vnp.copy() # same because it is one dimensional
lowercase__ = torch.tensor(__snake_case )
elif key_name.startswith('''model/ln''' ):
lowercase__ = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player
lowercase__ = vnp.copy() # same because it is one dimensional
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/g''' ):
lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player
lowercase__ = vnp.copy() # same because it is one dimensional
lowercase__ = torch.tensor(__snake_case )
elif key_name.startswith('''model/att''' ):
lowercase__ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/qkv/kernel''' ):
lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
lowercase__ = state[:, 0, :, :]
lowercase__ = state[:, 1, :, :]
lowercase__ = state[:, 2, :, :]
lowercase__ = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase__ = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase__ = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player
lowercase__ = torch.tensor(__snake_case )
lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player
lowercase__ = torch.tensor(__snake_case )
lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/o/kernel''' ):
lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player
lowercase__ = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase__ = torch.tensor(__snake_case )
elif key_name.startswith('''model/an''' ):
lowercase__ = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player
lowercase__ = vnp.copy() # same because it is one dimensional
lowercase__ = torch.tensor(__snake_case )
elif key_name.endswith('''/g''' ):
lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player
lowercase__ = vnp.copy() # same because it is one dimensional
lowercase__ = torch.tensor(__snake_case )
elif (
key_name.startswith('''model/wte''' )
or key_name.startswith('''model/wpe''' )
or key_name.startswith('''model/ete''' )
):
lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[
key_name[-3:]
]
lowercase__ = '''model.%s.weight''' % nlayer
lowercase__ = vnp.copy() # same in embedded
lowercase__ = torch.tensor(__snake_case )
if key_name.startswith('''model/wte''' ):
lowercase__ = '''lm_head.weight'''
lowercase__ = vnp.copy() # same in embedded
lowercase__ = torch.tensor(__snake_case )
elif key_name.startswith('''model/wob''' ):
lowercase__ = '''final_logits_bias'''
lowercase__ = vnp.copy() # same in embedded
lowercase__ = state.reshape((1, -1) )
lowercase__ = torch.tensor(__snake_case )
elif key_name == "model/dense/kernel":
lowercase__ = '''model.last_project.weight'''
lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase__ = torch.tensor(__snake_case )
elif key_name == "model/dense_1/bias":
lowercase__ = '''model.last_project.bias'''
lowercase__ = vnp.copy() # same because it is one dimensional
lowercase__ = torch.tensor(__snake_case )
torch.save(__snake_case , args.output )
if __name__ == "__main__":
A__ : Optional[Any] = argparse.ArgumentParser(
description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model')
parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model')
A__ : str = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 712 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = DistilBertTokenizer
lowercase__ = DistilBertTokenizerFast
lowercase__ = True
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 671 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
A__ : Optional[Any] = logging.get_logger(__name__)
A__ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A__ : List[Any] = {
'vocab_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt',
},
'tokenizer_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'
),
'google/realm-orqa-nq-openqa': (
'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-nq-reader': (
'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-openqa': (
'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-reader': (
'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'
),
},
}
A__ : List[Any] = {
'google/realm-cc-news-pretrained-embedder': 5_12,
'google/realm-cc-news-pretrained-encoder': 5_12,
'google/realm-cc-news-pretrained-scorer': 5_12,
'google/realm-cc-news-pretrained-openqa': 5_12,
'google/realm-orqa-nq-openqa': 5_12,
'google/realm-orqa-nq-reader': 5_12,
'google/realm-orqa-wq-openqa': 5_12,
'google/realm-orqa-wq-reader': 5_12,
}
A__ : Union[str, Any] = {
'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True},
'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-reader': {'do_lower_case': True},
'google/realm-orqa-wq-openqa': {'do_lower_case': True},
'google/realm-orqa-wq-reader': {'do_lower_case': True},
}
class _UpperCAmelCase ( lowercase_ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_INIT_CONFIGURATION
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = RealmTokenizer
def __init__( self : Any, lowerCamelCase : Optional[int]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Tuple="[SEP]", lowerCamelCase : Union[str, Any]="[PAD]", lowerCamelCase : Optional[int]="[CLS]", lowerCamelCase : Tuple="[MASK]", lowerCamelCase : int=True, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : int, ):
'''simple docstring'''
super().__init__(
lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, tokenize_chinese_chars=lowerCamelCase_, strip_accents=lowerCamelCase_, **lowerCamelCase_, )
lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''', lowerCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''', lowerCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase_ ) != tokenize_chinese_chars
):
lowercase__ = getattr(lowerCamelCase_, normalizer_state.pop('''type''' ) )
lowercase__ = do_lower_case
lowercase__ = strip_accents
lowercase__ = tokenize_chinese_chars
lowercase__ = normalizer_class(**lowerCamelCase_ )
lowercase__ = do_lower_case
def lowercase__ ( self : Any, lowerCamelCase : Any, **lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = PaddingStrategy.MAX_LENGTH
lowercase__ = text
lowercase__ = kwargs.pop('''text_pair''', lowerCamelCase_ )
lowercase__ = kwargs.pop('''return_tensors''', lowerCamelCase_ )
lowercase__ = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(lowerCamelCase_ ):
if batch_text_pair is not None:
lowercase__ = batch_text_pair[idx]
else:
lowercase__ = None
lowercase__ = super().__call__(lowerCamelCase_, lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ )
lowercase__ = encoded_candidates.get('''input_ids''' )
lowercase__ = encoded_candidates.get('''attention_mask''' )
lowercase__ = encoded_candidates.get('''token_type_ids''' )
if encoded_input_ids is not None:
output_data["input_ids"].append(lowerCamelCase_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(lowerCamelCase_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(lowerCamelCase_ )
lowercase__ = {key: item for key, item in output_data.items() if len(lowerCamelCase_ ) != 0}
return BatchEncoding(lowerCamelCase_, tensor_type=lowerCamelCase_ )
def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Tuple=None ):
'''simple docstring'''
lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
lowercase__ = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ )
return tuple(lowerCamelCase_ )
| 713 |
from __future__ import annotations
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
if resistor <= 0:
lowercase__ = F"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(lowerCamelCase_ )
first_sum += 1 / float(lowerCamelCase_ )
index += 1
return 1 / first_sum
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowercase__ = F"""Resistor at index {index} has a negative value!"""
raise ValueError(lowerCamelCase_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
from math import isqrt
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , A__ , A__ ):
lowercase__ = False
return [i for i in range(2 , A__ ) if is_prime[i]]
def a ( lowerCamelCase_ = 10**8 ):
'''simple docstring'''
lowercase__ = calculate_prime_numbers(max_number // 2 )
lowercase__ = 0
lowercase__ = 0
lowercase__ = len(A__ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F"{solution() = }")
| 714 |
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' )
lowercase__ = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ),
] )
lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ )
return image
def a ( lowerCamelCase_ ):
'''simple docstring'''
if "visual_encoder" in key:
lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ )
if "blocks" in key:
lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ )
if "attn" in key:
lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ )
if "norm1" in key:
lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ )
if "norm2" in key:
lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ )
if "encoder.norm" in key:
lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ )
if "encoder.patch_embed.proj" in key:
lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ )
if "encoder.pos_embed" in key:
lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ )
if "encoder.cls_token" in key:
lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ )
if "self_attn" in key:
lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ )
return key
@torch.no_grad()
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
if config_path is not None:
lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ )
else:
lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval()
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' )
lowercase__ = pt_model.eval()
lowercase__ = pt_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
hf_model.load_state_dict(lowerCamelCase_ )
lowercase__ = 384
lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' )
lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' )
lowercase__ = tokenizer(['''a picture of'''] ).input_ids
lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
lowercase__ = hf_model.generate(lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowerCamelCase_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
lowercase__ = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
vqa_model.eval()
lowercase__ = vqa_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ )
hf_vqa_model.load_state_dict(lowerCamelCase_ )
lowercase__ = ['''How many dogs are in this image?''']
lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids
lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
itm_model.eval()
lowercase__ = itm_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ )
lowercase__ = ['''A picture of a woman with a dog sitting in a beach''']
lowercase__ = tokenizer(
lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(lowerCamelCase_ )
hf_itm_model.eval()
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
assert out[0].item() == 0.21_10_68_74_94_27_79_54
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
A__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
A__ : List[Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 671 | 0 |
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'''files''' , [
['''full:README.md''', '''dataset_infos.json'''],
['''empty:README.md''', '''dataset_infos.json'''],
['''dataset_infos.json'''],
['''full:README.md'''],
] , )
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = tmp_path_factory.mktemp('''dset_infos_dir''' )
if "full:README.md" in files:
with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f:
f.write('''---\ndataset_info:\n dataset_size: 42\n---''' )
if "empty:README.md" in files:
with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f:
f.write('''''' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f:
f.write('''{\"default\": {\"dataset_size\": 42}}''' )
lowercase__ = DatasetInfosDict.from_directory(lowerCamelCase__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'''dataset_info''' , [
DatasetInfo(),
DatasetInfo(
description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ),
] , )
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = str(lowerCamelCase__ )
dataset_info.write_to_directory(lowerCamelCase__ )
lowercase__ = DatasetInfo.from_directory(lowerCamelCase__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(lowerCamelCase__ , '''dataset_info.json''' ) )
def a ( ):
'''simple docstring'''
lowercase__ = DatasetInfo(
description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , )
lowercase__ = dataset_info._to_yaml_dict()
assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
lowercase__ = yaml.safe_dump(lowerCamelCase__ )
lowercase__ = yaml.safe_load(lowerCamelCase__ )
assert dataset_info_yaml_dict == reloaded
def a ( ):
'''simple docstring'''
lowercase__ = DatasetInfo()
lowercase__ = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'''dataset_infos_dict''' , [
DatasetInfosDict(),
DatasetInfosDict({'''default''': DatasetInfo()} ),
DatasetInfosDict({'''my_config_name''': DatasetInfo()} ),
DatasetInfosDict(
{
'''default''': DatasetInfo(
description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , )
} ),
DatasetInfosDict(
{
'''v1''': DatasetInfo(dataset_size=42 ),
'''v2''': DatasetInfo(dataset_size=1337 ),
} ),
] , )
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = str(lowerCamelCase__ )
dataset_infos_dict.write_to_directory(lowerCamelCase__ )
lowercase__ = DatasetInfosDict.from_directory(lowerCamelCase__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
lowercase__ = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
lowercase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(lowerCamelCase__ , '''README.md''' ) )
| 715 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ):
'''simple docstring'''
lowercase__ = size if size is not None else {'''shortest_edge''': 20}
lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = min_resolution
lowercase__ = max_resolution
lowercase__ = do_resize
lowercase__ = size
lowercase__ = do_center_crop
lowercase__ = crop_size
def lowercase__ ( self : Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} )
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase__ ( self : Any ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, Image.Image )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, np.ndarray )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, torch.Tensor )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
| 671 | 0 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
A__ : Tuple = logging.get_logger(__name__)
class _UpperCAmelCase ( enum.Enum ):
"""simple docstring"""
lowercase__ = 0
lowercase__ = 1
@add_end_docstrings(A__ )
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = """generated"""
def __init__( self : Any, *lowerCamelCase : Dict, **lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__(*lowercase_, **lowercase_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def lowercase__ ( self : Optional[int], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Optional[int]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : Optional[Any], ):
'''simple docstring'''
lowercase__ = {}
if truncation is not None:
lowercase__ = truncation
lowercase__ = generate_kwargs
lowercase__ = {}
if return_tensors is not None and return_type is None:
lowercase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
lowercase__ = return_type
if clean_up_tokenization_spaces is not None:
lowercase__ = clean_up_tokenization_spaces
if stop_sequence is not None:
lowercase__ = self.tokenizer.encode(lowercase_, add_special_tokens=lowercase_ )
if len(lowercase_ ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
lowercase__ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
return True
def lowercase__ ( self : Dict, *lowerCamelCase : List[str], lowerCamelCase : List[Any] ):
'''simple docstring'''
lowercase__ = self.model.config.prefix if self.model.config.prefix is not None else ''''''
if isinstance(args[0], lowercase_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' )
lowercase__ = ([prefix + arg for arg in args[0]],)
lowercase__ = True
elif isinstance(args[0], lowercase_ ):
lowercase__ = (prefix + args[0],)
lowercase__ = False
else:
raise ValueError(
F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
lowercase__ = self.tokenizer(*lowercase_, padding=lowercase_, truncation=lowercase_, return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : List[Any], *lowerCamelCase : Any, **lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = super().__call__(*lowercase_, **lowercase_ )
if (
isinstance(args[0], lowercase_ )
and all(isinstance(lowercase_, lowercase_ ) for el in args[0] )
and all(len(lowercase_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def lowercase__ ( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE, **lowerCamelCase : Dict ):
'''simple docstring'''
lowercase__ = self._parse_and_tokenize(lowercase_, truncation=lowercase_, **lowercase_ )
return inputs
def lowercase__ ( self : str, lowerCamelCase : str, **lowerCamelCase : str ):
'''simple docstring'''
if self.framework == "pt":
lowercase__ , lowercase__ = model_inputs['''input_ids'''].shape
elif self.framework == "tf":
lowercase__ , lowercase__ = tf.shape(model_inputs['''input_ids'''] ).numpy()
lowercase__ = generate_kwargs.get('''min_length''', self.model.config.min_length )
lowercase__ = generate_kwargs.get('''max_length''', self.model.config.max_length )
self.check_inputs(lowercase_, generate_kwargs['''min_length'''], generate_kwargs['''max_length'''] )
lowercase__ = self.model.generate(**lowercase_, **lowercase_ )
lowercase__ = output_ids.shape[0]
if self.framework == "pt":
lowercase__ = output_ids.reshape(lowercase_, out_b // in_b, *output_ids.shape[1:] )
elif self.framework == "tf":
lowercase__ = tf.reshape(lowercase_, (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def lowercase__ ( self : Dict, lowerCamelCase : str, lowerCamelCase : int=ReturnType.TEXT, lowerCamelCase : int=False ):
'''simple docstring'''
lowercase__ = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
lowercase__ = {F"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
lowercase__ = {
F"""{self.return_name}_text""": self.tokenizer.decode(
lowercase_, skip_special_tokens=lowercase_, clean_up_tokenization_spaces=lowercase_, )
}
records.append(lowercase_ )
return records
@add_end_docstrings(A__ )
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = """summary"""
def __call__( self : Optional[Any], *lowerCamelCase : int, **lowerCamelCase : Dict ):
'''simple docstring'''
return super().__call__(*lowercase_, **lowercase_ )
def lowercase__ ( self : List[str], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
if max_length < min_length:
logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
'''a summarization task, where outputs shorter than the input are typically wanted, you might '''
F"""consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})""" )
@add_end_docstrings(A__ )
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = """translation"""
def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
'''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' )
return True
def lowercase__ ( self : Tuple, *lowerCamelCase : Any, lowerCamelCase : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE, lowerCamelCase : Any=None, lowerCamelCase : Optional[Any]=None ):
'''simple docstring'''
if getattr(self.tokenizer, '''_build_translation_inputs''', lowercase_ ):
return self.tokenizer._build_translation_inputs(
*lowercase_, return_tensors=self.framework, truncation=lowercase_, src_lang=lowercase_, tgt_lang=lowercase_ )
else:
return super()._parse_and_tokenize(*lowercase_, truncation=lowercase_ )
def lowercase__ ( self : List[str], lowerCamelCase : Dict=None, lowerCamelCase : str=None, **lowerCamelCase : List[Any] ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ = super()._sanitize_parameters(**lowercase_ )
if src_lang is not None:
lowercase__ = src_lang
if tgt_lang is not None:
lowercase__ = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
lowercase__ = kwargs.get('''task''', self.task )
lowercase__ = task.split('''_''' )
if task and len(lowercase_ ) == 4:
# translation, XX, to YY
lowercase__ = items[1]
lowercase__ = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[str], *lowerCamelCase : List[str], **lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(*lowercase_, **lowercase_ )
| 716 |
import argparse
import os
import re
A__ : Optional[int] = 'src/transformers'
# Pattern that looks at the indentation in a line.
A__ : Union[str, Any] = re.compile(r'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
A__ : List[str] = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
A__ : int = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A__ : Tuple = re.compile(r'\[([^\]]+)\]')
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = _re_indent.search(lowerCamelCase_ )
return "" if search is None else search.groups()[0]
def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(lowerCamelCase_ ):
index += 1
lowercase__ = ['''\n'''.join(lines[:index] )]
else:
lowercase__ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ = [lines[index]]
index += 1
while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(lowerCamelCase_ ) )
if index < len(lowerCamelCase_ ) - 1:
lowercase__ = [lines[index + 1]]
index += 1
else:
lowercase__ = []
else:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
lowercase__ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCamelCase_ ) > 0:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCamelCase_ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def a ( lowerCamelCase_ ):
'''simple docstring'''
def _inner(lowerCamelCase_ ):
return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' )
return _inner
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(lowerCamelCase_ ):
return x
if key is None:
lowercase__ = noop
# Constants are all uppercase, they go first.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()]
lowercase__ = ignore_underscore(lowerCamelCase_ )
return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(lowerCamelCase_ ):
lowercase__ = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]"
lowercase__ = import_statement.split('''\n''' )
if len(lowerCamelCase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ = 2 if lines[1].strip() == '''[''' else 1
lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )
lowercase__ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCamelCase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase__ = _re_bracket_content.sub(_replace , lines[1] )
else:
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] )
return "\n".join(lowerCamelCase_ )
else:
# Finally we have to deal with imports fitting on one line
lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ )
return import_statement
def a ( lowerCamelCase_ , lowerCamelCase_=True ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding='''utf-8''' ) as f:
lowercase__ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ = split_code_in_indented_blocks(
lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ = main_blocks[block_idx]
lowercase__ = block.split('''\n''' )
# Get to the start of the imports.
lowercase__ = 0
while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ = len(lowerCamelCase_ )
else:
line_idx += 1
if line_idx >= len(lowerCamelCase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ = '''\n'''.join(block_lines[line_idx:-1] )
lowercase__ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None]
lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ = 0
lowercase__ = []
for i in range(len(lowerCamelCase_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowerCamelCase_ )
count += 1
# And we put our main block back together with its first and last line.
lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCamelCase_ ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(lowerCamelCase_ ) )
def a ( lowerCamelCase_=True ):
'''simple docstring'''
lowercase__ = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ )
if result:
lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )]
if len(lowerCamelCase_ ) > 0:
raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
A__ : int = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 671 | 0 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
A__ : Tuple = 'sshleifer/bart-tiny-random'
A__ : Any = 'patrickvonplaten/t5-tiny-random'
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase__ ( self : Tuple ):
'''simple docstring'''
return AutoConfig.from_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=1 )
self.assertEqual(student.config.num_hidden_layers, 1 )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=lowerCAmelCase_ )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=lowerCAmelCase_ )
self.assertEqual(student.config.encoder_layers, 1 )
self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers )
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ , *lowercase__ = create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=1, d=1 )
self.assertEqual(student.config.encoder_layers, 1 )
self.assertEqual(student.config.decoder_layers, 1 )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ):
create_student_by_copying_alternating_layers(lowerCAmelCase_, tempfile.mkdtemp(), e=lowerCAmelCase_, d=lowerCAmelCase_ )
| 717 |
from math import sqrt
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
lowercase__ = True
# 0 and 1 are none primes.
if number <= 1:
lowercase__ = False
for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowercase__ = False
break
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool"
return status
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowercase__ = list(range(2 , n + 1 ) )
lowercase__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase_ ) ):
for j in range(i + 1 , len(lowerCamelCase_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowercase__ = 0
# filters actual prime numbers.
lowercase__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
lowercase__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(lowerCamelCase_ ):
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0"
lowercase__ = [] # this list will be returns of the function.
# potential prime number factors.
lowercase__ = 2
lowercase__ = number
if number == 0 or number == 1:
ans.append(lowerCamelCase_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase_ ):
while quotient != 1:
if is_prime(lowerCamelCase_ ) and (quotient % factor == 0):
ans.append(lowerCamelCase_ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = max(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = min(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 == 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 != 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ )
), "'number' must been an int, even and > 2"
lowercase__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowercase__ = get_prime_numbers(lowerCamelCase_ )
lowercase__ = len(lowerCamelCase_ )
# run variable for while-loops.
lowercase__ = 0
lowercase__ = None
# exit variable. for break up the loops
lowercase__ = True
while i < len_pn and loop:
lowercase__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowercase__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (len(lowerCamelCase_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 0
while numbera != 0:
lowercase__ = numbera % numbera
lowercase__ = numbera
lowercase__ = rest
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = prime_factorization(lowerCamelCase_ )
elif numbera == 1 or numbera == 1:
lowercase__ = []
lowercase__ = []
lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ )
lowercase__ = 0
lowercase__ = 0
lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ):
ans *= n
else:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int"
lowercase__ = 0
lowercase__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase_ ):
ans += 1
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime(
lowerCamelCase_ ), "'ans' must been a prime number and from type int"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowercase__ = p_number_a + 1 # jump to the next number
lowercase__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase_ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and ans[0] != p_number_a
and ans[len(lowerCamelCase_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1"
lowercase__ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(lowerCamelCase_ )
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number > 1
), "'number' must been an int and >= 1"
lowercase__ = get_divisors(lowerCamelCase_ )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0"
lowercase__ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0"
lowercase__ = 0
lowercase__ = 1
lowercase__ = 1 # this will be return
for _ in range(n - 1 ):
lowercase__ = ans
ans += fiba
lowercase__ = tmp
return ans
| 671 | 0 |
'''simple docstring'''
from timeit import timeit
def a ( lowerCamelCase_ ):
'''simple docstring'''
if number < 0:
raise ValueError('''the value of input must not be negative''' )
lowercase__ = 0
while number:
number &= number - 1
result += 1
return result
def a ( lowerCamelCase_ ):
'''simple docstring'''
if number < 0:
raise ValueError('''the value of input must not be negative''' )
lowercase__ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def a ( ):
'''simple docstring'''
def do_benchmark(lowerCamelCase_ ) -> None:
lowercase__ = '''import __main__ as z'''
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(lowerCamelCase_ ) = }""" )
lowercase__ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=lowerCamelCase_ )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(lowerCamelCase_ ) = }""" )
lowercase__ = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=lowerCamelCase_ , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(lowerCamelCase_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 718 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = args.log_outputs
lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
lowercase__ = load_metric('''wer''' )
lowercase__ = load_metric('''cer''' )
# compute metrics
lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}"""
print(lowerCamelCase_ )
with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowerCamelCase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
lowercase__ = F"""log_{dataset_id}_predictions.txt"""
lowercase__ = F"""log_{dataset_id}_targets.txt"""
with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowerCamelCase_ , lowerCamelCase_ ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) )
return text
def a ( lowerCamelCase_ ):
'''simple docstring'''
# load dataset
lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id )
lowercase__ = feature_extractor.sampling_rate
# resample audio
lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) )
# load eval pipeline
if args.device is None:
lowercase__ = 0 if torch.cuda.is_available() else -1
lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowerCamelCase_ ):
lowercase__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
lowercase__ = prediction['''text''']
lowercase__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
A__ : Union[str, Any] = parser.parse_args()
main(args)
| 671 | 0 |
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
A__ : Optional[Any] = {
"""bart""": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""bert""": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-base-cased-finetuned-mrpc""": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""dpr""": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""gpt2""": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlnet""": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlm""": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlm-roberta""": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""transfo-xl""": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""openai-gpt""": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""roberta""": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""layoutlm""": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""roberta-large-mnli""": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""camembert""": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""flaubert""": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""distilbert""": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""distilbert-base-distilled-squad""": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""lxmert""": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""lxmert-visual-feature-encoder""": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""ctrl""": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""albert""": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""t5""": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""electra""": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""wav2vec2""": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" )
lowercase__ = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
lowercase__ = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models )
lowercase__ = config_class.from_json_file(lowerCamelCase_ )
lowercase__ = True
lowercase__ = True
print(F"""Building TensorFlow model from configuration: {config}""" )
lowercase__ = model_class(lowerCamelCase_ )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
lowercase__ = cached_file(
lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
lowercase__ = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase_ , lowerCamelCase_ )
if compare_with_pt_model:
lowercase__ = tf_model(tf_model.dummy_inputs , training=lowerCamelCase_ ) # build the network
lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' )
lowercase__ = pt_model_class.from_pretrained(
pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ )
with torch.no_grad():
lowercase__ = pt_model(**pt_model.dummy_inputs )
lowercase__ = pto[0].numpy()
lowercase__ = tfo[0].numpy()
lowercase__ = np.amax(np.abs(np_pt - np_tf ) )
print(F"""Max absolute difference between models outputs {diff}""" )
assert diff <= 2e-2, F"""Error, model absolute difference is >2e-2: {diff}"""
# Save pytorch-model
print(F"""Save TensorFlow model to {tf_dump_path}""" )
tf_model.save_weights(lowerCamelCase_ , save_format='''h5''' )
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , ):
'''simple docstring'''
if args_model_type is None:
lowercase__ = list(MODEL_CLASSES.keys() )
else:
lowercase__ = [args_model_type]
for j, model_type in enumerate(lowerCamelCase_ , start=1 ):
print('''=''' * 100 )
print(F""" Converting model type {j}/{len(lowerCamelCase_ )}: {model_type}""" )
print('''=''' * 100 )
if model_type not in MODEL_CLASSES:
raise ValueError(F"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" )
lowercase__ = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
lowercase__ = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
lowercase__ = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(lowerCamelCase_ , lowerCamelCase_ ) , start=1 ):
print('''-''' * 100 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F""" Skipping finetuned checkpoint {model_shortcut_name}""" )
continue
lowercase__ = model_shortcut_name
elif only_convert_finetuned_models:
print(F""" Skipping not finetuned checkpoint {model_shortcut_name}""" )
continue
print(
F""" Converting checkpoint {i}/{len(lowerCamelCase_ )}: {model_shortcut_name} - model_type {model_type}""" )
print('''-''' * 100 )
if config_shortcut_name in aws_config_map:
lowercase__ = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models )
else:
lowercase__ = config_shortcut_name
if model_shortcut_name in aws_model_maps:
lowercase__ = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models )
else:
lowercase__ = model_shortcut_name
if os.path.isfile(lowerCamelCase_ ):
lowercase__ = "converted_model"
convert_pt_checkpoint_to_tf(
model_type=lowerCamelCase_ , pytorch_checkpoint_path=lowerCamelCase_ , config_file=lowerCamelCase_ , tf_dump_path=os.path.join(lowerCamelCase_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=lowerCamelCase_ , )
if remove_cached_files:
os.remove(lowerCamelCase_ )
os.remove(lowerCamelCase_ )
if __name__ == "__main__":
A__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.'
)
parser.add_argument(
'--model_type',
default=None,
type=str,
help=(
F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and "
'convert all the models from AWS.'
),
)
parser.add_argument(
'--pytorch_checkpoint_path',
default=None,
type=str,
help=(
'Path to the PyTorch checkpoint path or shortcut name to download from AWS. '
'If not given, will download and convert all the checkpoints from AWS.'
),
)
parser.add_argument(
'--config_file',
default=None,
type=str,
help=(
'The config json file corresponding to the pre-trained model. \n'
'This specifies the model architecture. If not given and '
'--pytorch_checkpoint_path is not given or is a shortcut name '
'use the configuration associated to the shortcut name on the AWS'
),
)
parser.add_argument(
'--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.'
)
parser.add_argument(
'--use_cached_models',
action='store_true',
help='Use cached models if possible instead of updating to latest checkpoint versions.',
)
parser.add_argument(
'--remove_cached_files',
action='store_true',
help='Remove pytorch models after conversion (save memory when converting in batches).',
)
parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.')
A__ : List[str] = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 719 |
from functools import reduce
A__ : Union[str, Any] = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def a ( lowerCamelCase_ = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) )
for i in range(len(lowerCamelCase_ ) - 12 ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
A__ : Tuple = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = PegasusConfig
lowercase__ = {}
lowercase__ = """gelu"""
def __init__( self : Dict, lowerCamelCase : List[Any], lowerCamelCase : List[Any]=13, lowerCamelCase : Any=7, lowerCamelCase : Dict=True, lowerCamelCase : Tuple=False, lowerCamelCase : List[str]=99, lowerCamelCase : Optional[Any]=32, lowerCamelCase : Any=5, lowerCamelCase : List[str]=4, lowerCamelCase : Tuple=37, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : int=20, lowerCamelCase : str=2, lowerCamelCase : List[Any]=1, lowerCamelCase : Dict=0, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = eos_token_id
lowercase__ = pad_token_id
lowercase__ = bos_token_id
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ).clip(3, self.vocab_size )
lowercase__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ), 1 )
lowercase__ = np.concatenate([input_ids, eos_tensor], axis=1 )
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowercase__ = self.config_cls(
vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, )
lowercase__ = prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
return config, inputs_dict
def lowercase__ ( self : List[Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : Any ):
'''simple docstring'''
lowercase__ = 20
lowercase__ = model_class_name(SCREAMING_SNAKE_CASE_ )
lowercase__ = model.encode(inputs_dict['''input_ids'''] )
lowercase__ , lowercase__ = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
lowercase__ = model.init_cache(decoder_input_ids.shape[0], SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
lowercase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' )
lowercase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), )
lowercase__ = model.decode(
decoder_input_ids[:, :-1], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, )
lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' )
lowercase__ = model.decode(
decoder_input_ids[:, -1:], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=outputs_cache.past_key_values, decoder_position_ids=SCREAMING_SNAKE_CASE_, )
lowercase__ = model.decode(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3, msg=F"""Max diff is {diff}""" )
def lowercase__ ( self : Any, lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowercase__ = 20
lowercase__ = model_class_name(SCREAMING_SNAKE_CASE_ )
lowercase__ = model.encode(inputs_dict['''input_ids'''] )
lowercase__ , lowercase__ = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
lowercase__ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
], axis=-1, )
lowercase__ = model.init_cache(decoder_input_ids.shape[0], SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
lowercase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), )
lowercase__ = model.decode(
decoder_input_ids[:, :-1], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, )
lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' )
lowercase__ = model.decode(
decoder_input_ids[:, -1:], SCREAMING_SNAKE_CASE_, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, )
lowercase__ = model.decode(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_ )
lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3, msg=F"""Max diff is {diff}""" )
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , ):
'''simple docstring'''
if attention_mask is None:
lowercase__ = np.not_equal(__a , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowercase__ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class _UpperCAmelCase ( __lowerCamelCase ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = FlaxPegasusModelTester(self )
lowercase__ = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_ )
def lowercase__ ( self : str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
lowercase__ = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def encode_jitted(lowerCamelCase : Tuple, lowerCamelCase : Optional[int]=None, **lowerCamelCase : Union[str, Any] ):
return model.encode(input_ids=SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ )
with self.subTest('''JIT Enabled''' ):
lowercase__ = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
lowercase__ = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape, output.shape )
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase__ = model_class(SCREAMING_SNAKE_CASE_ )
lowercase__ = model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] )
lowercase__ = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCamelCase : Any, lowerCamelCase : Tuple, lowerCamelCase : str ):
return model.decode(
decoder_input_ids=SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, encoder_outputs=SCREAMING_SNAKE_CASE_, )
with self.subTest('''JIT Enabled''' ):
lowercase__ = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
lowercase__ = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape, output.shape )
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ = model_class_name.from_pretrained('''google/pegasus-large''', from_pt=SCREAMING_SNAKE_CASE_ )
lowercase__ = np.ones((1, 1) )
lowercase__ = model(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@slow
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' )
lowercase__ = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' )
lowercase__ = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \'Oh I think you\'re nominated\'\", said Dappy.\"And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around.\"At the end of the day we\'re grateful to be where we are in our careers.\"If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ''',
]
lowercase__ = [
'''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''',
'''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''',
]
lowercase__ = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='''np''', truncation=SCREAMING_SNAKE_CASE_, max_length=512, padding=SCREAMING_SNAKE_CASE_ )
lowercase__ = model.generate(**SCREAMING_SNAKE_CASE_, num_beams=2 ).sequences
lowercase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_ )
assert tgt_text == decoded
| 720 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase ( A__ ,A__ ):
"""simple docstring"""
lowercase__ = 1
@register_to_config
def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ):
'''simple docstring'''
# standard deviation of the initial noise distribution
lowercase__ = sigma_max
# setable values
lowercase__ = None
self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
return sample
def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ):
'''simple docstring'''
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase )
def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ):
'''simple docstring'''
lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min
lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(lowerCamelCase, lowerCamelCase )
lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) )
lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ):
'''simple docstring'''
return torch.where(
timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), )
def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
lowercase__ = timestep * torch.ones(
sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
lowercase__ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
lowercase__ = timesteps.to(self.discrete_sigmas.device )
lowercase__ = self.discrete_sigmas[timesteps].to(sample.device )
lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device )
lowercase__ = torch.zeros_like(lowerCamelCase )
lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
lowercase__ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
lowercase__ = diffusion.unsqueeze(-1 )
lowercase__ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
lowercase__ = randn_tensor(
sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype )
lowercase__ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
lowercase__ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
lowercase__ = step_size.unsqueeze(-1 )
lowercase__ = sample + step_size * model_output
lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ):
'''simple docstring'''
# Make sure sigmas and timesteps have the same device and dtype as original_samples
lowercase__ = timesteps.to(original_samples.device )
lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps]
lowercase__ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None]
)
lowercase__ = noise + original_samples
return noisy_samples
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 671 | 0 |
import numpy as np
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
return np.where(vector > 0 , lowerCamelCase_ , (alpha * (np.exp(lowerCamelCase_ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 721 |
from collections import defaultdict
from math import gcd
def a ( lowerCamelCase_ = 150_0000 ):
'''simple docstring'''
lowercase__ = defaultdict(lowerCamelCase_ )
lowercase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ):
if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1:
continue
lowercase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import os
from pathlib import Path
def a ( ):
'''simple docstring'''
from torch.utils.cpp_extension import load
lowercase__ = Path(lowerCamelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr'''
lowercase__ = [
root / filename
for filename in [
'''vision.cpp''',
os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ),
os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ),
]
]
load(
'''MultiScaleDeformableAttention''' , lowerCamelCase_ , with_cuda=lowerCamelCase_ , extra_include_paths=[str(lowerCamelCase_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[
'''-DCUDA_HAS_FP16=1''',
'''-D__CUDA_NO_HALF_OPERATORS__''',
'''-D__CUDA_NO_HALF_CONVERSIONS__''',
'''-D__CUDA_NO_HALF2_OPERATORS__''',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 700 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
A__ : Dict = logging.get_logger(__name__)
A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A__ : Optional[int] = {
'vocab_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'
),
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'
),
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt',
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'
),
'bert-base-multilingual-cased': (
'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'
),
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-cased': (
'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'
),
},
}
A__ : List[str] = {
'bert-base-uncased': 5_12,
'bert-large-uncased': 5_12,
'bert-base-cased': 5_12,
'bert-large-cased': 5_12,
'bert-base-multilingual-uncased': 5_12,
'bert-base-multilingual-cased': 5_12,
'bert-base-chinese': 5_12,
'bert-base-german-cased': 5_12,
'bert-large-uncased-whole-word-masking': 5_12,
'bert-large-cased-whole-word-masking': 5_12,
'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12,
'bert-large-cased-whole-word-masking-finetuned-squad': 5_12,
'bert-base-cased-finetuned-mrpc': 5_12,
'bert-base-german-dbmdz-cased': 5_12,
'bert-base-german-dbmdz-uncased': 5_12,
'TurkuNLP/bert-base-finnish-cased-v1': 5_12,
'TurkuNLP/bert-base-finnish-uncased-v1': 5_12,
'wietsedv/bert-base-dutch-cased': 5_12,
}
A__ : Optional[int] = {
'bert-base-uncased': {'do_lower_case': True},
'bert-large-uncased': {'do_lower_case': True},
'bert-base-cased': {'do_lower_case': False},
'bert-large-cased': {'do_lower_case': False},
'bert-base-multilingual-uncased': {'do_lower_case': True},
'bert-base-multilingual-cased': {'do_lower_case': False},
'bert-base-chinese': {'do_lower_case': False},
'bert-base-german-cased': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking': {'do_lower_case': True},
'bert-large-cased-whole-word-masking': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True},
'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False},
'bert-base-cased-finetuned-mrpc': {'do_lower_case': False},
'bert-base-german-dbmdz-cased': {'do_lower_case': False},
'bert-base-german-dbmdz-uncased': {'do_lower_case': True},
'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False},
'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True},
'wietsedv/bert-base-dutch-cased': {'do_lower_case': False},
}
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_INIT_CONFIGURATION
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = BertTokenizer
def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, )
lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars
):
lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) )
lowercase__ = do_lower_case
lowercase__ = strip_accents
lowercase__ = tokenize_chinese_chars
lowercase__ = normalizer_class(**lowerCamelCase )
lowercase__ = do_lower_case
def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ):
'''simple docstring'''
lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase )
return tuple(lowerCamelCase )
| 671 | 0 |
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
A__ : int = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
A__ : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def a ( lowerCamelCase_ , lowerCamelCase_=False ):
'''simple docstring'''
lowercase__ , lowercase__ = create_model(
'''HTSAT-tiny''' , '''roberta''' , _lowerCAmelCase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_lowerCAmelCase , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = {}
lowercase__ = r'''.*sequential.(\d+).*'''
lowercase__ = r'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowercase__ = key.replace(_lowerCAmelCase , _lowerCAmelCase )
if re.match(_lowerCAmelCase , _lowerCAmelCase ):
# replace sequential layers with list
lowercase__ = re.match(_lowerCAmelCase , _lowerCAmelCase ).group(1 )
lowercase__ = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(_lowerCAmelCase )//3}.linear.""" )
elif re.match(_lowerCAmelCase , _lowerCAmelCase ):
lowercase__ = int(re.match(_lowerCAmelCase , _lowerCAmelCase ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
lowercase__ = 1 if projecton_layer == 0 else 2
lowercase__ = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
lowercase__ = value
lowercase__ = mixed_qkv.size(0 ) // 3
lowercase__ = mixed_qkv[:qkv_dim]
lowercase__ = mixed_qkv[qkv_dim : qkv_dim * 2]
lowercase__ = mixed_qkv[qkv_dim * 2 :]
lowercase__ = query_layer
lowercase__ = key_layer
lowercase__ = value_layer
else:
lowercase__ = value
return model_state_dict
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ):
'''simple docstring'''
lowercase__ , lowercase__ = init_clap(_lowerCAmelCase , enable_fusion=_lowerCAmelCase )
clap_model.eval()
lowercase__ = clap_model.state_dict()
lowercase__ = rename_state_dict(_lowerCAmelCase )
lowercase__ = ClapConfig()
lowercase__ = enable_fusion
lowercase__ = ClapModel(_lowerCAmelCase )
# ignore the spectrogram embedding layer
model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
transformers_config.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
A__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
A__ : Dict = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 701 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 671 | 0 |
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = [0 for i in range(r + 1 )]
# nc0 = 1
lowercase__ = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 702 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
A__ : Dict = 50_00_00
A__ , A__ : str = os.path.split(__file__)
A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.map(**lowerCamelCase_ )
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.filter(**lowerCamelCase_ )
def a ( ):
'''simple docstring'''
lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
lowercase__ = generate_example_dataset(
os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ )
lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ )
def tokenize(lowerCamelCase_ ):
return tokenizer(examples['''text'''] )
lowercase__ = map(lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''numpy''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''pandas''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = filter(lowerCamelCase_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(lowerCamelCase_ , '''wb''' ) as f:
f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 671 | 0 |
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
A__ : List[str] = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class _UpperCAmelCase ( UpperCAmelCase_ ):
"""simple docstring"""
lowercase__ = """facebook/nllb-200-distilled-600M"""
lowercase__ = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
lowercase__ = """translator"""
lowercase__ = AutoTokenizer
lowercase__ = AutoModelForSeqaSeqLM
lowercase__ = LANGUAGE_CODES
lowercase__ = ["""text""", """text""", """text"""]
lowercase__ = ["""text"""]
def lowercase__ ( self : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(F"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(F"""{tgt_lang} is not a supported language.""" )
lowercase__ = self.lang_to_code[src_lang]
lowercase__ = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
_lowercase, return_tensors='''pt''', src_lang=_lowercase, tgt_lang=_lowercase )
def lowercase__ ( self : int, lowerCamelCase : Dict ):
'''simple docstring'''
return self.model.generate(**_lowercase )
def lowercase__ ( self : List[Any], lowerCamelCase : Any ):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=_lowercase )
| 703 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ):
'''simple docstring'''
# Mapping from the first character of the prefix of the node
lowercase__ = {}
# A node will be a leaf if the tree contains its word
lowercase__ = is_leaf
lowercase__ = prefix
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = 0
for q, w in zip(self.prefix, lowerCamelCase ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
lowercase__ = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase )
else:
lowercase__ = self.nodes[word[0]]
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCamelCase )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowercase__ = remaining_prefix
lowercase__ = self.nodes[matching_string[0]]
lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase )
lowercase__ = aux_node
if remaining_word == "":
lowercase__ = True
else:
self.nodes[matching_string[0]].insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCamelCase )
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCamelCase )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowercase__ = list(self.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
self.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowercase__ = False
# If there is 1 edge, we merge it with its child
else:
lowercase__ = list(incoming_node.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
return True
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ):
'''simple docstring'''
if self.prefix != "":
print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def a ( ):
'''simple docstring'''
lowercase__ = '''banana bananas bandana band apple all beast'''.split()
lowercase__ = RadixNode()
root.insert_many(lowerCamelCase_ )
assert all(root.find(lowerCamelCase_ ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def a ( ):
'''simple docstring'''
assert test_trie()
def a ( ):
'''simple docstring'''
lowercase__ = RadixNode()
lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(lowerCamelCase_ )
print('''Words:''' , lowerCamelCase_ )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 671 | 0 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
A__ : Union[str, Any] = TypeVar('T')
A__ : Any = TypeVar('U')
class _UpperCAmelCase ( Generic[T, U] ):
"""simple docstring"""
def __init__( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = key
lowercase__ = val
lowercase__ = None
lowercase__ = None
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return (
F"""Node: key: {self.key}, val: {self.val}, """
F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}"""
)
class _UpperCAmelCase ( Generic[T, U] ):
"""simple docstring"""
def __init__( self : str ):
'''simple docstring'''
lowercase__ = DoubleLinkedListNode(lowercase_, lowercase_ )
lowercase__ = DoubleLinkedListNode(lowercase_, lowercase_ )
lowercase__ = self.rear, self.head
def __repr__( self : Any ):
'''simple docstring'''
lowercase__ = ["DoubleLinkedList"]
lowercase__ = self.head
while node.next is not None:
rep.append(str(lowercase_ ) )
lowercase__ = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase_ )
def lowercase__ ( self : str, lowerCamelCase : List[Any] ):
'''simple docstring'''
lowercase__ = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
lowercase__ = node
lowercase__ = previous
lowercase__ = node
lowercase__ = self.rear
def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
lowercase__ = node.next
lowercase__ = node.prev
lowercase__ = None
lowercase__ = None
return node
class _UpperCAmelCase ( Generic[T, U] ):
"""simple docstring"""
lowercase__ = {}
def __init__( self : Tuple, lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = DoubleLinkedList()
lowercase__ = capacity
lowercase__ = 0
lowercase__ = 0
lowercase__ = 0
lowercase__ = {}
def __repr__( self : int ):
'''simple docstring'''
return (
F"""CacheInfo(hits={self.hits}, misses={self.miss}, """
F"""capacity={self.capacity}, current size={self.num_keys})"""
)
def __contains__( self : Optional[Any], lowerCamelCase : Dict ):
'''simple docstring'''
return key in self.cache
def lowercase__ ( self : Any, lowerCamelCase : Tuple ):
'''simple docstring'''
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
lowercase__ = self.cache[key]
lowercase__ = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase_ )
return node.val
self.miss += 1
return None
def lowercase__ ( self : List[str], lowerCamelCase : str, lowerCamelCase : Optional[Any] ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
lowercase__ = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase_ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
lowercase__ = DoubleLinkedListNode(lowercase_, lowercase_ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
lowercase__ = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
lowercase__ = value
self.list.add(lowercase_ )
@classmethod
def lowercase__ ( cls : List[Any], lowerCamelCase : Optional[int] = 128 ):
'''simple docstring'''
def cache_decorator_inner(lowerCamelCase : Any ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowerCamelCase : str ) -> U:
if func not in cls.decorator_function_to_instance_map:
lowercase__ = LRUCache(lowercase_ )
lowercase__ = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
lowercase__ = func(*lowercase_ )
cls.decorator_function_to_instance_map[func].put(args[0], lowercase_ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase_, '''cache_info''', lowercase_ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
lowercase__ = ViTImageProcessor if is_vision_available() else None
@property
def lowercase__ ( self : List[str] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = (3, 32, 128)
lowercase__ = tempfile.mkdtemp()
# fmt: off
lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCamelCase ) + '''\n''' )
lowercase__ = {
'''do_normalize''': False,
'''do_resize''': True,
'''image_processor_type''': '''ViTImageProcessor''',
'''resample''': 3,
'''size''': {'''height''': 32, '''width''': 128},
}
lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase )
with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp:
json.dump(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )
lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) )
return image_input
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' )
lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 )
lowercase__ = MgpstrProcessor.from_pretrained(
self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = self.prepare_image_inputs()
lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' )
lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = processor(text=lowerCamelCase )
lowercase__ = tokenizer(lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key] )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase ):
processor()
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ = processor.char_decode(lowerCamelCase )
lowercase__ = tokenizer.batch_decode(lowerCamelCase )
lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok]
self.assertListEqual(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = None
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = torch.randn(1, 27, 38 )
lowercase__ = torch.randn(1, 27, 50_257 )
lowercase__ = torch.randn(1, 27, 30_522 )
lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
| 671 | 0 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : str, lowerCamelCase : List[str], lowerCamelCase : Dict=13, lowerCamelCase : Union[str, Any]=32, lowerCamelCase : int=2, lowerCamelCase : int=3, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Optional[int]=[1, 2, 1], lowerCamelCase : str=[2, 2, 4], lowerCamelCase : Optional[Any]=2, lowerCamelCase : Any=2.0, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[Any]=0.0, lowerCamelCase : Union[str, Any]=0.0, lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=False, lowerCamelCase : Any=True, lowerCamelCase : Tuple=0.02, lowerCamelCase : Dict=1E-5, lowerCamelCase : str=True, lowerCamelCase : int=None, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : int=10, lowerCamelCase : Optional[int]=8, lowerCamelCase : Union[str, Any]=["stage1", "stage2", "stage3"], lowerCamelCase : List[Any]=[1, 2, 3], ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = depths
lowercase__ = num_heads
lowercase__ = window_size
lowercase__ = mlp_ratio
lowercase__ = qkv_bias
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = drop_path_rate
lowercase__ = hidden_act
lowercase__ = use_absolute_embeddings
lowercase__ = patch_norm
lowercase__ = layer_norm_eps
lowercase__ = initializer_range
lowercase__ = is_training
lowercase__ = scope
lowercase__ = use_labels
lowercase__ = type_sequence_label_size
lowercase__ = encoder_stride
lowercase__ = out_features
lowercase__ = out_indices
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size )
lowercase__ = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : int ):
'''simple docstring'''
return MaskFormerSwinConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, )
def lowercase__ ( self : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = MaskFormerSwinModel(config=A_ )
model.to(A_ )
model.eval()
lowercase__ = model(A_ )
lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) )
def lowercase__ ( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = MaskFormerSwinBackbone(config=A_ )
model.to(A_ )
model.eval()
lowercase__ = model(A_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(A_ ):
lowercase__ = ['''stem''']
lowercase__ = MaskFormerSwinBackbone(config=A_ )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = MaskFormerSwinModelTester(self )
lowercase__ = ConfigTester(self, config_class=A_, embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'''
''' `nn.DataParallel`'''
) )
def lowercase__ ( self : Any ):
'''simple docstring'''
pass
def lowercase__ ( self : str ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : int ):
'''simple docstring'''
return
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*A_ )
@unittest.skip('''Swin does not use inputs_embeds''' )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip('''Swin does not support feedforward chunking''' )
def lowercase__ ( self : str ):
'''simple docstring'''
pass
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
lowercase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_, nn.Linear ) )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(A_ )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1], A_ )
@unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' )
def lowercase__ ( self : Any ):
'''simple docstring'''
pass
def lowercase__ ( self : Dict, lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowercase__ = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
lowercase__ = model(**self._prepare_for_class(A_, A_ ) )
lowercase__ = outputs.hidden_states
lowercase__ = getattr(
self.model_tester, '''expected_num_hidden_layers''', len(self.model_tester.depths ) + 1 )
self.assertEqual(len(A_ ), A_ )
# Swin has a different seq_length
lowercase__ = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowercase__ = True
self.check_hidden_states_output(A_, A_, A_, A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ = True
self.check_hidden_states_output(A_, A_, A_, A_ )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = 3
lowercase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowercase__ = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowercase__ = True
self.check_hidden_states_output(A_, A_, A_, (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ = True
self.check_hidden_states_output(A_, A_, A_, (padded_height, padded_width) )
@unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
pass
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(lowerCamelCase : List[str] ):
lowercase__ = 0
return t
def check_equivalence(lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str]={} ):
with torch.no_grad():
lowercase__ = model(**A_, return_dict=A_, **A_ )
lowercase__ = model(**A_, return_dict=A_, **A_ ).to_tuple()
def recursive_check(lowerCamelCase : List[Any], lowerCamelCase : List[str] ):
if isinstance(A_, (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(A_, A_ ):
recursive_check(A_, A_ )
elif isinstance(A_, A_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values() ):
recursive_check(A_, A_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(A_ ), set_nan_tensor_to_zero(A_ ), atol=1E-5 ), msg=(
'''Tuple and dict output are not equal. Difference:'''
F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"""
F""" {torch.isnan(A_ ).any()} and `inf`: {torch.isinf(A_ )}. Dict has"""
F""" `nan`: {torch.isnan(A_ ).any()} and `inf`: {torch.isinf(A_ )}."""
), )
recursive_check(A_, A_ )
for model_class in self.all_model_classes:
lowercase__ = model_class(A_ )
model.to(A_ )
model.eval()
lowercase__ = self._prepare_for_class(A_, A_ )
lowercase__ = self._prepare_for_class(A_, A_ )
check_equivalence(A_, A_, A_ )
lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ )
lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ )
check_equivalence(A_, A_, A_ )
lowercase__ = self._prepare_for_class(A_, A_ )
lowercase__ = self._prepare_for_class(A_, A_ )
check_equivalence(A_, A_, A_, {'''output_hidden_states''': True} )
lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ )
lowercase__ = self._prepare_for_class(A_, A_, return_labels=A_ )
check_equivalence(A_, A_, A_, {'''output_hidden_states''': True} )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ,_UpperCAmelCase ):
"""simple docstring"""
lowercase__ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowercase__ = MaskFormerSwinConfig
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = MaskFormerSwinModelTester(self )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = inputs_dict['''pixel_values'''].shape[0]
for backbone_class in self.all_model_classes:
lowercase__ = backbone_class(A_ )
backbone.to(A_ )
backbone.eval()
lowercase__ = backbone(**A_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps, A_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ):
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
lowercase__ = backbone(**A_, output_hidden_states=A_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
lowercase__ , lowercase__ , lowercase__ = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
lowercase__ = backbone(**A_, output_attentions=A_ )
self.assertIsNotNone(outputs.attentions )
| 705 |
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
if exponent == 1:
return base
if exponent % 2 == 0:
lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value
def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ):
'''simple docstring'''
lowercase__ = base
for _ in range(1 , lowerCamelCase_ ):
lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits )
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _UpperCAmelCase ( __lowercase ):
"""simple docstring"""
lowercase__ = """facebook/bart-large-mnli"""
lowercase__ = (
"""This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """
"""should be the text to classify, and `labels`, which should be the list of labels to use for classification. """
"""It returns the most likely label in the list of provided `labels` for the input text."""
)
lowercase__ = """text_classifier"""
lowercase__ = AutoTokenizer
lowercase__ = AutoModelForSequenceClassification
lowercase__ = ["""text""", ["""text"""]]
lowercase__ = ["""text"""]
def lowercase__ ( self : str ):
'''simple docstring'''
super().setup()
lowercase__ = self.model.config
lowercase__ = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
lowercase__ = int(lowerCamelCase )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def lowercase__ ( self : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = labels
return self.pre_processor(
[text] * len(lowerCamelCase ), [F"""This example is {label}""" for label in labels], return_tensors='''pt''', padding='''max_length''', )
def lowercase__ ( self : Any, lowerCamelCase : Any ):
'''simple docstring'''
lowercase__ = outputs.logits
lowercase__ = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 706 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ):
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, )
def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
lowercase__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
self.enable_attention_slicing(lowerCamelCase )
@torch.no_grad()
def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ):
'''simple docstring'''
lowercase__ = self.speech_processor.feature_extractor(
lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device )
lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 )
lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[
0
]
if isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = 1
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = len(lowerCamelCase )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(lowerCamelCase )}.""" )
# get prompt text embeddings
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', )
lowercase__ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length]
lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape
lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowercase__ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowercase__ = 42
if negative_prompt is None:
lowercase__ = [''''''] * batch_size
elif type(lowerCamelCase ) is not type(lowerCamelCase ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !="""
F""" {type(lowerCamelCase )}.""" )
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = [negative_prompt]
elif batch_size != len(lowerCamelCase ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
''' the batch size of `prompt`.''' )
else:
lowercase__ = negative_prompt
lowercase__ = text_input_ids.shape[-1]
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', )
lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowercase__ = uncond_embeddings.shape[1]
lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowercase__ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
lowercase__ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to(
self.device )
else:
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
lowercase__ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowerCamelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
lowercase__ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
lowercase__ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowercase__ = {}
if accepts_eta:
lowercase__ = eta
for i, t in enumerate(self.progress_bar(lowerCamelCase ) ):
# expand the latents if we are doing classifier free guidance
lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase )
# predict the noise residual
lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample
# perform guidance
if do_classifier_free_guidance:
lowercase__ , lowercase__ = noise_pred.chunk(2 )
lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = 1 / 0.18215 * latents
lowercase__ = self.vae.decode(lowerCamelCase ).sample
lowercase__ = (image / 2 + 0.5).clamp(0, 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy()
if output_type == "pil":
lowercase__ = self.numpy_to_pil(lowerCamelCase )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
| 671 | 0 |
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
A__ : Optional[int] = data_utils.TransfoXLTokenizer
A__ : Any = data_utils.TransfoXLCorpus
A__ : str = data_utils
A__ : List[Any] = data_utils
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as fp:
lowercase__ = pickle.load(_SCREAMING_SNAKE_CASE , encoding='''latin1''' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
lowercase__ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file''']
print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" )
lowercase__ = corpus.vocab.__dict__
torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowercase__ = corpus.__dict__
corpus_dict_no_vocab.pop('''vocab''' , _SCREAMING_SNAKE_CASE )
lowercase__ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME
print(F"""Save dataset to {pytorch_dataset_dump_path}""" )
torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
lowercase__ = os.path.abspath(_SCREAMING_SNAKE_CASE )
lowercase__ = os.path.abspath(_SCREAMING_SNAKE_CASE )
print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" )
# Initialise PyTorch model
if transfo_xl_config_file == "":
lowercase__ = TransfoXLConfig()
else:
lowercase__ = TransfoXLConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(F"""Building PyTorch model from configuration: {config}""" )
lowercase__ = TransfoXLLMHeadModel(_SCREAMING_SNAKE_CASE )
lowercase__ = load_tf_weights_in_transfo_xl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(F"""Save PyTorch model to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
print(F"""Save configuration file to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" )
with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A__ : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
A__ : str = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
) | 707 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : str, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = [[] for _ in range(lowerCamelCase )]
lowercase__ = size
def __getitem__( self : Optional[Any], lowerCamelCase : int ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def lowercase__ ( self : str ):
'''simple docstring'''
return self._size
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) )
def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = deque([start_vertex] )
lowercase__ = [None] * self.size
lowercase__ = 0
while queue:
lowercase__ = queue.popleft()
lowercase__ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowercase__ = current_distance + edge.weight
lowercase__ = distances[edge.destination_vertex]
if (
isinstance(lowerCamelCase, lowerCamelCase )
and new_distance >= dest_vertex_distance
):
continue
lowercase__ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
A__ : List[Any] = {
'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'],
'tokenization_ctrl': ['CTRLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[int] = [
'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST',
'CTRLForSequenceClassification',
'CTRLLMHeadModel',
'CTRLModel',
'CTRLPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFCTRLForSequenceClassification',
'TFCTRLLMHeadModel',
'TFCTRLModel',
'TFCTRLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
A__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 708 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
# we need a list not a string, so do something to change the type
lowercase__ = arr.split(''',''' )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = [int(self.array[0] )] * len(self.array )
lowercase__ = [int(self.array[0] )] * len(self.array )
for i in range(1, len(self.array ) ):
lowercase__ = max(
int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) )
lowercase__ = max(sum_value[i], rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
A__ : Dict = input('please input some numbers:')
A__ : Union[str, Any] = SubArray(whole_array)
A__ : int = array.solve_sub_array()
print(('the results is:', re))
| 671 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A__ : Optional[Any] = logging.get_logger(__name__)
A__ : Union[str, Any] = {'vocab_file': 'spm_char.model'}
A__ : Dict = {
'vocab_file': {
'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model',
'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model',
'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model',
}
}
A__ : Tuple = {
'microsoft/speecht5_asr': 10_24,
'microsoft/speecht5_tts': 10_24,
'microsoft/speecht5_vc': 10_24,
}
class _UpperCAmelCase ( __A ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : Any="<s>", lowerCamelCase : List[str]="</s>", lowerCamelCase : List[Any]="<unk>", lowerCamelCase : Optional[int]="<pad>", lowerCamelCase : Optional[Any] = None, **lowerCamelCase : List[Any], ):
'''simple docstring'''
lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, pad_token=UpperCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase__, )
lowercase__ = vocab_file
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase__ )
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.sp_model.get_piece_size()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.__dict__.copy()
lowercase__ = None
return state
def __setstate__( self : Any, lowerCamelCase : Any ):
'''simple docstring'''
lowercase__ = d
# for backward compatibility
if not hasattr(self, '''sp_model_kwargs''' ):
lowercase__ = {}
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : List[Any], lowerCamelCase : Dict ):
'''simple docstring'''
return self.sp_model.encode(UpperCamelCase__, out_type=UpperCamelCase__ )
def lowercase__ ( self : str, lowerCamelCase : Dict ):
'''simple docstring'''
return self.sp_model.piece_to_id(UpperCamelCase__ )
def lowercase__ ( self : int, lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowercase__ = self.sp_model.IdToPiece(UpperCamelCase__ )
return token
def lowercase__ ( self : List[Any], lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = []
lowercase__ = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(UpperCamelCase__ ) + token
lowercase__ = []
else:
current_sub_tokens.append(UpperCamelCase__ )
out_string += self.sp_model.decode(UpperCamelCase__ )
return out_string.strip()
def lowercase__ ( self : Dict, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any]=None ):
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[str] = None, lowerCamelCase : Dict = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ )
lowercase__ = [1]
if token_ids_a is None:
return ([0] * len(UpperCamelCase__ )) + suffix_ones
return ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones
def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : str = None ):
'''simple docstring'''
if not os.path.isdir(UpperCamelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowercase__ = os.path.join(
UpperCamelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, UpperCamelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase__, '''wb''' ) as fi:
lowercase__ = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase__ )
return (out_vocab_file,)
| 709 |
from itertools import count
def a ( lowerCamelCase_ = 50 ):
'''simple docstring'''
lowercase__ = [1] * min_block_length
for n in count(lowerCamelCase_ ):
fill_count_functions.append(1 )
for block_length in range(lowerCamelCase_ , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 100_0000:
break
return n
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A__ : str = {
'configuration_chinese_clip': [
'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ChineseCLIPConfig',
'ChineseCLIPOnnxConfig',
'ChineseCLIPTextConfig',
'ChineseCLIPVisionConfig',
],
'processing_chinese_clip': ['ChineseCLIPProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Tuple = ['ChineseCLIPFeatureExtractor']
A__ : Dict = ['ChineseCLIPImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'ChineseCLIPModel',
'ChineseCLIPPreTrainedModel',
'ChineseCLIPTextModel',
'ChineseCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 710 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
A__ : Tuple = logging.get_logger(__name__)
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""input_features""", """is_longer"""]
def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, )
lowercase__ = top_db
lowercase__ = truncation
lowercase__ = padding
lowercase__ = fft_window_size
lowercase__ = (fft_window_size >> 1) + 1
lowercase__ = hop_length
lowercase__ = max_length_s
lowercase__ = max_length_s * sampling_rate
lowercase__ = sampling_rate
lowercase__ = frequency_min
lowercase__ = frequency_max
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', )
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ):
'''simple docstring'''
lowercase__ = spectrogram(
lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', )
return log_mel_spectrogram.T
def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
# randomly choose index for each part
lowercase__ = np.random.choice(ranges[0] )
lowercase__ = np.random.choice(ranges[1] )
lowercase__ = np.random.choice(ranges[2] )
lowercase__ = mel[idx_front : idx_front + chunk_frames, :]
lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :]
lowercase__ = mel[idx_back : idx_back + chunk_frames, :]
lowercase__ = torch.tensor(mel[None, None, :] )
lowercase__ = torch.nn.functional.interpolate(
lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase )
lowercase__ = mel_shrink[0][0].numpy()
lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 )
return mel_fusion
def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowercase__ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowercase__ = len(lowerCamelCase ) - max_length
lowercase__ = np.random.randint(0, overflow + 1 )
lowercase__ = waveform[idx : idx + max_length]
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowercase__ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowercase__ = np.stack([mel, mel, mel, mel], axis=0 )
lowercase__ = False
else:
lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = True
else:
raise NotImplementedError(F"""data_truncating {truncation} not implemented""" )
else:
lowercase__ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) )
lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 )
if truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 )
else:
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ):
'''simple docstring'''
lowercase__ = truncation if truncation is not None else self.truncation
lowercase__ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
lowercase__ = is_batched_numpy or (
isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ):
lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa )
elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray(lowerCamelCase )]
# convert to mel spectrogram, truncate and pad if needed.
lowercase__ = [
self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase )
for waveform in raw_speech
]
lowercase__ = []
lowercase__ = []
for mel, longer in padded_inputs:
input_mel.append(lowerCamelCase )
is_longer.append(lowerCamelCase )
if truncation == "fusion" and sum(lowerCamelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowercase__ = np.random.randint(0, len(lowerCamelCase ) )
lowercase__ = True
if isinstance(input_mel[0], lowerCamelCase ):
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowercase__ = [[longer] for longer in is_longer]
lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer}
lowercase__ = BatchFeature(lowerCamelCase )
if return_tensors is not None:
lowercase__ = input_features.convert_to_tensors(lowerCamelCase )
return input_features
| 671 | 0 |
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( lowercase_ ):
"""simple docstring"""
def lowercase__ ( self : List[Any], lowerCamelCase : str=None, lowerCamelCase : List[Any]=None, lowerCamelCase : List[Any]=None, **lowerCamelCase : int ):
'''simple docstring'''
if tokenize_kwargs is None:
lowercase__ = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
lowercase__ = truncation
lowercase__ = tokenize_kwargs
lowercase__ = {}
if return_tensors is not None:
lowercase__ = return_tensors
return preprocess_params, {}, postprocess_params
def lowercase__ ( self : List[str], lowerCamelCase : Dict, **lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = self.framework
lowercase__ = self.tokenizer(UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ )
return model_inputs
def lowercase__ ( self : List[str], lowerCamelCase : List[Any] ):
'''simple docstring'''
lowercase__ = self.model(**UpperCamelCase__ )
return model_outputs
def lowercase__ ( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any]=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : int, *lowerCamelCase : Optional[Any], **lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(*UpperCamelCase__, **UpperCamelCase__ )
| 711 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = None
lowercase__ = None
def a ( ):
'''simple docstring'''
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ ):
'''simple docstring'''
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(lowerCamelCase_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 0
return output
def a ( ): # Main function for testing.
'''simple docstring'''
lowercase__ = make_tree()
print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" )
print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" )
print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' )
print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(lowerCamelCase_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(lowerCamelCase_ ) + 1 ):
print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(lowerCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 671 | 0 |
import sys
A__ : Union[str, Any] = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def a ( lowerCamelCase_ = N ):
'''simple docstring'''
lowercase__ = -sys.maxsize - 1
for i in range(len(__lowerCAmelCase ) - 12 ):
lowercase__ = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
lowercase__ = product
return largest_product
if __name__ == "__main__":
print(F"{solution() = }")
| 712 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = DistilBertTokenizer
lowercase__ = DistilBertTokenizerFast
lowercase__ = True
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 671 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Optional[Any] = logging.get_logger(__name__)
A__ : Optional[Any] = {
'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json',
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
lowercase__ = """altclip_text_model"""
def __init__( self : List[Any], lowerCamelCase : Union[str, Any]=250_002, lowerCamelCase : Optional[int]=1_024, lowerCamelCase : Union[str, Any]=24, lowerCamelCase : Any=16, lowerCamelCase : List[str]=4_096, lowerCamelCase : str="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : Dict=0.1, lowerCamelCase : List[str]=514, lowerCamelCase : Union[str, Any]=1, lowerCamelCase : str=0.02, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : Optional[int]=1E-05, lowerCamelCase : List[Any]=1, lowerCamelCase : int=0, lowerCamelCase : List[str]=2, lowerCamelCase : List[str]="absolute", lowerCamelCase : Optional[int]=True, lowerCamelCase : Union[str, Any]=768, **lowerCamelCase : Optional[int], ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = initializer_factor
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = project_dim
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
lowercase__ = """altclip_vision_model"""
def __init__( self : List[str], lowerCamelCase : Dict=768, lowerCamelCase : int=3_072, lowerCamelCase : Tuple=512, lowerCamelCase : int=12, lowerCamelCase : Tuple=12, lowerCamelCase : Any=3, lowerCamelCase : int=224, lowerCamelCase : List[str]=32, lowerCamelCase : int="quick_gelu", lowerCamelCase : Union[str, Any]=1E-5, lowerCamelCase : str=0.0, lowerCamelCase : str=0.02, lowerCamelCase : List[str]=1.0, **lowerCamelCase : int, ):
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
lowercase__ = hidden_size
lowercase__ = intermediate_size
lowercase__ = projection_dim
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = image_size
lowercase__ = initializer_range
lowercase__ = initializer_factor
lowercase__ = attention_dropout
lowercase__ = layer_norm_eps
lowercase__ = hidden_act
@classmethod
def lowercase__ ( cls : Union[str, Any], lowerCamelCase : List[str], **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
lowercase__ = cls.get_config_dict(_UpperCAmelCase, **_UpperCAmelCase )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get('''model_type''' ) == "altclip":
lowercase__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase, **_UpperCAmelCase )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
lowercase__ = """altclip"""
lowercase__ = True
def __init__( self : Tuple, lowerCamelCase : Optional[int]=None, lowerCamelCase : Optional[int]=None, lowerCamelCase : Tuple=768, lowerCamelCase : List[str]=2.6592, **lowerCamelCase : List[Any] ):
'''simple docstring'''
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
lowercase__ = kwargs.pop('''text_config_dict''', _UpperCAmelCase )
lowercase__ = kwargs.pop('''vision_config_dict''', _UpperCAmelCase )
super().__init__(**_UpperCAmelCase )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
lowercase__ = {}
# This is the complete result when using `text_config_dict`.
lowercase__ = AltCLIPTextConfig(**_UpperCAmelCase ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
lowercase__ = (
F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """
F"""The value `text_config_dict[\"{key}\"]` will be used instead."""
)
# If inferred from default argument values (just to be super careful)
else:
lowercase__ = (
F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """
F"""value `text_config[\"{key}\"]` will be overriden."""
)
logger.warning(_UpperCAmelCase )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
lowercase__ = {}
# This is the complete result when using `vision_config_dict`.
lowercase__ = AltCLIPVisionConfig(**_UpperCAmelCase ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
lowercase__ = {
str(_UpperCAmelCase ): value for key, value in _vision_config_dict['''id2label'''].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
lowercase__ = (
F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """
F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead."""
)
# If inferred from default argument values (just to be super careful)
else:
lowercase__ = (
F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """
F"""The value `vision_config[\"{key}\"]` will be overriden."""
)
logger.warning(_UpperCAmelCase )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
lowercase__ = {}
logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' )
if vision_config is None:
lowercase__ = {}
logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' )
lowercase__ = AltCLIPTextConfig(**_UpperCAmelCase )
lowercase__ = AltCLIPVisionConfig(**_UpperCAmelCase )
lowercase__ = projection_dim
lowercase__ = logit_scale_init_value
lowercase__ = 1.0
@classmethod
def lowercase__ ( cls : Optional[int], lowerCamelCase : Dict, lowerCamelCase : Any, **lowerCamelCase : Dict ):
'''simple docstring'''
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **_UpperCAmelCase )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.text_config.to_dict()
lowercase__ = self.vision_config.to_dict()
lowercase__ = self.__class__.model_type
return output
| 713 |
from __future__ import annotations
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
if resistor <= 0:
lowercase__ = F"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(lowerCamelCase_ )
first_sum += 1 / float(lowerCamelCase_ )
index += 1
return 1 / first_sum
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowercase__ = F"""Resistor at index {index} has a negative value!"""
raise ValueError(lowerCamelCase_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def a ( lowerCamelCase_ , lowerCamelCase_=10 ):
'''simple docstring'''
lowercase__ = []
for _ in range(UpperCAmelCase__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def a ( lowerCamelCase_ , lowerCamelCase_=10 ):
'''simple docstring'''
lowercase__ = []
for step in range(UpperCAmelCase__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase__ = os.path.join(UpperCAmelCase__ , '''schedule.bin''' )
torch.save(scheduler.state_dict() , UpperCAmelCase__ )
lowercase__ = torch.load(UpperCAmelCase__ )
scheduler.load_state_dict(UpperCAmelCase__ )
return lrs
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : int ):
'''simple docstring'''
self.assertEqual(len(_A ), len(_A ) )
for a, b in zip(_A, _A ):
self.assertAlmostEqual(_A, _A, delta=_A )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = torch.tensor([0.1, -0.2, -0.1], requires_grad=_A )
lowercase__ = torch.tensor([0.4, 0.2, -0.5] )
lowercase__ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowercase__ = AdamW(params=[w], lr=2E-1, weight_decay=0.0 )
for _ in range(100 ):
lowercase__ = criterion(_A, _A )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = torch.tensor([0.1, -0.2, -0.1], requires_grad=_A )
lowercase__ = torch.tensor([0.4, 0.2, -0.5] )
lowercase__ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowercase__ = Adafactor(
params=[w], lr=1E-2, eps=(1E-30, 1E-3), clip_threshold=1.0, decay_rate=-0.8, betaa=_A, weight_decay=0.0, relative_step=_A, scale_parameter=_A, warmup_init=_A, )
for _ in range(1_000 ):
lowercase__ = criterion(_A, _A )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
lowercase__ = nn.Linear(50 ,50 ) if is_torch_available() else None
lowercase__ = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None
lowercase__ = 10
def lowercase__ ( self : int, lowerCamelCase : Optional[Any], lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : Dict=None ):
'''simple docstring'''
self.assertEqual(len(_A ), len(_A ) )
for a, b in zip(_A, _A ):
self.assertAlmostEqual(_A, _A, delta=_A, msg=_A )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = {'''num_warmup_steps''': 2, '''num_training_steps''': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
lowercase__ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'''num_warmup_steps''': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, '''num_cycles''': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'''num_warmup_steps''': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
lowercase__ , lowercase__ = data
lowercase__ = scheduler_func(self.optimizer, **_A )
self.assertEqual(len([scheduler.get_lr()[0]] ), 1 )
lowercase__ = unwrap_schedule(_A, self.num_steps )
self.assertListAlmostEqual(
_A, _A, tol=1E-2, msg=F"""failed for {scheduler_func} in normal scheduler""", )
lowercase__ = scheduler_func(self.optimizer, **_A )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_A ) # wrap to test picklability of the schedule
lowercase__ = unwrap_and_save_reload_schedule(_A, self.num_steps )
self.assertListEqual(_A, _A, msg=F"""failed for {scheduler_func} in save and reload""" )
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : int, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = fn
def __call__( self : int, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.fn(*_A, **_A )
@classmethod
def lowercase__ ( self : Union[str, Any], lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = list(map(self, scheduler.lr_lambdas ) )
| 714 |
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' )
lowercase__ = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ),
] )
lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ )
return image
def a ( lowerCamelCase_ ):
'''simple docstring'''
if "visual_encoder" in key:
lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ )
if "blocks" in key:
lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ )
if "attn" in key:
lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ )
if "norm1" in key:
lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ )
if "norm2" in key:
lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ )
if "encoder.norm" in key:
lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ )
if "encoder.patch_embed.proj" in key:
lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ )
if "encoder.pos_embed" in key:
lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ )
if "encoder.cls_token" in key:
lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ )
if "self_attn" in key:
lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ )
return key
@torch.no_grad()
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
if config_path is not None:
lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ )
else:
lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval()
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' )
lowercase__ = pt_model.eval()
lowercase__ = pt_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
hf_model.load_state_dict(lowerCamelCase_ )
lowercase__ = 384
lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' )
lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' )
lowercase__ = tokenizer(['''a picture of'''] ).input_ids
lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
lowercase__ = hf_model.generate(lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowerCamelCase_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
lowercase__ = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
vqa_model.eval()
lowercase__ = vqa_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ )
hf_vqa_model.load_state_dict(lowerCamelCase_ )
lowercase__ = ['''How many dogs are in this image?''']
lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids
lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
itm_model.eval()
lowercase__ = itm_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ )
lowercase__ = ['''A picture of a woman with a dog sitting in a beach''']
lowercase__ = tokenizer(
lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(lowerCamelCase_ )
hf_itm_model.eval()
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
assert out[0].item() == 0.21_10_68_74_94_27_79_54
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
A__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
A__ : List[Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 671 | 0 |
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Union[str, Any], lowerCamelCase : Callable, lowerCamelCase : Optional[Features] = None, lowerCamelCase : str = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : Optional[dict] = None, lowerCamelCase : Optional[int] = None, **lowerCamelCase : List[str], ):
'''simple docstring'''
super().__init__(
features=__UpperCamelCase, cache_dir=__UpperCamelCase, keep_in_memory=__UpperCamelCase, streaming=__UpperCamelCase, num_proc=__UpperCamelCase, **__UpperCamelCase, )
lowercase__ = Generator(
cache_dir=__UpperCamelCase, features=__UpperCamelCase, generator=__UpperCamelCase, gen_kwargs=__UpperCamelCase, **__UpperCamelCase, )
def lowercase__ ( self : str ):
'''simple docstring'''
# Build iterable dataset
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split='''train''' )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=__UpperCamelCase, download_mode=__UpperCamelCase, verification_mode=__UpperCamelCase, base_path=__UpperCamelCase, num_proc=self.num_proc, )
lowercase__ = self.builder.as_dataset(
split='''train''', verification_mode=__UpperCamelCase, in_memory=self.keep_in_memory )
return dataset
| 715 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ):
'''simple docstring'''
lowercase__ = size if size is not None else {'''shortest_edge''': 20}
lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = min_resolution
lowercase__ = max_resolution
lowercase__ = do_resize
lowercase__ = size
lowercase__ = do_center_crop
lowercase__ = crop_size
def lowercase__ ( self : Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} )
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase__ ( self : Any ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, Image.Image )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, np.ndarray )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, torch.Tensor )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
| 671 | 0 |
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
A__ : Union[str, Any] = False
A__ : int = logging.get_logger(__name__)
A__ : Optional[int] = 'ybelkada/fonts'
def a ( ):
'''simple docstring'''
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """
'''Pix2StructImageProcessor. Please upgrade torch.''' )
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
requires_backends(_UpperCamelCase , ['''torch'''] )
_check_torch_version()
lowercase__ = image_tensor.unsqueeze(0 )
lowercase__ = torch.nn.functional.unfold(_UpperCamelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) )
lowercase__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _UpperCamelCase , _UpperCamelCase , -1 )
lowercase__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def a ( lowerCamelCase_ , lowerCamelCase_ = 36 , lowerCamelCase_ = "black" , lowerCamelCase_ = "white" , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = None , lowerCamelCase_ = None , ):
'''simple docstring'''
requires_backends(_UpperCamelCase , '''vision''' )
# Add new lines so that each line is no more than 80 characters.
lowercase__ = textwrap.TextWrapper(width=80 )
lowercase__ = wrapper.wrap(text=_UpperCamelCase )
lowercase__ = '''\n'''.join(_UpperCamelCase )
if font_bytes is not None and font_path is None:
lowercase__ = io.BytesIO(_UpperCamelCase )
elif font_path is not None:
lowercase__ = font_path
else:
lowercase__ = hf_hub_download(_UpperCamelCase , '''Arial.TTF''' )
lowercase__ = ImageFont.truetype(_UpperCamelCase , encoding='''UTF-8''' , size=_UpperCamelCase )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
lowercase__ = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , _UpperCamelCase ) )
lowercase__ , lowercase__ , lowercase__ , lowercase__ = temp_draw.textbbox((0, 0) , _UpperCamelCase , _UpperCamelCase )
# Create the actual image with a bit of padding around the text.
lowercase__ = text_width + left_padding + right_padding
lowercase__ = text_height + top_padding + bottom_padding
lowercase__ = Image.new('''RGB''' , (image_width, image_height) , _UpperCamelCase )
lowercase__ = ImageDraw.Draw(_UpperCamelCase )
draw.text(xy=(left_padding, top_padding) , text=_UpperCamelCase , fill=_UpperCamelCase , font=_UpperCamelCase )
return image
def a ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
requires_backends(_UpperCamelCase , '''vision''' )
# Convert to PIL image if necessary
lowercase__ = to_pil_image(_UpperCamelCase )
lowercase__ = render_text(_UpperCamelCase , **_UpperCamelCase )
lowercase__ = max(header_image.width , image.width )
lowercase__ = int(image.height * (new_width / image.width) )
lowercase__ = int(header_image.height * (new_width / header_image.width) )
lowercase__ = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
lowercase__ = to_numpy_array(_UpperCamelCase )
if infer_channel_dimension_format(_UpperCamelCase ) == ChannelDimension.LAST:
lowercase__ = to_channel_dimension_format(_UpperCamelCase , ChannelDimension.LAST )
return new_image
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""flattened_patches"""]
def __init__( self : str, lowerCamelCase : List[Any] = True, lowerCamelCase : Tuple = True, lowerCamelCase : Any = None, lowerCamelCase : Optional[Any] = 2_048, lowerCamelCase : Optional[Any] = False, **lowerCamelCase : Optional[Any], ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
lowercase__ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
lowercase__ = do_normalize
lowercase__ = do_convert_rgb
lowercase__ = max_patches
lowercase__ = is_vqa
def lowercase__ ( self : Any, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(self.extract_flattened_patches, '''torch''' )
_check_torch_version()
# convert to torch
lowercase__ = to_channel_dimension_format(lowerCamelCase, ChannelDimension.FIRST )
lowercase__ = torch.from_numpy(lowerCamelCase )
lowercase__ , lowercase__ = patch_size['''height'''], patch_size['''width''']
lowercase__ , lowercase__ = get_image_size(lowerCamelCase )
# maximize scale s.t.
lowercase__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
lowercase__ = max(min(math.floor(scale * image_height / patch_height ), lowerCamelCase ), 1 )
lowercase__ = max(min(math.floor(scale * image_width / patch_width ), lowerCamelCase ), 1 )
lowercase__ = max(num_feasible_rows * patch_height, 1 )
lowercase__ = max(num_feasible_cols * patch_width, 1 )
lowercase__ = torch.nn.functional.interpolate(
image.unsqueeze(0 ), size=(resized_height, resized_width), mode='''bilinear''', align_corners=lowerCamelCase, antialias=lowerCamelCase, ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
lowercase__ = torch_extract_patches(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = patches.shape
lowercase__ = patches_shape[1]
lowercase__ = patches_shape[2]
lowercase__ = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
lowercase__ = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
lowercase__ = torch.arange(lowerCamelCase ).reshape([rows, 1] ).repeat(1, lowerCamelCase ).reshape([rows * columns, 1] )
lowercase__ = torch.arange(lowerCamelCase ).reshape([1, columns] ).repeat(lowerCamelCase, 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
lowercase__ = row_ids.to(torch.floataa )
lowercase__ = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
lowercase__ = torch.cat([row_ids, col_ids, patches], -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
lowercase__ = torch.nn.functional.pad(lowerCamelCase, [0, 0, 0, max_patches - (rows * columns)] ).float()
lowercase__ = to_numpy_array(lowerCamelCase )
return result
def lowercase__ ( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any] = None, **lowerCamelCase : Dict ):
'''simple docstring'''
if image.dtype == np.uinta:
lowercase__ = image.astype(np.floataa )
# take mean across the whole `image`
lowercase__ = np.mean(lowerCamelCase )
lowercase__ = np.std(lowerCamelCase )
lowercase__ = max(lowerCamelCase, 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, **lowerCamelCase )
def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any] = None, lowerCamelCase : Union[str, Any] = None, lowerCamelCase : Dict = None, lowerCamelCase : Optional[Any] = None, lowerCamelCase : Optional[Any] = None, lowerCamelCase : List[str] = None, lowerCamelCase : Dict = ChannelDimension.FIRST, **lowerCamelCase : Tuple, ):
'''simple docstring'''
lowercase__ = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowercase__ = patch_size if patch_size is not None else self.patch_size
lowercase__ = max_patches if max_patches is not None else self.max_patches
lowercase__ = self.is_vqa
if kwargs.get('''data_format''', lowerCamelCase ) is not None:
raise ValueError('''data_format is not an accepted input as the outputs are ''' )
lowercase__ = make_list_of_images(lowerCamelCase )
if not valid_images(lowerCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowercase__ = [convert_to_rgb(lowerCamelCase ) for image in images]
# All transformations expect numpy arrays.
lowercase__ = [to_numpy_array(lowerCamelCase ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError('''A header text must be provided for VQA models.''' )
lowercase__ = kwargs.pop('''font_bytes''', lowerCamelCase )
lowercase__ = kwargs.pop('''font_path''', lowerCamelCase )
if isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = [header_text] * len(lowerCamelCase )
lowercase__ = [
render_header(lowerCamelCase, header_text[i], font_bytes=lowerCamelCase, font_path=lowerCamelCase )
for i, image in enumerate(lowerCamelCase )
]
if do_normalize:
lowercase__ = [self.normalize(image=lowerCamelCase ) for image in images]
# convert to torch tensor and permute
lowercase__ = [
self.extract_flattened_patches(image=lowerCamelCase, max_patches=lowerCamelCase, patch_size=lowerCamelCase )
for image in images
]
# create attention mask in numpy
lowercase__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
lowercase__ = BatchFeature(
data={'''flattened_patches''': images, '''attention_mask''': attention_masks}, tensor_type=lowerCamelCase )
return encoded_outputs
| 716 |
import argparse
import os
import re
A__ : Optional[int] = 'src/transformers'
# Pattern that looks at the indentation in a line.
A__ : Union[str, Any] = re.compile(r'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
A__ : List[str] = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
A__ : int = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A__ : Tuple = re.compile(r'\[([^\]]+)\]')
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = _re_indent.search(lowerCamelCase_ )
return "" if search is None else search.groups()[0]
def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(lowerCamelCase_ ):
index += 1
lowercase__ = ['''\n'''.join(lines[:index] )]
else:
lowercase__ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ = [lines[index]]
index += 1
while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(lowerCamelCase_ ) )
if index < len(lowerCamelCase_ ) - 1:
lowercase__ = [lines[index + 1]]
index += 1
else:
lowercase__ = []
else:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
lowercase__ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCamelCase_ ) > 0:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCamelCase_ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def a ( lowerCamelCase_ ):
'''simple docstring'''
def _inner(lowerCamelCase_ ):
return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' )
return _inner
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(lowerCamelCase_ ):
return x
if key is None:
lowercase__ = noop
# Constants are all uppercase, they go first.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()]
lowercase__ = ignore_underscore(lowerCamelCase_ )
return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(lowerCamelCase_ ):
lowercase__ = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]"
lowercase__ = import_statement.split('''\n''' )
if len(lowerCamelCase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ = 2 if lines[1].strip() == '''[''' else 1
lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )
lowercase__ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCamelCase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase__ = _re_bracket_content.sub(_replace , lines[1] )
else:
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] )
return "\n".join(lowerCamelCase_ )
else:
# Finally we have to deal with imports fitting on one line
lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ )
return import_statement
def a ( lowerCamelCase_ , lowerCamelCase_=True ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding='''utf-8''' ) as f:
lowercase__ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ = split_code_in_indented_blocks(
lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ = main_blocks[block_idx]
lowercase__ = block.split('''\n''' )
# Get to the start of the imports.
lowercase__ = 0
while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ = len(lowerCamelCase_ )
else:
line_idx += 1
if line_idx >= len(lowerCamelCase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ = '''\n'''.join(block_lines[line_idx:-1] )
lowercase__ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None]
lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ = 0
lowercase__ = []
for i in range(len(lowerCamelCase_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowerCamelCase_ )
count += 1
# And we put our main block back together with its first and last line.
lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCamelCase_ ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(lowerCamelCase_ ) )
def a ( lowerCamelCase_=True ):
'''simple docstring'''
lowercase__ = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ )
if result:
lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )]
if len(lowerCamelCase_ ) > 0:
raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
A__ : int = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 671 | 0 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
A__ : str = logging.get_logger(__name__)
class _UpperCAmelCase ( __UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Tuple, *lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[int] ):
'''simple docstring'''
warnings.warn(
'''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use CLIPImageProcessor instead.''', lowerCamelCase, )
super().__init__(*lowerCamelCase, **lowerCamelCase )
| 717 |
from math import sqrt
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
lowercase__ = True
# 0 and 1 are none primes.
if number <= 1:
lowercase__ = False
for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowercase__ = False
break
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool"
return status
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowercase__ = list(range(2 , n + 1 ) )
lowercase__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase_ ) ):
for j in range(i + 1 , len(lowerCamelCase_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowercase__ = 0
# filters actual prime numbers.
lowercase__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
lowercase__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(lowerCamelCase_ ):
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0"
lowercase__ = [] # this list will be returns of the function.
# potential prime number factors.
lowercase__ = 2
lowercase__ = number
if number == 0 or number == 1:
ans.append(lowerCamelCase_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase_ ):
while quotient != 1:
if is_prime(lowerCamelCase_ ) and (quotient % factor == 0):
ans.append(lowerCamelCase_ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = max(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = min(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 == 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 != 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ )
), "'number' must been an int, even and > 2"
lowercase__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowercase__ = get_prime_numbers(lowerCamelCase_ )
lowercase__ = len(lowerCamelCase_ )
# run variable for while-loops.
lowercase__ = 0
lowercase__ = None
# exit variable. for break up the loops
lowercase__ = True
while i < len_pn and loop:
lowercase__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowercase__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (len(lowerCamelCase_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 0
while numbera != 0:
lowercase__ = numbera % numbera
lowercase__ = numbera
lowercase__ = rest
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = prime_factorization(lowerCamelCase_ )
elif numbera == 1 or numbera == 1:
lowercase__ = []
lowercase__ = []
lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ )
lowercase__ = 0
lowercase__ = 0
lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ):
ans *= n
else:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int"
lowercase__ = 0
lowercase__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase_ ):
ans += 1
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime(
lowerCamelCase_ ), "'ans' must been a prime number and from type int"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowercase__ = p_number_a + 1 # jump to the next number
lowercase__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase_ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and ans[0] != p_number_a
and ans[len(lowerCamelCase_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1"
lowercase__ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(lowerCamelCase_ )
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number > 1
), "'number' must been an int and >= 1"
lowercase__ = get_divisors(lowerCamelCase_ )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0"
lowercase__ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0"
lowercase__ = 0
lowercase__ = 1
lowercase__ = 1 # this will be return
for _ in range(n - 1 ):
lowercase__ = ans
ans += fiba
lowercase__ = tmp
return ans
| 671 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : Optional[int] = logging.get_logger(__name__)
A__ : Optional[int] = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class _UpperCAmelCase ( __lowerCAmelCase ):
"""simple docstring"""
lowercase__ = "xlm-roberta-xl"
def __init__( self : int, lowerCamelCase : str=250_880, lowerCamelCase : Optional[Any]=2_560, lowerCamelCase : str=36, lowerCamelCase : List[Any]=32, lowerCamelCase : Union[str, Any]=10_240, lowerCamelCase : List[Any]="gelu", lowerCamelCase : Any=0.1, lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]=514, lowerCamelCase : int=1, lowerCamelCase : Dict=0.02, lowerCamelCase : int=1E-05, lowerCamelCase : Any=1, lowerCamelCase : Union[str, Any]=0, lowerCamelCase : Optional[Any]=2, lowerCamelCase : Optional[Any]="absolute", lowerCamelCase : Any=True, lowerCamelCase : int=None, **lowerCamelCase : Union[str, Any], ):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = classifier_dropout
class _UpperCAmelCase ( __lowerCAmelCase ):
"""simple docstring"""
@property
def lowercase__ ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase__ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 718 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = args.log_outputs
lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
lowercase__ = load_metric('''wer''' )
lowercase__ = load_metric('''cer''' )
# compute metrics
lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}"""
print(lowerCamelCase_ )
with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowerCamelCase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
lowercase__ = F"""log_{dataset_id}_predictions.txt"""
lowercase__ = F"""log_{dataset_id}_targets.txt"""
with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowerCamelCase_ , lowerCamelCase_ ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) )
return text
def a ( lowerCamelCase_ ):
'''simple docstring'''
# load dataset
lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id )
lowercase__ = feature_extractor.sampling_rate
# resample audio
lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) )
# load eval pipeline
if args.device is None:
lowercase__ = 0 if torch.cuda.is_available() else -1
lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowerCamelCase_ ):
lowercase__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
lowercase__ = prediction['''text''']
lowercase__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
A__ : Union[str, Any] = parser.parse_args()
main(args)
| 671 | 0 |
from typing import List
import numpy as np
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = {key: len(snake_case_ ) for key, value in gen_kwargs.items() if isinstance(snake_case_ , snake_case_ )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
'''Sharding is ambiguous for this dataset: '''
+ '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n'''
+ '''\n'''.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() )
+ '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, '''
+ '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.'''
) )
lowercase__ = max(lists_lengths.values() , default=0 )
return max(1 , snake_case_ )
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
for group_idx in range(snake_case_ ):
lowercase__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
lowercase__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
lowercase__ = range(snake_case_ , start + num_shards_to_add )
shards_indices_per_group.append(snake_case_ )
return shards_indices_per_group
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = _number_of_shards_in_gen_kwargs(snake_case_ )
if num_shards == 1:
return [dict(snake_case_ )]
else:
lowercase__ = _distribute_shards(num_shards=snake_case_ , max_num_jobs=snake_case_ )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(snake_case_ , snake_case_ )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(snake_case_ ) )
]
def a ( lowerCamelCase_ ):
'''simple docstring'''
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , snake_case_ )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = {len(snake_case_ ) for value in gen_kwargs.values() if isinstance(snake_case_ , snake_case_ )}
lowercase__ = {}
for size in list_sizes:
lowercase__ = list(range(snake_case_ ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
lowercase__ = dict(snake_case_ )
for key, value in shuffled_kwargs.items():
if isinstance(snake_case_ , snake_case_ ):
lowercase__ = [value[i] for i in indices_per_size[len(snake_case_ )]]
return shuffled_kwargs
| 719 |
from functools import reduce
A__ : Union[str, Any] = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def a ( lowerCamelCase_ = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) )
for i in range(len(lowerCamelCase_ ) - 12 ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _UpperCAmelCase ( lowercase_ ,lowercase_ ,lowercase_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[str] = False, ):
'''simple docstring'''
super().__init__()
lowercase__ = nn.Embedding(lowerCamelCase, lowerCamelCase )
lowercase__ = nn.Embedding(lowerCamelCase, lowerCamelCase )
lowercase__ = False
lowercase__ = nn.Dropout(p=lowerCamelCase )
lowercase__ = TaConfig(
vocab_size=lowerCamelCase, d_model=lowerCamelCase, num_heads=lowerCamelCase, d_kv=lowerCamelCase, d_ff=lowerCamelCase, dropout_rate=lowerCamelCase, feed_forward_proj=lowerCamelCase, is_decoder=lowerCamelCase, is_encoder_decoder=lowerCamelCase, )
lowercase__ = nn.ModuleList()
for lyr_num in range(lowerCamelCase ):
lowercase__ = TaBlock(lowerCamelCase )
self.encoders.append(lowerCamelCase )
lowercase__ = TaLayerNorm(lowerCamelCase )
lowercase__ = nn.Dropout(p=lowerCamelCase )
def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowercase__ = self.token_embedder(lowerCamelCase )
lowercase__ = encoder_input_tokens.shape[1]
lowercase__ = torch.arange(lowerCamelCase, device=encoder_input_tokens.device )
x += self.position_encoding(lowerCamelCase )
lowercase__ = self.dropout_pre(lowerCamelCase )
# inverted the attention mask
lowercase__ = encoder_input_tokens.size()
lowercase__ = self.get_extended_attention_mask(lowerCamelCase, lowerCamelCase )
for lyr in self.encoders:
lowercase__ = lyr(lowerCamelCase, lowerCamelCase )[0]
lowercase__ = self.layer_norm(lowerCamelCase )
return self.dropout_post(lowerCamelCase ), encoder_inputs_mask
| 720 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase ( A__ ,A__ ):
"""simple docstring"""
lowercase__ = 1
@register_to_config
def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ):
'''simple docstring'''
# standard deviation of the initial noise distribution
lowercase__ = sigma_max
# setable values
lowercase__ = None
self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
return sample
def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ):
'''simple docstring'''
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase )
def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ):
'''simple docstring'''
lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min
lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(lowerCamelCase, lowerCamelCase )
lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) )
lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ):
'''simple docstring'''
return torch.where(
timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), )
def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
lowercase__ = timestep * torch.ones(
sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
lowercase__ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
lowercase__ = timesteps.to(self.discrete_sigmas.device )
lowercase__ = self.discrete_sigmas[timesteps].to(sample.device )
lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device )
lowercase__ = torch.zeros_like(lowerCamelCase )
lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
lowercase__ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
lowercase__ = diffusion.unsqueeze(-1 )
lowercase__ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
lowercase__ = randn_tensor(
sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype )
lowercase__ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
lowercase__ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
lowercase__ = step_size.unsqueeze(-1 )
lowercase__ = sample + step_size * model_output
lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ):
'''simple docstring'''
# Make sure sigmas and timesteps have the same device and dtype as original_samples
lowercase__ = timesteps.to(original_samples.device )
lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps]
lowercase__ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None]
)
lowercase__ = noise + original_samples
return noisy_samples
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 671 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__ : List[Any] = logging.get_logger(__name__)
A__ : str = {'vocab_file': 'spiece.model'}
A__ : Tuple = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
A__ : Optional[int] = {
'albert-base-v1': 5_12,
'albert-large-v1': 5_12,
'albert-xlarge-v1': 5_12,
'albert-xxlarge-v1': 5_12,
'albert-base-v2': 5_12,
'albert-large-v2': 5_12,
'albert-xlarge-v2': 5_12,
'albert-xxlarge-v2': 5_12,
}
A__ : str = '▁'
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[str], lowerCamelCase : int, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Tuple=False, lowerCamelCase : Tuple="[CLS]", lowerCamelCase : int="[SEP]", lowerCamelCase : Any="<unk>", lowerCamelCase : List[str]="[SEP]", lowerCamelCase : Optional[Any]="<pad>", lowerCamelCase : int="[CLS]", lowerCamelCase : List[str]="[MASK]", lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Optional[int], ):
'''simple docstring'''
lowercase__ = (
AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase, normalized=lowerCamelCase )
if isinstance(lowerCamelCase, lowerCamelCase )
else mask_token
)
lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowerCamelCase, remove_space=lowerCamelCase, keep_accents=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, )
lowercase__ = do_lower_case
lowercase__ = remove_space
lowercase__ = keep_accents
lowercase__ = vocab_file
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCamelCase )
@property
def lowercase__ ( self : Tuple ):
'''simple docstring'''
return len(self.sp_model )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.__dict__.copy()
lowercase__ = None
return state
def __setstate__( self : List[str], lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = d
# for backward compatibility
if not hasattr(self, '''sp_model_kwargs''' ):
lowercase__ = {}
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : str, lowerCamelCase : List[str] ):
'''simple docstring'''
if self.remove_space:
lowercase__ = ''' '''.join(inputs.strip().split() )
else:
lowercase__ = inputs
lowercase__ = outputs.replace('''``''', '''"''' ).replace('''\'\'''', '''"''' )
if not self.keep_accents:
lowercase__ = unicodedata.normalize('''NFKD''', lowerCamelCase )
lowercase__ = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase )] )
if self.do_lower_case:
lowercase__ = outputs.lower()
return outputs
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.preprocess_text(lowerCamelCase )
lowercase__ = self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase )
lowercase__ = []
for piece in pieces:
if len(lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowercase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase, '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowercase__ = cur_pieces[1:]
else:
lowercase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(lowerCamelCase )
else:
new_pieces.append(lowerCamelCase )
return new_pieces
def lowercase__ ( self : Tuple, lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.sp_model.PieceToId(lowerCamelCase )
def lowercase__ ( self : Dict, lowerCamelCase : List[str] ):
'''simple docstring'''
return self.sp_model.IdToPiece(lowerCamelCase )
def lowercase__ ( self : Optional[int], lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = []
lowercase__ = ''''''
lowercase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCamelCase ) + token
lowercase__ = True
lowercase__ = []
else:
current_sub_tokens.append(lowerCamelCase )
lowercase__ = False
out_string += self.sp_model.decode(lowerCamelCase )
return out_string.strip()
def lowercase__ ( self : List[str], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowercase__ ( self : Optional[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase )
if token_ids_a is not None:
return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1]
def lowercase__ ( self : str, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : List[str], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowercase__ = os.path.join(
lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCamelCase, '''wb''' ) as fi:
lowercase__ = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase )
return (out_vocab_file,)
| 721 |
from collections import defaultdict
from math import gcd
def a ( lowerCamelCase_ = 150_0000 ):
'''simple docstring'''
lowercase__ = defaultdict(lowerCamelCase_ )
lowercase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ):
if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1:
continue
lowercase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ : Union[str, Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = ['MBartTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[Any] = ['MBartTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
'MBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'MBartForCausalLM',
'MBartForConditionalGeneration',
'MBartForQuestionAnswering',
'MBartForSequenceClassification',
'MBartModel',
'MBartPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = [
'TFMBartForConditionalGeneration',
'TFMBartModel',
'TFMBartPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Tuple = [
'FlaxMBartForConditionalGeneration',
'FlaxMBartForQuestionAnswering',
'FlaxMBartForSequenceClassification',
'FlaxMBartModel',
'FlaxMBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 700 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
A__ : Dict = logging.get_logger(__name__)
A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A__ : Optional[int] = {
'vocab_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'
),
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'
),
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt',
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'
),
'bert-base-multilingual-cased': (
'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'
),
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-cased': (
'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'
),
},
}
A__ : List[str] = {
'bert-base-uncased': 5_12,
'bert-large-uncased': 5_12,
'bert-base-cased': 5_12,
'bert-large-cased': 5_12,
'bert-base-multilingual-uncased': 5_12,
'bert-base-multilingual-cased': 5_12,
'bert-base-chinese': 5_12,
'bert-base-german-cased': 5_12,
'bert-large-uncased-whole-word-masking': 5_12,
'bert-large-cased-whole-word-masking': 5_12,
'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12,
'bert-large-cased-whole-word-masking-finetuned-squad': 5_12,
'bert-base-cased-finetuned-mrpc': 5_12,
'bert-base-german-dbmdz-cased': 5_12,
'bert-base-german-dbmdz-uncased': 5_12,
'TurkuNLP/bert-base-finnish-cased-v1': 5_12,
'TurkuNLP/bert-base-finnish-uncased-v1': 5_12,
'wietsedv/bert-base-dutch-cased': 5_12,
}
A__ : Optional[int] = {
'bert-base-uncased': {'do_lower_case': True},
'bert-large-uncased': {'do_lower_case': True},
'bert-base-cased': {'do_lower_case': False},
'bert-large-cased': {'do_lower_case': False},
'bert-base-multilingual-uncased': {'do_lower_case': True},
'bert-base-multilingual-cased': {'do_lower_case': False},
'bert-base-chinese': {'do_lower_case': False},
'bert-base-german-cased': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking': {'do_lower_case': True},
'bert-large-cased-whole-word-masking': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True},
'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False},
'bert-base-cased-finetuned-mrpc': {'do_lower_case': False},
'bert-base-german-dbmdz-cased': {'do_lower_case': False},
'bert-base-german-dbmdz-uncased': {'do_lower_case': True},
'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False},
'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True},
'wietsedv/bert-base-dutch-cased': {'do_lower_case': False},
}
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_INIT_CONFIGURATION
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = BertTokenizer
def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, )
lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars
):
lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) )
lowercase__ = do_lower_case
lowercase__ = strip_accents
lowercase__ = tokenize_chinese_chars
lowercase__ = normalizer_class(**lowerCamelCase )
lowercase__ = do_lower_case
def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ):
'''simple docstring'''
lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase )
return tuple(lowerCamelCase )
| 671 | 0 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = (PNDMScheduler,)
lowercase__ = (("""num_inference_steps""", 50),)
def lowercase__ ( self : Any, **lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**lowerCamelCase )
return config
def lowercase__ ( self : List[str], lowerCamelCase : int=0, **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**lowerCamelCase )
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ = scheduler_class.from_pretrained(lowerCamelCase )
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self : int ):
'''simple docstring'''
pass
def lowercase__ ( self : Any, lowerCamelCase : Dict=0, **lowerCamelCase : Dict ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ = scheduler_class.from_pretrained(lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self : List[Any], **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCamelCase )
lowercase__ = scheduler_class(**lowerCamelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
lowercase__ = model(lowerCamelCase, lowerCamelCase )
lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
lowercase__ = model(lowerCamelCase, lowerCamelCase )
lowercase__ = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
return sample
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCamelCase, '''set_timesteps''' ):
scheduler.set_timesteps(lowerCamelCase )
elif num_inference_steps is not None and not hasattr(lowerCamelCase, '''set_timesteps''' ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step_prk(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = scheduler.step_prk(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step_plms(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = scheduler.step_plms(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCamelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCamelCase )
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1 )
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps, torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ), )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCamelCase, beta_end=lowerCamelCase )
def lowercase__ ( self : str ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowerCamelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowerCamelCase )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = 27
for scheduler_class in self.scheduler_classes:
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
lowercase__ = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
def lowercase__ ( self : Tuple ):
'''simple docstring'''
with self.assertRaises(lowerCamelCase ):
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample ).prev_sample
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(lowerCamelCase ) )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.full_loop(prediction_type='''v_prediction''' )
lowercase__ = torch.sum(torch.abs(lowerCamelCase ) )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.01 )
lowercase__ = torch.sum(torch.abs(lowerCamelCase ) )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.01 )
lowercase__ = torch.sum(torch.abs(lowerCamelCase ) )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 701 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 671 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A__ : Optional[int] = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[Any] = ['PerceiverFeatureExtractor']
A__ : Optional[int] = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[str] = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 702 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
A__ : Dict = 50_00_00
A__ , A__ : str = os.path.split(__file__)
A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.map(**lowerCamelCase_ )
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.filter(**lowerCamelCase_ )
def a ( ):
'''simple docstring'''
lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
lowercase__ = generate_example_dataset(
os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ )
lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ )
def tokenize(lowerCamelCase_ ):
return tokenizer(examples['''text'''] )
lowercase__ = map(lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''numpy''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''pandas''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = filter(lowerCamelCase_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(lowerCamelCase_ , '''wb''' ) as f:
f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 671 | 0 |
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = CustomTokenizer
pass
| 703 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ):
'''simple docstring'''
# Mapping from the first character of the prefix of the node
lowercase__ = {}
# A node will be a leaf if the tree contains its word
lowercase__ = is_leaf
lowercase__ = prefix
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = 0
for q, w in zip(self.prefix, lowerCamelCase ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
lowercase__ = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase )
else:
lowercase__ = self.nodes[word[0]]
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCamelCase )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowercase__ = remaining_prefix
lowercase__ = self.nodes[matching_string[0]]
lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase )
lowercase__ = aux_node
if remaining_word == "":
lowercase__ = True
else:
self.nodes[matching_string[0]].insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCamelCase )
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCamelCase )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowercase__ = list(self.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
self.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowercase__ = False
# If there is 1 edge, we merge it with its child
else:
lowercase__ = list(incoming_node.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
return True
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ):
'''simple docstring'''
if self.prefix != "":
print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def a ( ):
'''simple docstring'''
lowercase__ = '''banana bananas bandana band apple all beast'''.split()
lowercase__ = RadixNode()
root.insert_many(lowerCamelCase_ )
assert all(root.find(lowerCamelCase_ ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def a ( ):
'''simple docstring'''
assert test_trie()
def a ( ):
'''simple docstring'''
lowercase__ = RadixNode()
lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(lowerCamelCase_ )
print('''Words:''' , lowerCamelCase_ )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 671 | 0 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = (DPMSolverSinglestepScheduler,)
lowercase__ = (("""num_inference_steps""", 25),)
def lowercase__ ( self : List[Any], **lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
'''sample_max_value''': 1.0,
'''algorithm_type''': '''dpmsolver++''',
'''solver_type''': '''midpoint''',
'''lambda_min_clipped''': -float('''inf''' ),
'''variance_type''': None,
}
config.update(**lowerCamelCase )
return config
def lowercase__ ( self : str, lowerCamelCase : str=0, **lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**lowerCamelCase )
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ = scheduler_class.from_pretrained(lowerCamelCase )
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase__ , lowercase__ = sample, sample
for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1 ):
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
pass
def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int]=0, **lowerCamelCase : Dict ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ = scheduler_class.from_pretrained(lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str]=None, **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
if scheduler is None:
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCamelCase )
lowercase__ = scheduler_class(**lowerCamelCase )
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCamelCase )
lowercase__ = scheduler_class(**lowerCamelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(lowerCamelCase, lowerCamelCase )
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
return sample
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
lowercase__ = 50
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
lowercase__ = model(lowerCamelCase, lowerCamelCase )
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2574 ) < 1E-3
def lowercase__ ( self : Tuple ):
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCamelCase )
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
lowercase__ = self.full_loop(scheduler=lowerCamelCase )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
lowercase__ = DEISMultistepScheduler.from_config(scheduler.config )
lowercase__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowercase__ = UniPCMultistepScheduler.from_config(scheduler.config )
lowercase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowercase__ = self.full_loop(scheduler=lowerCamelCase )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
self.check_over_configs(thresholding=lowerCamelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, algorithm_type='''dpmsolver++''', solver_order=lowerCamelCase, solver_type=lowerCamelCase, )
def lowercase__ ( self : Dict ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, )
lowercase__ = self.full_loop(
solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, )
assert not torch.isnan(lowerCamelCase ).any(), "Samples have nan numbers"
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
self.check_over_configs(lower_order_final=lowerCamelCase )
self.check_over_configs(lower_order_final=lowerCamelCase )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float('''inf''' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def lowercase__ ( self : Any ):
'''simple docstring'''
self.check_over_configs(variance_type=lowerCamelCase )
self.check_over_configs(variance_type='''learned_range''' )
def lowercase__ ( self : Dict ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]:
self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0 )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.full_loop(use_karras_sigmas=lowerCamelCase )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2248 ) < 1E-3
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.full_loop(prediction_type='''v_prediction''' )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.1453 ) < 1E-3
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.full_loop(prediction_type='''v_prediction''', use_karras_sigmas=lowerCamelCase )
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.0649 ) < 1E-3
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0 )
lowercase__ = scheduler_class(**lowerCamelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(lowerCamelCase, lowerCamelCase )
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
assert sample.dtype == torch.floataa
| 704 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
lowercase__ = ViTImageProcessor if is_vision_available() else None
@property
def lowercase__ ( self : List[str] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = (3, 32, 128)
lowercase__ = tempfile.mkdtemp()
# fmt: off
lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCamelCase ) + '''\n''' )
lowercase__ = {
'''do_normalize''': False,
'''do_resize''': True,
'''image_processor_type''': '''ViTImageProcessor''',
'''resample''': 3,
'''size''': {'''height''': 32, '''width''': 128},
}
lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase )
with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp:
json.dump(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )
lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) )
return image_input
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' )
lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 )
lowercase__ = MgpstrProcessor.from_pretrained(
self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = self.prepare_image_inputs()
lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' )
lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = processor(text=lowerCamelCase )
lowercase__ = tokenizer(lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key] )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase ):
processor()
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ = processor.char_decode(lowerCamelCase )
lowercase__ = tokenizer.batch_decode(lowerCamelCase )
lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok]
self.assertListEqual(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = None
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = torch.randn(1, 27, 38 )
lowercase__ = torch.randn(1, 27, 50_257 )
lowercase__ = torch.randn(1, 27, 30_522 )
lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
| 671 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
A__ : Optional[int] = random.Random()
def a ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None ):
'''simple docstring'''
if rng is None:
lowercase__ = global_rng
lowercase__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int, lowerCamelCase : List[str], lowerCamelCase : Dict=7, lowerCamelCase : Dict=400, lowerCamelCase : Dict=2_000, lowerCamelCase : Optional[int]=1, lowerCamelCase : Tuple=0.0, lowerCamelCase : Tuple=16_000, lowerCamelCase : Optional[int]=True, lowerCamelCase : List[Any]=80, lowerCamelCase : str=16, lowerCamelCase : List[Any]=64, lowerCamelCase : List[Any]="hann_window", lowerCamelCase : Any=80, lowerCamelCase : List[Any]=7_600, lowerCamelCase : Any=1E-10, lowerCamelCase : Any=True, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = min_seq_length
lowercase__ = max_seq_length
lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowercase__ = feature_size
lowercase__ = padding_value
lowercase__ = sampling_rate
lowercase__ = do_normalize
lowercase__ = num_mel_bins
lowercase__ = hop_length
lowercase__ = win_length
lowercase__ = win_function
lowercase__ = fmin
lowercase__ = fmax
lowercase__ = mel_floor
lowercase__ = return_attention_mask
def lowercase__ ( self : Dict ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def lowercase__ ( self : List[str], lowerCamelCase : Dict=False, lowerCamelCase : Union[str, Any]=False ):
'''simple docstring'''
def _flatten(lowerCamelCase : List[str] ):
return list(itertools.chain(*lowerCamelCase ) )
if equal_length:
lowercase__ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
lowercase__ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
lowercase__ = [np.asarray(lowerCamelCase ) for x in speech_inputs]
return speech_inputs
def lowercase__ ( self : Dict, lowerCamelCase : List[Any]=False, lowerCamelCase : Optional[Any]=False ):
'''simple docstring'''
if equal_length:
lowercase__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowercase__ = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
lowercase__ = [np.asarray(lowerCamelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = SpeechTaFeatureExtractor
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = SpeechTaFeatureExtractionTester(self )
def lowercase__ ( self : Tuple, lowerCamelCase : List[Any] ):
'''simple docstring'''
self.assertTrue(np.all(np.mean(lowerCamelCase, axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowerCamelCase, axis=0 ) - 1 ) < 1E-3 ) )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
lowercase__ = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs]
# Test not batched input
lowercase__ = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values
lowercase__ = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) )
# Test batched
lowercase__ = feat_extract(lowerCamelCase, return_tensors='''np''' ).input_values
lowercase__ = feat_extract(lowerCamelCase, return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ):
self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) )
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
lowercase__ = ['''longest''', '''max_length''', '''do_not_pad''']
lowercase__ = [None, 1_600, None]
for max_length, padding in zip(lowerCamelCase, lowerCamelCase ):
lowercase__ = feat_extract(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors='''np''' )
lowercase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ = range(800, 1_400, 200 )
lowercase__ = [floats_list((1, x) )[0] for x in lengths]
lowercase__ = ['''longest''', '''max_length''', '''do_not_pad''']
lowercase__ = [None, 1_600, None]
for max_length, padding in zip(lowerCamelCase, lowerCamelCase ):
lowercase__ = feat_extract(lowerCamelCase, max_length=lowerCamelCase, padding=lowerCamelCase )
lowercase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
lowercase__ = feat_extract(
lowerCamelCase, truncation=lowerCamelCase, max_length=1_000, padding='''max_length''', return_tensors='''np''' )
lowercase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
lowercase__ = feat_extract(
lowerCamelCase, truncation=lowerCamelCase, max_length=1_000, padding='''longest''', return_tensors='''np''' )
lowercase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
lowercase__ = feat_extract(
lowerCamelCase, truncation=lowerCamelCase, max_length=2_000, padding='''longest''', return_tensors='''np''' )
lowercase__ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ = np.random.rand(100 ).astype(np.floataa )
lowercase__ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
lowercase__ = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
lowercase__ = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
lowercase__ = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs]
# Test feature size
lowercase__ = feature_extractor(audio_target=lowerCamelCase, padding=lowerCamelCase, return_tensors='''np''' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
lowercase__ = feature_extractor(speech_inputs[0], return_tensors='''np''' ).input_values
lowercase__ = feature_extractor(np_speech_inputs[0], return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) )
# Test batched
lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values
lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ):
self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
lowercase__ = np.asarray(lowerCamelCase )
lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values
lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase, lowerCamelCase ):
self.assertTrue(np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict )
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase, processed_features[input_name] ) ) )
lowercase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase )
lowercase__ = BatchFeature({input_name: speech_inputs}, tensor_type='''np''' )
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase )
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict )
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs}, tensor_type='''pt''' )
lowercase__ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowercase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict )
lowercase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} )
lowercase__ = feat_extract.num_mel_bins # hack!
lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''np''' )[input_name]
lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCamelCase )
lowercase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowercase__ = [len(lowerCamelCase ) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} )
lowercase__ = feat_extract.num_mel_bins # hack!
lowercase__ = feat_extract.pad(lowerCamelCase, padding='''longest''', return_tensors='''np''' )
self.assertIn('''attention_mask''', lowerCamelCase )
self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.feat_extract_dict
lowercase__ = True
lowercase__ = self.feature_extraction_class(**lowerCamelCase )
lowercase__ = self.feat_extract_tester.prepare_inputs_for_target()
lowercase__ = [len(lowerCamelCase ) for x in speech_inputs]
lowercase__ = feat_extract.model_input_names[0]
lowercase__ = BatchFeature({input_name: speech_inputs} )
lowercase__ = min(lowerCamelCase )
lowercase__ = feat_extract.num_mel_bins # hack!
lowercase__ = feat_extract.pad(
lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''np''' )
self.assertIn('''attention_mask''', lowerCamelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] )
def lowercase__ ( self : str, lowerCamelCase : Any ):
'''simple docstring'''
from datasets import load_dataset
lowercase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' )
# automatic decoding with librispeech
lowercase__ = ds.sort('''id''' ).select(range(lowerCamelCase ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = torch.tensor(
[2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03,
3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03,
2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04,
4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03,
7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04,
4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] )
# fmt: on
lowercase__ = self._load_datasamples(1 )
lowercase__ = SpeechTaFeatureExtractor()
lowercase__ = feature_extractor(lowerCamelCase, return_tensors='''pt''' ).input_values
self.assertEquals(input_values.shape, (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30], lowerCamelCase, atol=1E-6 ) )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
lowercase__ = self._load_datasamples(1 )
lowercase__ = SpeechTaFeatureExtractor()
lowercase__ = feature_extractor(audio_target=lowerCamelCase, return_tensors='''pt''' ).input_values
self.assertEquals(input_values.shape, (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30], lowerCamelCase, atol=1E-4 ) )
| 705 |
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
if exponent == 1:
return base
if exponent % 2 == 0:
lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value
def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ):
'''simple docstring'''
lowercase__ = base
for _ in range(1 , lowerCamelCase_ ):
lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits )
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
# This gives ~3MB in total for all files.
#
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
#
#
# It will be used then as "stas/tiny-wmt19-en-de"
# Build
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
A__ : Any = 'facebook/wmt19-en-de'
A__ : Union[str, Any] = FSMTTokenizer.from_pretrained(mname)
# get the correct vocab sizes, etc. from the master model
A__ : Optional[int] = FSMTConfig.from_pretrained(mname)
config.update(
dict(
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
)
A__ : str = FSMTForConditionalGeneration(config)
print(F"num of params {tiny_model.num_parameters()}")
# Test
A__ : int = tokenizer(['Making tiny model'], return_tensors='pt')
A__ : Union[str, Any] = tiny_model(**batch)
print('test output:', len(outputs.logits[0]))
# Save
A__ : str = 'tiny-wmt19-en-de'
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-de
| 706 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ):
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, )
def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
lowercase__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
self.enable_attention_slicing(lowerCamelCase )
@torch.no_grad()
def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ):
'''simple docstring'''
lowercase__ = self.speech_processor.feature_extractor(
lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device )
lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 )
lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[
0
]
if isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = 1
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = len(lowerCamelCase )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(lowerCamelCase )}.""" )
# get prompt text embeddings
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', )
lowercase__ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length]
lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape
lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowercase__ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowercase__ = 42
if negative_prompt is None:
lowercase__ = [''''''] * batch_size
elif type(lowerCamelCase ) is not type(lowerCamelCase ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !="""
F""" {type(lowerCamelCase )}.""" )
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = [negative_prompt]
elif batch_size != len(lowerCamelCase ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
''' the batch size of `prompt`.''' )
else:
lowercase__ = negative_prompt
lowercase__ = text_input_ids.shape[-1]
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', )
lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowercase__ = uncond_embeddings.shape[1]
lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowercase__ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
lowercase__ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to(
self.device )
else:
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
lowercase__ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowerCamelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
lowercase__ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
lowercase__ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowercase__ = {}
if accepts_eta:
lowercase__ = eta
for i, t in enumerate(self.progress_bar(lowerCamelCase ) ):
# expand the latents if we are doing classifier free guidance
lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase )
# predict the noise residual
lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample
# perform guidance
if do_classifier_free_guidance:
lowercase__ , lowercase__ = noise_pred.chunk(2 )
lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = 1 / 0.18215 * latents
lowercase__ = self.vae.decode(lowerCamelCase ).sample
lowercase__ = (image / 2 + 0.5).clamp(0, 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy()
if output_type == "pil":
lowercase__ = self.numpy_to_pil(lowerCamelCase )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
| 671 | 0 |
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
A__ : str = 'hf-internal-testing/tiny-random-bert'
A__ : Optional[int] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert')
A__ : List[str] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6'
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = cached_file(lowerCamelCase, lowerCamelCase )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(lowerCamelCase ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(lowerCamelCase, lowerCamelCase ) ) )
with open(os.path.join(lowerCamelCase, '''refs''', '''main''' ) ) as f:
lowercase__ = f.read()
self.assertEqual(lowerCamelCase, os.path.join(lowerCamelCase, '''snapshots''', lowerCamelCase, lowerCamelCase ) )
self.assertTrue(os.path.isfile(lowerCamelCase ) )
# File is cached at the same place the second time.
lowercase__ = cached_file(lowerCamelCase, lowerCamelCase )
self.assertEqual(lowerCamelCase, lowerCamelCase )
# Using a specific revision to test the full commit hash.
lowercase__ = cached_file(lowerCamelCase, lowerCamelCase, revision='''9b8c223''' )
self.assertEqual(lowerCamelCase, os.path.join(lowerCamelCase, '''snapshots''', lowerCamelCase, lowerCamelCase ) )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
with self.assertRaisesRegex(lowerCamelCase, '''is not a valid model identifier''' ):
lowercase__ = cached_file('''tiny-random-bert''', lowerCamelCase )
with self.assertRaisesRegex(lowerCamelCase, '''is not a valid git identifier''' ):
lowercase__ = cached_file(lowerCamelCase, lowerCamelCase, revision='''aaaa''' )
with self.assertRaisesRegex(lowerCamelCase, '''does not appear to have a file named''' ):
lowercase__ = cached_file(lowerCamelCase, '''conf''' )
def lowercase__ ( self : Any ):
'''simple docstring'''
with self.assertRaisesRegex(lowerCamelCase, '''does not appear to have a file named''' ):
lowercase__ = cached_file(lowerCamelCase, '''conf''' )
with open(os.path.join(lowerCamelCase, '''refs''', '''main''' ) ) as f:
lowercase__ = f.read()
self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase, '''.no_exist''', lowerCamelCase, '''conf''' ) ) )
lowercase__ = cached_file(lowerCamelCase, '''conf''', _raise_exceptions_for_missing_entries=lowerCamelCase )
self.assertIsNone(lowerCamelCase )
lowercase__ = cached_file(lowerCamelCase, '''conf''', local_files_only=lowerCamelCase, _raise_exceptions_for_missing_entries=lowerCamelCase )
self.assertIsNone(lowerCamelCase )
lowercase__ = mock.Mock()
lowercase__ = 500
lowercase__ = {}
lowercase__ = HTTPError
lowercase__ = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''', return_value=lowerCamelCase ) as mock_head:
lowercase__ = cached_file(lowerCamelCase, '''conf''', _raise_exceptions_for_connection_errors=lowerCamelCase )
self.assertIsNone(lowerCamelCase )
# This check we did call the fake head request
mock_head.assert_called()
def lowercase__ ( self : str ):
'''simple docstring'''
self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''', lowerCamelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''', lowerCamelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''', lowerCamelCase ) )
def lowercase__ ( self : str ):
'''simple docstring'''
self.assertIsNone(get_file_from_repo('''bert-base-cased''', '''ahah.txt''' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(lowerCamelCase, '''is not a valid model identifier''' ):
get_file_from_repo('''bert-base-case''', lowerCamelCase )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(lowerCamelCase, '''is not a valid git identifier''' ):
get_file_from_repo('''bert-base-cased''', lowerCamelCase, revision='''ahaha''' )
lowercase__ = get_file_from_repo('''bert-base-cased''', lowerCamelCase )
# The name is the cached name which is not very easy to test, so instead we load the content.
lowercase__ = json.loads(open(lowerCamelCase, '''r''' ).read() )
self.assertEqual(config['''hidden_size'''], 768 )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = Path(lowerCamelCase ) / '''a.txt'''
filename.touch()
self.assertEqual(get_file_from_repo(lowerCamelCase, '''a.txt''' ), str(lowerCamelCase ) )
self.assertIsNone(get_file_from_repo(lowerCamelCase, '''b.txt''' ) ) | 707 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : str, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = [[] for _ in range(lowerCamelCase )]
lowercase__ = size
def __getitem__( self : Optional[Any], lowerCamelCase : int ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def lowercase__ ( self : str ):
'''simple docstring'''
return self._size
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) )
def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = deque([start_vertex] )
lowercase__ = [None] * self.size
lowercase__ = 0
while queue:
lowercase__ = queue.popleft()
lowercase__ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowercase__ = current_distance + edge.weight
lowercase__ = distances[edge.destination_vertex]
if (
isinstance(lowerCamelCase, lowerCamelCase )
and new_distance >= dest_vertex_distance
):
continue
lowercase__ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
import os
A__ : List[str] = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00}
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = 0
while index < len(lowerCamelCase_ ) - 1:
lowercase__ = SYMBOLS[numerals[index]]
lowercase__ = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = ''''''
lowercase__ = num // 1000
numerals += m_count * "M"
num %= 1000
lowercase__ = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
lowercase__ = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def a ( lowerCamelCase_ = "/p089_roman.txt" ):
'''simple docstring'''
lowercase__ = 0
with open(os.path.dirname(lowerCamelCase_ ) + roman_numerals_filename ) as filea:
lowercase__ = filea.readlines()
for line in lines:
lowercase__ = line.strip()
lowercase__ = parse_roman_numerals(lowerCamelCase_ )
lowercase__ = generate_roman_numerals(lowerCamelCase_ )
savings += len(lowerCamelCase_ ) - len(lowerCamelCase_ )
return savings
if __name__ == "__main__":
print(F"{solution() = }") | 708 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
# we need a list not a string, so do something to change the type
lowercase__ = arr.split(''',''' )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = [int(self.array[0] )] * len(self.array )
lowercase__ = [int(self.array[0] )] * len(self.array )
for i in range(1, len(self.array ) ):
lowercase__ = max(
int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) )
lowercase__ = max(sum_value[i], rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
A__ : Dict = input('please input some numbers:')
A__ : Union[str, Any] = SubArray(whole_array)
A__ : int = array.solve_sub_array()
print(('the results is:', re))
| 671 | 0 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""image_processor""", """tokenizer"""]
lowercase__ = """Pix2StructImageProcessor"""
lowercase__ = ("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = False
super().__init__(lowerCamelCase, lowerCamelCase )
def __call__( self : str, lowerCamelCase : str=None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = 2_048, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : Any, ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None and not self.image_processor.is_vqa:
lowercase__ = self.tokenizer
lowercase__ = self.tokenizer(
text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
lowercase__ = self.image_processor(
lowerCamelCase, return_tensors=lowerCamelCase, max_patches=lowerCamelCase, **lowerCamelCase )
else:
# add pixel_values and bbox
lowercase__ = self.image_processor(
lowerCamelCase, return_tensors=lowerCamelCase, max_patches=lowerCamelCase, header_text=lowerCamelCase, **lowerCamelCase )
if text is not None and not self.image_processor.is_vqa:
lowercase__ = self.tokenizer(
text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, )
if "attention_mask" in text_encoding:
lowercase__ = text_encoding.pop('''attention_mask''' )
if "input_ids" in text_encoding:
lowercase__ = text_encoding.pop('''input_ids''' )
else:
lowercase__ = None
if text_encoding is not None:
encoding_image_processor.update(lowerCamelCase )
return encoding_image_processor
def lowercase__ ( self : List[Any], *lowerCamelCase : Optional[int], **lowerCamelCase : List[str] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase )
def lowercase__ ( self : Union[str, Any], *lowerCamelCase : Any, **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase )
@property
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = self.tokenizer.model_input_names
lowercase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 709 |
from itertools import count
def a ( lowerCamelCase_ = 50 ):
'''simple docstring'''
lowercase__ = [1] * min_block_length
for n in count(lowerCamelCase_ ):
fill_count_functions.append(1 )
for block_length in range(lowerCamelCase_ , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 100_0000:
break
return n
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = BarthezTokenizer
lowercase__ = BarthezTokenizerFast
lowercase__ = True
lowercase__ = True
def lowercase__ ( self : int ):
'''simple docstring'''
super().setUp()
lowercase__ = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname, legacy_format=lowerCamelCase )
lowercase__ = tokenizer
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = '''<pad>'''
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ), lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ), lowerCamelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '''<s>''' )
self.assertEqual(vocab_keys[1], '''<pad>''' )
self.assertEqual(vocab_keys[-1], '''<mask>''' )
self.assertEqual(len(lowerCamelCase ), 101_122 )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 101_122 )
@require_torch
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
lowercase__ = [0, 57, 3_018, 70_307, 91, 2]
lowercase__ = self.tokenizer(
lowerCamelCase, max_length=len(lowerCamelCase ), padding=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''' )
self.assertIsInstance(lowerCamelCase, lowerCamelCase )
self.assertEqual((2, 6), batch.input_ids.shape )
self.assertEqual((2, 6), batch.attention_mask.shape )
lowercase__ = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = '''I was born in 92000, and this is falsé.'''
lowercase__ = tokenizer.tokenize(lowerCamelCase )
lowercase__ = rust_tokenizer.tokenize(lowerCamelCase )
self.assertListEqual(lowerCamelCase, lowerCamelCase )
lowercase__ = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase )
lowercase__ = rust_tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase )
self.assertListEqual(lowerCamelCase, lowerCamelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(lowerCamelCase )
lowercase__ = rust_tokenizer.encode(lowerCamelCase )
self.assertListEqual(lowerCamelCase, lowerCamelCase )
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowercase__ = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase, model_name='''moussaKam/mbarthez''', revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''', sequences=lowerCamelCase, )
| 710 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
A__ : Tuple = logging.get_logger(__name__)
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""input_features""", """is_longer"""]
def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, )
lowercase__ = top_db
lowercase__ = truncation
lowercase__ = padding
lowercase__ = fft_window_size
lowercase__ = (fft_window_size >> 1) + 1
lowercase__ = hop_length
lowercase__ = max_length_s
lowercase__ = max_length_s * sampling_rate
lowercase__ = sampling_rate
lowercase__ = frequency_min
lowercase__ = frequency_max
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', )
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ):
'''simple docstring'''
lowercase__ = spectrogram(
lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', )
return log_mel_spectrogram.T
def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
# randomly choose index for each part
lowercase__ = np.random.choice(ranges[0] )
lowercase__ = np.random.choice(ranges[1] )
lowercase__ = np.random.choice(ranges[2] )
lowercase__ = mel[idx_front : idx_front + chunk_frames, :]
lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :]
lowercase__ = mel[idx_back : idx_back + chunk_frames, :]
lowercase__ = torch.tensor(mel[None, None, :] )
lowercase__ = torch.nn.functional.interpolate(
lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase )
lowercase__ = mel_shrink[0][0].numpy()
lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 )
return mel_fusion
def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowercase__ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowercase__ = len(lowerCamelCase ) - max_length
lowercase__ = np.random.randint(0, overflow + 1 )
lowercase__ = waveform[idx : idx + max_length]
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowercase__ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowercase__ = np.stack([mel, mel, mel, mel], axis=0 )
lowercase__ = False
else:
lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = True
else:
raise NotImplementedError(F"""data_truncating {truncation} not implemented""" )
else:
lowercase__ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) )
lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 )
if truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 )
else:
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ):
'''simple docstring'''
lowercase__ = truncation if truncation is not None else self.truncation
lowercase__ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
lowercase__ = is_batched_numpy or (
isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ):
lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa )
elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray(lowerCamelCase )]
# convert to mel spectrogram, truncate and pad if needed.
lowercase__ = [
self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase )
for waveform in raw_speech
]
lowercase__ = []
lowercase__ = []
for mel, longer in padded_inputs:
input_mel.append(lowerCamelCase )
is_longer.append(lowerCamelCase )
if truncation == "fusion" and sum(lowerCamelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowercase__ = np.random.randint(0, len(lowerCamelCase ) )
lowercase__ = True
if isinstance(input_mel[0], lowerCamelCase ):
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowercase__ = [[longer] for longer in is_longer]
lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer}
lowercase__ = BatchFeature(lowerCamelCase )
if return_tensors is not None:
lowercase__ = input_features.convert_to_tensors(lowerCamelCase )
return input_features
| 671 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A__ : Tuple = {
'configuration_chinese_clip': [
'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ChineseCLIPConfig',
'ChineseCLIPOnnxConfig',
'ChineseCLIPTextConfig',
'ChineseCLIPVisionConfig',
],
'processing_chinese_clip': ['ChineseCLIPProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Tuple = ['ChineseCLIPFeatureExtractor']
A__ : List[Any] = ['ChineseCLIPImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = [
'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'ChineseCLIPModel',
'ChineseCLIPPreTrainedModel',
'ChineseCLIPTextModel',
'ChineseCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
A__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 711 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = None
lowercase__ = None
def a ( ):
'''simple docstring'''
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ ):
'''simple docstring'''
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(lowerCamelCase_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 0
return output
def a ( ): # Main function for testing.
'''simple docstring'''
lowercase__ = make_tree()
print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" )
print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" )
print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' )
print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(lowerCamelCase_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(lowerCamelCase_ ) + 1 ):
print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(lowerCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 671 | 0 |
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError('''only integers accepted as input''' )
else:
lowercase__ = str(abs(lowerCamelCase_ ) )
lowercase__ = [list(lowerCamelCase_ ) for char in range(len(lowerCamelCase_ ) )]
for index in range(len(lowerCamelCase_ ) ):
num_transpositions[index].pop(lowerCamelCase_ )
return max(
int(''''''.join(list(lowerCamelCase_ ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('doctest').testmod()
| 712 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = DistilBertTokenizer
lowercase__ = DistilBertTokenizerFast
lowercase__ = True
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 671 | 0 |
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = len(lowerCamelCase_ )
for i in range(n - 1 ):
for j in range(i + 1 , lowerCamelCase_ ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def a ( lowerCamelCase_ ):
'''simple docstring'''
if len(lowerCamelCase_ ) <= 1:
return arr, 0
lowercase__ = len(lowerCamelCase_ ) // 2
lowercase__ = arr[0:mid]
lowercase__ = arr[mid:]
lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ )
lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ )
lowercase__ , lowercase__ = _count_cross_inversions(lowerCamelCase_ , lowerCamelCase_ )
lowercase__ = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
lowercase__ = lowercase__ = lowercase__ = 0
while i < len(lowerCamelCase_ ) and j < len(lowerCamelCase_ ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(lowerCamelCase_ ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(lowerCamelCase_ ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def a ( ):
'''simple docstring'''
lowercase__ = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
lowercase__ = count_inversions_bf(lowerCamelCase_ )
lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ )
assert num_inversions_bf == num_inversions_recursive == 8
print('''number of inversions = ''' , lowerCamelCase_ )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
lowercase__ = count_inversions_bf(lowerCamelCase_ )
lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , lowerCamelCase_ )
# an empty list should also have zero inversions
lowercase__ = []
lowercase__ = count_inversions_bf(lowerCamelCase_ )
lowercase__ , lowercase__ = count_inversions_recursive(lowerCamelCase_ )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 713 |
from __future__ import annotations
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
if resistor <= 0:
lowercase__ = F"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(lowerCamelCase_ )
first_sum += 1 / float(lowerCamelCase_ )
index += 1
return 1 / first_sum
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowercase__ = F"""Resistor at index {index} has a negative value!"""
raise ValueError(lowerCamelCase_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
import math
def a ( lowerCamelCase_ ):
'''simple docstring'''
return math.sqrt(lowerCamelCase_ ) * math.sqrt(lowerCamelCase_ ) == num
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = n
while left <= right:
lowercase__ = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
lowercase__ = mid - 1
else:
lowercase__ = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 714 |
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' )
lowercase__ = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ),
] )
lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ )
return image
def a ( lowerCamelCase_ ):
'''simple docstring'''
if "visual_encoder" in key:
lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ )
if "blocks" in key:
lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ )
if "attn" in key:
lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ )
if "norm1" in key:
lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ )
if "norm2" in key:
lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ )
if "encoder.norm" in key:
lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ )
if "encoder.patch_embed.proj" in key:
lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ )
if "encoder.pos_embed" in key:
lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ )
if "encoder.cls_token" in key:
lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ )
if "self_attn" in key:
lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ )
return key
@torch.no_grad()
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
if config_path is not None:
lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ )
else:
lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval()
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' )
lowercase__ = pt_model.eval()
lowercase__ = pt_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
hf_model.load_state_dict(lowerCamelCase_ )
lowercase__ = 384
lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' )
lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' )
lowercase__ = tokenizer(['''a picture of'''] ).input_ids
lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
lowercase__ = hf_model.generate(lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowerCamelCase_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
lowercase__ = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
vqa_model.eval()
lowercase__ = vqa_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ )
hf_vqa_model.load_state_dict(lowerCamelCase_ )
lowercase__ = ['''How many dogs are in this image?''']
lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids
lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
itm_model.eval()
lowercase__ = itm_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ )
lowercase__ = ['''A picture of a woman with a dog sitting in a beach''']
lowercase__ = tokenizer(
lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(lowerCamelCase_ )
hf_itm_model.eval()
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
assert out[0].item() == 0.21_10_68_74_94_27_79_54
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
A__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
A__ : List[Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 671 | 0 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], lowerCamelCase : Any ):
'''simple docstring'''
lowercase__ = data
lowercase__ = None
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : str ):
'''simple docstring'''
lowercase__ = None
lowercase__ = None
def __iter__( self : Dict ):
'''simple docstring'''
lowercase__ = self.head
while self.head:
yield node.data
lowercase__ = node.next
if node == self.head:
break
def __len__( self : Tuple ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self : List[Any] ):
'''simple docstring'''
return "->".join(str(lowerCamelCase ) for item in iter(self ) )
def lowercase__ ( self : int, lowerCamelCase : Any ):
'''simple docstring'''
self.insert_nth(len(self ), lowerCamelCase )
def lowercase__ ( self : List[Any], lowerCamelCase : Any ):
'''simple docstring'''
self.insert_nth(0, lowerCamelCase )
def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : Any ):
'''simple docstring'''
if index < 0 or index > len(self ):
raise IndexError('''list index out of range.''' )
lowercase__ = Node(lowerCamelCase )
if self.head is None:
lowercase__ = new_node # first node points itself
lowercase__ = lowercase__ = new_node
elif index == 0: # insert at head
lowercase__ = self.head
lowercase__ = lowercase__ = new_node
else:
lowercase__ = self.head
for _ in range(index - 1 ):
lowercase__ = temp.next
lowercase__ = temp.next
lowercase__ = new_node
if index == len(self ) - 1: # insert at tail
lowercase__ = new_node
def lowercase__ ( self : int ):
'''simple docstring'''
return self.delete_nth(0 )
def lowercase__ ( self : Dict ):
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise IndexError('''list index out of range.''' )
lowercase__ = self.head
if self.head == self.tail: # just one node
lowercase__ = lowercase__ = None
elif index == 0: # delete head node
lowercase__ = self.tail.next.next
lowercase__ = self.head.next
else:
lowercase__ = self.head
for _ in range(index - 1 ):
lowercase__ = temp.next
lowercase__ = temp.next
lowercase__ = temp.next.next
if index == len(self ) - 1: # delete at tail
lowercase__ = temp
return delete_node.data
def lowercase__ ( self : Tuple ):
'''simple docstring'''
return len(self ) == 0
def a ( ):
'''simple docstring'''
lowercase__ = CircularLinkedList()
assert len(lowerCamelCase_ ) == 0
assert circular_linked_list.is_empty() is True
assert str(lowerCamelCase_ ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(lowerCamelCase_ ) == i
circular_linked_list.insert_nth(lowerCamelCase_ , i + 1 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ):
'''simple docstring'''
lowercase__ = size if size is not None else {'''shortest_edge''': 20}
lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = min_resolution
lowercase__ = max_resolution
lowercase__ = do_resize
lowercase__ = size
lowercase__ = do_center_crop
lowercase__ = crop_size
def lowercase__ ( self : Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} )
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase__ ( self : Any ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, Image.Image )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, np.ndarray )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, torch.Tensor )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
| 671 | 0 |
def a ( lowerCamelCase_ ):
'''simple docstring'''
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if num == 0:
return "0b0"
lowercase__ = False
if num < 0:
lowercase__ = True
lowercase__ = -num
lowercase__ = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(lowerCamelCase_ ) for e in binary )
return "0b" + "".join(str(lowerCamelCase_ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 716 |
import argparse
import os
import re
A__ : Optional[int] = 'src/transformers'
# Pattern that looks at the indentation in a line.
A__ : Union[str, Any] = re.compile(r'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
A__ : List[str] = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
A__ : int = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A__ : Tuple = re.compile(r'\[([^\]]+)\]')
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = _re_indent.search(lowerCamelCase_ )
return "" if search is None else search.groups()[0]
def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(lowerCamelCase_ ):
index += 1
lowercase__ = ['''\n'''.join(lines[:index] )]
else:
lowercase__ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ = [lines[index]]
index += 1
while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(lowerCamelCase_ ) )
if index < len(lowerCamelCase_ ) - 1:
lowercase__ = [lines[index + 1]]
index += 1
else:
lowercase__ = []
else:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
lowercase__ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCamelCase_ ) > 0:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCamelCase_ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def a ( lowerCamelCase_ ):
'''simple docstring'''
def _inner(lowerCamelCase_ ):
return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' )
return _inner
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(lowerCamelCase_ ):
return x
if key is None:
lowercase__ = noop
# Constants are all uppercase, they go first.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()]
lowercase__ = ignore_underscore(lowerCamelCase_ )
return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(lowerCamelCase_ ):
lowercase__ = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]"
lowercase__ = import_statement.split('''\n''' )
if len(lowerCamelCase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ = 2 if lines[1].strip() == '''[''' else 1
lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )
lowercase__ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCamelCase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase__ = _re_bracket_content.sub(_replace , lines[1] )
else:
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] )
return "\n".join(lowerCamelCase_ )
else:
# Finally we have to deal with imports fitting on one line
lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ )
return import_statement
def a ( lowerCamelCase_ , lowerCamelCase_=True ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding='''utf-8''' ) as f:
lowercase__ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ = split_code_in_indented_blocks(
lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ = main_blocks[block_idx]
lowercase__ = block.split('''\n''' )
# Get to the start of the imports.
lowercase__ = 0
while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ = len(lowerCamelCase_ )
else:
line_idx += 1
if line_idx >= len(lowerCamelCase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ = '''\n'''.join(block_lines[line_idx:-1] )
lowercase__ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None]
lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ = 0
lowercase__ = []
for i in range(len(lowerCamelCase_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowerCamelCase_ )
count += 1
# And we put our main block back together with its first and last line.
lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCamelCase_ ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(lowerCamelCase_ ) )
def a ( lowerCamelCase_=True ):
'''simple docstring'''
lowercase__ = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ )
if result:
lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )]
if len(lowerCamelCase_ ) > 0:
raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
A__ : int = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 671 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
A__ : Optional[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = """yolos"""
def __init__( self : Any, lowerCamelCase : Tuple=768, lowerCamelCase : Optional[Any]=12, lowerCamelCase : Any=12, lowerCamelCase : Any=3_072, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[Any]=0.0, lowerCamelCase : List[str]=0.0, lowerCamelCase : List[Any]=0.02, lowerCamelCase : str=1E-12, lowerCamelCase : List[Any]=[512, 864], lowerCamelCase : Any=16, lowerCamelCase : List[str]=3, lowerCamelCase : int=True, lowerCamelCase : Optional[int]=100, lowerCamelCase : Optional[int]=True, lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[Any]=1, lowerCamelCase : List[str]=5, lowerCamelCase : List[Any]=2, lowerCamelCase : List[Any]=5, lowerCamelCase : Any=2, lowerCamelCase : Dict=0.1, **lowerCamelCase : int, ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = qkv_bias
lowercase__ = num_detection_tokens
lowercase__ = use_mid_position_embeddings
lowercase__ = auxiliary_loss
# Hungarian matcher
lowercase__ = class_cost
lowercase__ = bbox_cost
lowercase__ = giou_cost
# Loss coefficients
lowercase__ = bbox_loss_coefficient
lowercase__ = giou_loss_coefficient
lowercase__ = eos_coefficient
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = version.parse("""1.11""" )
@property
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def lowercase__ ( self : Any ):
'''simple docstring'''
return 1E-4
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return 12
| 717 |
from math import sqrt
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
lowercase__ = True
# 0 and 1 are none primes.
if number <= 1:
lowercase__ = False
for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowercase__ = False
break
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool"
return status
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowercase__ = list(range(2 , n + 1 ) )
lowercase__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase_ ) ):
for j in range(i + 1 , len(lowerCamelCase_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowercase__ = 0
# filters actual prime numbers.
lowercase__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
lowercase__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(lowerCamelCase_ ):
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0"
lowercase__ = [] # this list will be returns of the function.
# potential prime number factors.
lowercase__ = 2
lowercase__ = number
if number == 0 or number == 1:
ans.append(lowerCamelCase_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase_ ):
while quotient != 1:
if is_prime(lowerCamelCase_ ) and (quotient % factor == 0):
ans.append(lowerCamelCase_ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = max(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = min(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 == 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 != 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ )
), "'number' must been an int, even and > 2"
lowercase__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowercase__ = get_prime_numbers(lowerCamelCase_ )
lowercase__ = len(lowerCamelCase_ )
# run variable for while-loops.
lowercase__ = 0
lowercase__ = None
# exit variable. for break up the loops
lowercase__ = True
while i < len_pn and loop:
lowercase__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowercase__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (len(lowerCamelCase_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 0
while numbera != 0:
lowercase__ = numbera % numbera
lowercase__ = numbera
lowercase__ = rest
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = prime_factorization(lowerCamelCase_ )
elif numbera == 1 or numbera == 1:
lowercase__ = []
lowercase__ = []
lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ )
lowercase__ = 0
lowercase__ = 0
lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ):
ans *= n
else:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int"
lowercase__ = 0
lowercase__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase_ ):
ans += 1
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime(
lowerCamelCase_ ), "'ans' must been a prime number and from type int"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowercase__ = p_number_a + 1 # jump to the next number
lowercase__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase_ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and ans[0] != p_number_a
and ans[len(lowerCamelCase_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1"
lowercase__ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(lowerCamelCase_ )
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number > 1
), "'number' must been an int and >= 1"
lowercase__ = get_divisors(lowerCamelCase_ )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0"
lowercase__ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0"
lowercase__ = 0
lowercase__ = 1
lowercase__ = 1 # this will be return
for _ in range(n - 1 ):
lowercase__ = ans
ans += fiba
lowercase__ = tmp
return ans
| 671 | 0 |
'''simple docstring'''
def a ( ):
'''simple docstring'''
return 1
def a ( lowerCamelCase_ ):
'''simple docstring'''
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def a ( lowerCamelCase_ ):
'''simple docstring'''
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCamelCase_ )
def a ( lowerCamelCase_ = 200 ):
'''simple docstring'''
return two_pound(lowerCamelCase_ )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 718 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = args.log_outputs
lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
lowercase__ = load_metric('''wer''' )
lowercase__ = load_metric('''cer''' )
# compute metrics
lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}"""
print(lowerCamelCase_ )
with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowerCamelCase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
lowercase__ = F"""log_{dataset_id}_predictions.txt"""
lowercase__ = F"""log_{dataset_id}_targets.txt"""
with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowerCamelCase_ , lowerCamelCase_ ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) )
return text
def a ( lowerCamelCase_ ):
'''simple docstring'''
# load dataset
lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id )
lowercase__ = feature_extractor.sampling_rate
# resample audio
lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) )
# load eval pipeline
if args.device is None:
lowercase__ = 0 if torch.cuda.is_available() else -1
lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowerCamelCase_ ):
lowercase__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
lowercase__ = prediction['''text''']
lowercase__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
A__ : Union[str, Any] = parser.parse_args()
main(args)
| 671 | 0 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : Any ):
'''simple docstring'''
self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) )
for a, b in zip(lowerCamelCase, lowerCamelCase ):
self.assertAlmostEqual(lowerCamelCase, lowerCamelCase, delta=lowerCamelCase )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(lowerCamelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step, 3 )
self.assertEqual(len(accumulator.gradients ), 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step, 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1E-2 )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = None
ops.enable_eager_execution_internal()
lowercase__ = tf.config.list_physical_devices('''CPU''' )
if len(lowerCamelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
lowercase__ = tf.config.list_logical_devices(device_type='''CPU''' )
lowercase__ = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
lowercase__ = GradientAccumulator()
lowercase__ = tf.Variable([4.0, 3.0] )
lowercase__ , lowercase__ = create_optimizer(5E-5, 10, 5 )
lowercase__ = tf.Variable([0.0, 0.0], trainable=lowerCamelCase )
def accumulate_on_replica(lowerCamelCase : Tuple ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients, [variable] ) ) )
@tf.function
def accumulate(lowerCamelCase : str, lowerCamelCase : Optional[Any] ):
with strategy.scope():
lowercase__ = strategy.experimental_local_results(lowerCamelCase )
local_variables[0].assign(lowerCamelCase )
local_variables[1].assign(lowerCamelCase )
strategy.run(lowerCamelCase, args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(lowerCamelCase )
def _check_local_values(lowerCamelCase : Dict, lowerCamelCase : Optional[Any] ):
lowercase__ = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value(), lowerCamelCase, tol=1E-2 )
self.assertListAlmostEqual(values[1].value(), lowerCamelCase, tol=1E-2 )
accumulate([1.0, 2.0], [-1.0, 1.0] )
accumulate([3.0, -1.0], [-1.0, -1.0] )
accumulate([-2.0, 2.0], [3.0, -2.0] )
self.assertEqual(accumulator.step, 3 )
_check_local_values([2.0, 3.0], [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step, 0 )
_check_local_values([0.0, 0.0], [0.0, 0.0] )
| 719 |
from functools import reduce
A__ : Union[str, Any] = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def a ( lowerCamelCase_ = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) )
for i in range(len(lowerCamelCase_ ) - 12 ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowerCamelCase, '''embed_dim''' ) )
self.parent.assertTrue(hasattr(lowerCamelCase, '''num_heads''' ) )
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Dict=13, lowerCamelCase : Dict=64, lowerCamelCase : Any=3, lowerCamelCase : List[Any]=[16, 48, 96], lowerCamelCase : List[Any]=[1, 3, 6], lowerCamelCase : List[str]=[1, 2, 10], lowerCamelCase : Optional[Any]=[7, 3, 3], lowerCamelCase : Tuple=[4, 2, 2], lowerCamelCase : Union[str, Any]=[2, 1, 1], lowerCamelCase : Tuple=[2, 2, 2], lowerCamelCase : Optional[int]=[False, False, True], lowerCamelCase : Optional[int]=[0.0, 0.0, 0.0], lowerCamelCase : Tuple=0.02, lowerCamelCase : Any=1E-12, lowerCamelCase : int=True, lowerCamelCase : str=True, lowerCamelCase : List[str]=2, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = patch_sizes
lowercase__ = patch_stride
lowercase__ = patch_padding
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = num_labels
lowercase__ = num_channels
lowercase__ = embed_dim
lowercase__ = num_heads
lowercase__ = stride_kv
lowercase__ = depth
lowercase__ = cls_token
lowercase__ = attention_drop_rate
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = None
if self.use_labels:
# create a random int32 tensor of given shape
lowercase__ = ids_tensor([self.batch_size], self.num_labels )
lowercase__ = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
return CvtConfig(
image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, )
def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Any ):
'''simple docstring'''
lowercase__ = TFCvtModel(config=lowerCamelCase )
lowercase__ = model(lowerCamelCase, training=lowerCamelCase )
lowercase__ = (self.image_size, self.image_size)
lowercase__ , lowercase__ = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
lowercase__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
lowercase__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) )
def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.num_labels
lowercase__ = TFCvtForImageClassification(lowerCamelCase )
lowercase__ = model(lowerCamelCase, labels=lowerCamelCase, training=lowerCamelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
lowercase__ = (
{"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification}
if is_tf_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = TFCvtModelTester(self )
lowercase__ = TFCvtConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason='''Cvt does not output attentions''' )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='''Cvt does not use inputs_embeds''' )
def lowercase__ ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip(reason='''Cvt does not support input and output embeddings''' )
def lowercase__ ( self : Dict ):
'''simple docstring'''
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', )
@slow
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
super().test_keras_fit()
@unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = tf.keras.mixed_precision.Policy('''mixed_float16''' )
tf.keras.mixed_precision.set_global_policy(lowerCamelCase )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy('''float32''' )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(lowerCamelCase )
lowercase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1], lowerCamelCase )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
def check_hidden_states_output(lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ):
lowercase__ = model_class(lowerCamelCase )
lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) )
lowercase__ = outputs.hidden_states
lowercase__ = len(self.model_tester.depth )
self.assertEqual(len(lowerCamelCase ), lowerCamelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ), [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
], )
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = True
check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ = True
check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
@slow
def lowercase__ ( self : Any ):
'''simple docstring'''
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = TFCvtModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
def a ( ):
'''simple docstring'''
lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''tf''' )
# forward pass
lowercase__ = model(**lowerCamelCase )
# verify the logits
lowercase__ = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape, lowerCamelCase )
lowercase__ = tf.constant([0.9285, 0.9015, -0.3150] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), lowerCamelCase, atol=1E-4 ) )
| 720 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase ( A__ ,A__ ):
"""simple docstring"""
lowercase__ = 1
@register_to_config
def __init__( self : Union[str, Any], lowerCamelCase : int = 2_000, lowerCamelCase : float = 0.15, lowerCamelCase : float = 0.01, lowerCamelCase : float = 1348.0, lowerCamelCase : float = 1E-5, lowerCamelCase : int = 1, ):
'''simple docstring'''
# standard deviation of the initial noise distribution
lowercase__ = sigma_max
# setable values
lowercase__ = None
self.set_sigmas(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
return sample
def lowercase__ ( self : Dict, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : Union[str, torch.device] = None ):
'''simple docstring'''
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
lowercase__ = torch.linspace(1, lowerCamelCase, lowerCamelCase, device=lowerCamelCase )
def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : float = None, lowerCamelCase : float = None, lowerCamelCase : float = None ):
'''simple docstring'''
lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min
lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max
lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(lowerCamelCase, lowerCamelCase )
lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
lowercase__ = torch.exp(torch.linspace(math.log(lowerCamelCase ), math.log(lowerCamelCase ), lowerCamelCase ) )
lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : str ):
'''simple docstring'''
return torch.where(
timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), )
def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
lowercase__ = timestep * torch.ones(
sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
lowercase__ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
lowercase__ = timesteps.to(self.discrete_sigmas.device )
lowercase__ = self.discrete_sigmas[timesteps].to(sample.device )
lowercase__ = self.get_adjacent_sigma(lowerCamelCase, lowerCamelCase ).to(sample.device )
lowercase__ = torch.zeros_like(lowerCamelCase )
lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
lowercase__ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
lowercase__ = diffusion.unsqueeze(-1 )
lowercase__ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
lowercase__ = randn_tensor(
sample.shape, layout=sample.layout, generator=lowerCamelCase, device=sample.device, dtype=sample.dtype )
lowercase__ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=lowerCamelCase, prev_sample_mean=lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : bool = True, ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=lowerCamelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean()
lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
lowercase__ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
lowercase__ = step_size.unsqueeze(-1 )
lowercase__ = sample + step_size * model_output
lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=lowerCamelCase )
def lowercase__ ( self : List[str], lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, lowerCamelCase : torch.FloatTensor, ):
'''simple docstring'''
# Make sure sigmas and timesteps have the same device and dtype as original_samples
lowercase__ = timesteps.to(original_samples.device )
lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps]
lowercase__ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None]
)
lowercase__ = noise + original_samples
return noisy_samples
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 671 | 0 |
A__ : int = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = set()
# keep track of all the paths to be checked
lowercase__ = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
lowercase__ = queue.pop(0 )
# get the last node from the path
lowercase__ = path[-1]
if node not in explored:
lowercase__ = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
lowercase__ = list(lowerCamelCase_ )
new_path.append(lowerCamelCase_ )
queue.append(lowerCamelCase_ )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(lowerCamelCase_ )
# in case there's no path between the 2 nodes
return []
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
lowercase__ = [start]
lowercase__ = set(lowerCamelCase_ )
# Keep tab on distances from `start` node.
lowercase__ = {start: 0, target: -1}
while queue:
lowercase__ = queue.pop(0 )
if node == target:
lowercase__ = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(lowerCamelCase_ )
queue.append(lowerCamelCase_ )
lowercase__ = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 721 |
from collections import defaultdict
from math import gcd
def a ( lowerCamelCase_ = 150_0000 ):
'''simple docstring'''
lowercase__ = defaultdict(lowerCamelCase_ )
lowercase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ):
if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1:
continue
lowercase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import argparse
import os
import re
A__ : Dict = 'src/transformers/models/auto'
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
A__ : List[Any] = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict')
# re pattern that matches identifiers in mappings
A__ : Union[str, Any] = re.compile(r'\s*\(\s*"(\S[^"]+)"')
def a ( lowerCamelCase_ , lowerCamelCase_ = False ):
'''simple docstring'''
with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f:
lowercase__ = f.read()
lowercase__ = content.split('''\n''' )
lowercase__ = []
lowercase__ = 0
while line_idx < len(lowerCamelCase_ ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
lowercase__ = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(''' ''' * indent + '''(''' ):
new_lines.append(lines[line_idx] )
line_idx += 1
lowercase__ = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
lowercase__ = line_idx
while not lines[line_idx].startswith(''' ''' * indent + ''')''' ):
line_idx += 1
blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
lowercase__ = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : _re_identifier.search(lowerCamelCase_ ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(lowerCamelCase_ ) )
elif "\n".join(lowerCamelCase_ ) != content:
return True
def a ( lowerCamelCase_ = False ):
'''simple docstring'''
lowercase__ = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for f in os.listdir(lowerCamelCase_ ) if f.endswith('''.py''' )]
lowercase__ = [sort_auto_mapping(lowerCamelCase_ , overwrite=lowerCamelCase_ ) for fname in fnames]
if not overwrite and any(lowerCamelCase_ ):
lowercase__ = [f for f, d in zip(lowerCamelCase_ , lowerCamelCase_ ) if d]
raise ValueError(
F"""The following files have auto mappings that need sorting: {', '.join(lowerCamelCase_ )}. Run `make style` to fix"""
''' this.''' )
if __name__ == "__main__":
A__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
A__ : Dict = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 700 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
A__ : Dict = logging.get_logger(__name__)
A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A__ : Optional[int] = {
'vocab_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'
),
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'
),
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt',
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json',
'bert-base-multilingual-uncased': (
'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'
),
'bert-base-multilingual-cased': (
'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'
),
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'
),
'bert-base-cased-finetuned-mrpc': (
'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-cased': (
'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'
),
'bert-base-german-dbmdz-uncased': (
'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'
),
'wietsedv/bert-base-dutch-cased': (
'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'
),
},
}
A__ : List[str] = {
'bert-base-uncased': 5_12,
'bert-large-uncased': 5_12,
'bert-base-cased': 5_12,
'bert-large-cased': 5_12,
'bert-base-multilingual-uncased': 5_12,
'bert-base-multilingual-cased': 5_12,
'bert-base-chinese': 5_12,
'bert-base-german-cased': 5_12,
'bert-large-uncased-whole-word-masking': 5_12,
'bert-large-cased-whole-word-masking': 5_12,
'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12,
'bert-large-cased-whole-word-masking-finetuned-squad': 5_12,
'bert-base-cased-finetuned-mrpc': 5_12,
'bert-base-german-dbmdz-cased': 5_12,
'bert-base-german-dbmdz-uncased': 5_12,
'TurkuNLP/bert-base-finnish-cased-v1': 5_12,
'TurkuNLP/bert-base-finnish-uncased-v1': 5_12,
'wietsedv/bert-base-dutch-cased': 5_12,
}
A__ : Optional[int] = {
'bert-base-uncased': {'do_lower_case': True},
'bert-large-uncased': {'do_lower_case': True},
'bert-base-cased': {'do_lower_case': False},
'bert-large-cased': {'do_lower_case': False},
'bert-base-multilingual-uncased': {'do_lower_case': True},
'bert-base-multilingual-cased': {'do_lower_case': False},
'bert-base-chinese': {'do_lower_case': False},
'bert-base-german-cased': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking': {'do_lower_case': True},
'bert-large-cased-whole-word-masking': {'do_lower_case': False},
'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True},
'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False},
'bert-base-cased-finetuned-mrpc': {'do_lower_case': False},
'bert-base-german-dbmdz-cased': {'do_lower_case': False},
'bert-base-german-dbmdz-uncased': {'do_lower_case': True},
'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False},
'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True},
'wietsedv/bert-base-dutch-cased': {'do_lower_case': False},
}
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_INIT_CONFIGURATION
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = BertTokenizer
def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, )
lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars
):
lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) )
lowercase__ = do_lower_case
lowercase__ = strip_accents
lowercase__ = tokenize_chinese_chars
lowercase__ = normalizer_class(**lowerCamelCase )
lowercase__ = do_lower_case
def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ):
'''simple docstring'''
lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase )
return tuple(lowerCamelCase )
| 671 | 0 |
A__ : Optional[int] = frozenset(
[
'prompt',
'height',
'width',
'guidance_scale',
'negative_prompt',
'prompt_embeds',
'negative_prompt_embeds',
'cross_attention_kwargs',
]
)
A__ : str = frozenset(['prompt', 'negative_prompt'])
A__ : Tuple = frozenset([])
A__ : Optional[Any] = frozenset(['image'])
A__ : Union[str, Any] = frozenset(
[
'image',
'height',
'width',
'guidance_scale',
]
)
A__ : Tuple = frozenset(['image'])
A__ : Any = frozenset(
[
'prompt',
'image',
'height',
'width',
'guidance_scale',
'negative_prompt',
'prompt_embeds',
'negative_prompt_embeds',
]
)
A__ : Union[str, Any] = frozenset(['prompt', 'image', 'negative_prompt'])
A__ : Optional[Any] = frozenset(
[
# Text guided image variation with an image mask
'prompt',
'image',
'mask_image',
'height',
'width',
'guidance_scale',
'negative_prompt',
'prompt_embeds',
'negative_prompt_embeds',
]
)
A__ : List[str] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt'])
A__ : Dict = frozenset(
[
# image variation with an image mask
'image',
'mask_image',
'height',
'width',
'guidance_scale',
]
)
A__ : Tuple = frozenset(['image', 'mask_image'])
A__ : Optional[int] = frozenset(
[
'example_image',
'image',
'mask_image',
'height',
'width',
'guidance_scale',
]
)
A__ : List[str] = frozenset(['example_image', 'image', 'mask_image'])
A__ : str = frozenset(['class_labels'])
A__ : List[str] = frozenset(['class_labels'])
A__ : Dict = frozenset(['batch_size'])
A__ : int = frozenset([])
A__ : Dict = frozenset(['batch_size'])
A__ : Optional[Any] = frozenset([])
A__ : str = frozenset(
[
'prompt',
'audio_length_in_s',
'guidance_scale',
'negative_prompt',
'prompt_embeds',
'negative_prompt_embeds',
'cross_attention_kwargs',
]
)
A__ : Union[str, Any] = frozenset(['prompt', 'negative_prompt'])
A__ : Union[str, Any] = frozenset(['input_tokens'])
A__ : int = frozenset(['input_tokens'])
| 701 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 671 | 0 |
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Dict = logging.get_logger(__name__)
A__ : Tuple = {
'microsoft/xprophetnet-large-wiki100-cased': (
'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'
),
}
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = """xlm-prophetnet"""
lowercase__ = ["""past_key_values"""]
lowercase__ = {
"""num_attention_heads""": """num_encoder_attention_heads""",
}
def __init__( self : List[Any], lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[Union[str, Callable]] = "gelu", lowerCamelCase : Optional[int] = 30_522, lowerCamelCase : Optional[int] = 1_024, lowerCamelCase : Optional[int] = 4_096, lowerCamelCase : Optional[int] = 12, lowerCamelCase : Optional[int] = 16, lowerCamelCase : Optional[int] = 4_096, lowerCamelCase : Optional[int] = 12, lowerCamelCase : Optional[int] = 16, lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[float] = 0.1, lowerCamelCase : Optional[int] = 512, lowerCamelCase : Optional[float] = 0.02, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[int] = 0, lowerCamelCase : Optional[int] = 2, lowerCamelCase : Optional[int] = 32, lowerCamelCase : Optional[int] = 128, lowerCamelCase : Optional[bool] = False, lowerCamelCase : Optional[float] = 0.0, lowerCamelCase : Optional[bool] = True, lowerCamelCase : Optional[int] = 0, lowerCamelCase : Optional[int] = 1, lowerCamelCase : Optional[int] = 2, **lowerCamelCase : Union[str, Any], ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = encoder_ffn_dim
lowercase__ = num_encoder_layers
lowercase__ = num_encoder_attention_heads
lowercase__ = decoder_ffn_dim
lowercase__ = num_decoder_layers
lowercase__ = num_decoder_attention_heads
lowercase__ = max_position_embeddings
lowercase__ = init_std # Normal(0, this parameter)
lowercase__ = activation_function
# parameters for xlmprophetnet
lowercase__ = ngram
lowercase__ = num_buckets
lowercase__ = relative_max_distance
lowercase__ = disable_ngram_loss
lowercase__ = eps
# 3 Types of Dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = dropout
lowercase__ = use_cache
super().__init__(
pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, add_cross_attention=lowerCamelCase, decoder_start_token_id=lowerCamelCase, **lowerCamelCase, )
@property
def lowercase__ ( self : str ):
'''simple docstring'''
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any] ):
'''simple docstring'''
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and'''
''' `num_decoder_layers`.''' )
| 702 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
A__ : Dict = 50_00_00
A__ , A__ : str = os.path.split(__file__)
A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.map(**lowerCamelCase_ )
@get_duration
def a ( lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = dataset.filter(**lowerCamelCase_ )
def a ( ):
'''simple docstring'''
lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
lowercase__ = generate_example_dataset(
os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ )
lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ )
def tokenize(lowerCamelCase_ ):
return tokenizer(examples['''text'''] )
lowercase__ = map(lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''numpy''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''pandas''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ )
lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ )
lowercase__ = filter(lowerCamelCase_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(lowerCamelCase_ , '''wb''' ) as f:
f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 671 | 0 |
from math import asin, atan, cos, radians, sin, sqrt, tan
A__ : str = 6_37_81_37.0
A__ : Tuple = 6_35_67_52.31_42_45
A__ : str = 6_37_81_37
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = (AXIS_A - AXIS_B) / AXIS_A
lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) )
lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) )
lowercase__ = radians(lowerCamelCase_ )
lowercase__ = radians(lowerCamelCase_ )
# Equation
lowercase__ = sin((phi_a - phi_a) / 2 )
lowercase__ = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
lowercase__ = sqrt(sin_sq_phi + (cos(lowerCamelCase_ ) * cos(lowerCamelCase_ ) * sin_sq_lambda) )
return 2 * RADIUS * asin(lowerCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : str = "", lowerCamelCase : bool = False ):
'''simple docstring'''
# Mapping from the first character of the prefix of the node
lowercase__ = {}
# A node will be a leaf if the tree contains its word
lowercase__ = is_leaf
lowercase__ = prefix
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = 0
for q, w in zip(self.prefix, lowerCamelCase ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def lowercase__ ( self : Optional[int], lowerCamelCase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
lowercase__ = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowercase__ = RadixNode(prefix=lowerCamelCase, is_leaf=lowerCamelCase )
else:
lowercase__ = self.nodes[word[0]]
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCamelCase )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowercase__ = remaining_prefix
lowercase__ = self.nodes[matching_string[0]]
lowercase__ = RadixNode(lowerCamelCase, lowerCamelCase )
lowercase__ = aux_node
if remaining_word == "":
lowercase__ = True
else:
self.nodes[matching_string[0]].insert(lowerCamelCase )
def lowercase__ ( self : int, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCamelCase )
def lowercase__ ( self : Any, lowerCamelCase : str ):
'''simple docstring'''
lowercase__ = self.nodes.get(word[0], lowerCamelCase )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ = incoming_node.match(
lowerCamelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCamelCase )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowercase__ = list(self.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
self.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowercase__ = False
# If there is 1 edge, we merge it with its child
else:
lowercase__ = list(incoming_node.nodes.values() )[0]
lowercase__ = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowercase__ = merging_node.nodes
return True
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ):
'''simple docstring'''
if self.prefix != "":
print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def a ( ):
'''simple docstring'''
lowercase__ = '''banana bananas bandana band apple all beast'''.split()
lowercase__ = RadixNode()
root.insert_many(lowerCamelCase_ )
assert all(root.find(lowerCamelCase_ ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def a ( ):
'''simple docstring'''
assert test_trie()
def a ( ):
'''simple docstring'''
lowercase__ = RadixNode()
lowercase__ = '''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(lowerCamelCase_ )
print('''Words:''' , lowerCamelCase_ )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 671 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ : str = {
'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'],
'tokenization_lxmert': ['LxmertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[Any] = ['LxmertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[Any] = [
'LxmertEncoder',
'LxmertForPreTraining',
'LxmertForQuestionAnswering',
'LxmertModel',
'LxmertPreTrainedModel',
'LxmertVisualFeatureEncoder',
'LxmertXLayer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = [
'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLxmertForPreTraining',
'TFLxmertMainLayer',
'TFLxmertModel',
'TFLxmertPreTrainedModel',
'TFLxmertVisualFeatureEncoder',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 704 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
lowercase__ = ViTImageProcessor if is_vision_available() else None
@property
def lowercase__ ( self : List[str] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = (3, 32, 128)
lowercase__ = tempfile.mkdtemp()
# fmt: off
lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCamelCase ) + '''\n''' )
lowercase__ = {
'''do_normalize''': False,
'''do_resize''': True,
'''image_processor_type''': '''ViTImageProcessor''',
'''resample''': 3,
'''size''': {'''height''': 32, '''width''': 128},
}
lowercase__ = os.path.join(self.tmpdirname, lowerCamelCase )
with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp:
json.dump(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : int, **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : str, **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase )
def lowercase__ ( self : int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )
lowercase__ = Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) )
return image_input
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' )
lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 )
lowercase__ = MgpstrProcessor.from_pretrained(
self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer, lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCamelCase )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = self.prepare_image_inputs()
lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' )
lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = processor(text=lowerCamelCase )
lowercase__ = tokenizer(lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key] )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = '''test'''
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''labels'''] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase ):
processor()
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ = processor.char_decode(lowerCamelCase )
lowercase__ = tokenizer.batch_decode(lowerCamelCase )
lowercase__ = [seq.replace(''' ''', '''''' ) for seq in decoded_tok]
self.assertListEqual(lowerCamelCase, lowerCamelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = None
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = MgpstrProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase )
lowercase__ = torch.randn(1, 27, 38 )
lowercase__ = torch.randn(1, 27, 50_257 )
lowercase__ = torch.randn(1, 27, 30_522 )
lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ), ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
| 671 | 0 |
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
A__ : Any = False
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any]=32 ):
'''simple docstring'''
set_seed(0 )
lowercase__ = UNetaDModel(sample_size=lowerCamelCase, in_channels=3, out_channels=3 )
lowercase__ = torch.optim.SGD(model.parameters(), lr=0.0001 )
return model, optimizer
@slow
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowercase__ = DDPMScheduler(
num_train_timesteps=1_000, beta_start=0.0001, beta_end=0.02, beta_schedule='''linear''', clip_sample=lowerCamelCase, )
lowercase__ = DDIMScheduler(
num_train_timesteps=1_000, beta_start=0.0001, beta_end=0.02, beta_schedule='''linear''', clip_sample=lowerCamelCase, )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowercase__ = [torch.randn((4, 3, 32, 32) ).clip(-1, 1 ).to(lowerCamelCase ) for _ in range(4 )]
lowercase__ = [torch.randn((4, 3, 32, 32) ).to(lowerCamelCase ) for _ in range(4 )]
lowercase__ = [torch.randint(0, 1_000, (4,) ).long().to(lowerCamelCase ) for _ in range(4 )]
# train with a DDPM scheduler
lowercase__ , lowercase__ = self.get_model_optimizer(resolution=32 )
model.train().to(lowerCamelCase )
for i in range(4 ):
optimizer.zero_grad()
lowercase__ = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i] )
lowercase__ = model(lowerCamelCase, timesteps[i] ).sample
lowercase__ = torch.nn.functional.mse_loss(lowerCamelCase, noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowercase__ , lowercase__ = self.get_model_optimizer(resolution=32 )
model.train().to(lowerCamelCase )
for i in range(4 ):
optimizer.zero_grad()
lowercase__ = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i] )
lowercase__ = model(lowerCamelCase, timesteps[i] ).sample
lowercase__ = torch.nn.functional.mse_loss(lowerCamelCase, noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) )
self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) )
| 705 |
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
if exponent == 1:
return base
if exponent % 2 == 0:
lowercase__ = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value
def a ( lowerCamelCase_ = 1777 , lowerCamelCase_ = 1855 , lowerCamelCase_ = 8 ):
'''simple docstring'''
lowercase__ = base
for _ in range(1 , lowerCamelCase_ ):
lowercase__ = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits )
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple=100, lowerCamelCase : Any=13, lowerCamelCase : Union[str, Any]=30, lowerCamelCase : Dict=2, lowerCamelCase : Optional[int]=3, lowerCamelCase : int=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]=32, lowerCamelCase : Any=4, lowerCamelCase : int=4, lowerCamelCase : int=37, lowerCamelCase : Tuple="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : int=0.02, lowerCamelCase : List[str]=3, lowerCamelCase : List[Any]=None, lowerCamelCase : List[str]=[0, 1, 2, 3], ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = 100
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = scope
lowercase__ = out_indices
lowercase__ = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase__ = (image_size // patch_size) ** 2
lowercase__ = num_patches + 1
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
lowercase__ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, out_indices=self.out_indices, )
def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Any ):
'''simple docstring'''
lowercase__ = BeitModel(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowercase__ = model(lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowercase__ = BeitForMaskedImageModeling(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowercase__ = model(lowerCamelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = self.type_sequence_label_size
lowercase__ = BeitForImageClassification(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowercase__ = model(lowerCamelCase, labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowercase__ = 1
lowercase__ = BeitForImageClassification(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase__ = model(lowerCamelCase, labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = self.num_labels
lowercase__ = BeitForSemanticSegmentation(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowercase__ = model(lowerCamelCase )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
lowercase__ = model(lowerCamelCase, labels=lowerCamelCase )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = BeitModelTester(self )
lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''BEiT does not use inputs_embeds''' )
def lowercase__ ( self : Any ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def lowercase__ ( self : str ):
'''simple docstring'''
pass
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
lowercase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(lowerCamelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1], lowerCamelCase )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase )
def lowercase__ ( self : Dict ):
'''simple docstring'''
if not self.model_tester.is_training:
return
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling]:
continue
lowercase__ = model_class(lowerCamelCase )
model.to(lowerCamelCase )
model.train()
lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase )
lowercase__ = model(**lowerCamelCase ).loss
loss.backward()
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
lowercase__ = False
lowercase__ = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
lowercase__ = model_class(lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(lowerCamelCase )
model.train()
lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase )
lowercase__ = model(**lowerCamelCase ).loss
loss.backward()
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = _config_zero_init(lowerCamelCase )
for model_class in self.all_model_classes:
lowercase__ = model_class(config=lowerCamelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", )
@slow
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = BeitModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
def a ( ):
'''simple docstring'''
lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase__ ( self : Tuple ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(lowerCamelCase )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).pixel_values.to(lowerCamelCase )
# prepare bool_masked_pos
lowercase__ = torch.ones((1, 196), dtype=torch.bool ).to(lowerCamelCase )
# forward pass
with torch.no_grad():
lowercase__ = model(pixel_values=lowerCamelCase, bool_masked_pos=lowerCamelCase )
lowercase__ = outputs.logits
# verify the logits
lowercase__ = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape, lowerCamelCase )
lowercase__ = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], lowerCamelCase, atol=1E-2 ) )
@slow
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(lowerCamelCase )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase )
# forward pass
with torch.no_grad():
lowercase__ = model(**lowerCamelCase )
lowercase__ = outputs.logits
# verify the logits
lowercase__ = torch.Size((1, 1_000) )
self.assertEqual(logits.shape, lowerCamelCase )
lowercase__ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase )
self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) )
lowercase__ = 281
self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase )
@slow
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to(
lowerCamelCase )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase )
# forward pass
with torch.no_grad():
lowercase__ = model(**lowerCamelCase )
lowercase__ = outputs.logits
# verify the logits
lowercase__ = torch.Size((1, 21_841) )
self.assertEqual(logits.shape, lowerCamelCase )
lowercase__ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase )
self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) )
lowercase__ = 2_396
self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase )
@slow
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' )
lowercase__ = model.to(lowerCamelCase )
lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase )
lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' )
lowercase__ = Image.open(ds[0]['''file'''] )
lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase )
# forward pass
with torch.no_grad():
lowercase__ = model(**lowerCamelCase )
lowercase__ = outputs.logits
# verify the logits
lowercase__ = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape, lowerCamelCase )
lowercase__ = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' )
if is_pillow_less_than_a:
lowercase__ = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
], device=lowerCamelCase, )
else:
lowercase__ = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
], device=lowerCamelCase, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4 ) )
@slow
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' )
lowercase__ = model.to(lowerCamelCase )
lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase )
lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' )
lowercase__ = Image.open(ds[0]['''file'''] )
lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase )
# forward pass
with torch.no_grad():
lowercase__ = model(**lowerCamelCase )
lowercase__ = outputs.logits.detach().cpu()
lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(500, 300)] )
lowercase__ = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape, lowerCamelCase )
lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase )
lowercase__ = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape, lowerCamelCase )
| 706 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : WhisperForConditionalGeneration, lowerCamelCase : WhisperProcessor, lowerCamelCase : AutoencoderKL, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : UNetaDConditionModel, lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCamelCase : StableDiffusionSafetyChecker, lowerCamelCase : CLIPImageProcessor, ):
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
speech_model=lowerCamelCase, speech_processor=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, )
def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
lowercase__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCamelCase )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
self.enable_attention_slicing(lowerCamelCase )
@torch.no_grad()
def __call__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]=16_000, lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 50, lowerCamelCase : float = 7.5, lowerCamelCase : Optional[Union[str, List[str]]] = None, lowerCamelCase : Optional[int] = 1, lowerCamelCase : float = 0.0, lowerCamelCase : Optional[torch.Generator] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, **lowerCamelCase : Optional[Any], ):
'''simple docstring'''
lowercase__ = self.speech_processor.feature_extractor(
lowerCamelCase, return_tensors='''pt''', sampling_rate=lowerCamelCase ).input_features.to(self.device )
lowercase__ = self.speech_model.generate(lowerCamelCase, max_length=480_000 )
lowercase__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase, normalize=lowerCamelCase )[
0
]
if isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = 1
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = len(lowerCamelCase )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(lowerCamelCase )}.""" )
# get prompt text embeddings
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', )
lowercase__ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length]
lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape
lowercase__ = text_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCamelCase, -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowercase__ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowercase__ = 42
if negative_prompt is None:
lowercase__ = [''''''] * batch_size
elif type(lowerCamelCase ) is not type(lowerCamelCase ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !="""
F""" {type(lowerCamelCase )}.""" )
elif isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = [negative_prompt]
elif batch_size != len(lowerCamelCase ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
''' the batch size of `prompt`.''' )
else:
lowercase__ = negative_prompt
lowercase__ = text_input_ids.shape[-1]
lowercase__ = self.tokenizer(
lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', )
lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowercase__ = uncond_embeddings.shape[1]
lowercase__ = uncond_embeddings.repeat(1, lowerCamelCase, 1 )
lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowercase__ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
lowercase__ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='''cpu''', dtype=lowerCamelCase ).to(
self.device )
else:
lowercase__ = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
lowercase__ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowerCamelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
lowercase__ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
lowercase__ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowercase__ = {}
if accepts_eta:
lowercase__ = eta
for i, t in enumerate(self.progress_bar(lowerCamelCase ) ):
# expand the latents if we are doing classifier free guidance
lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase__ = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase )
# predict the noise residual
lowercase__ = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase ).sample
# perform guidance
if do_classifier_free_guidance:
lowercase__ , lowercase__ = noise_pred.chunk(2 )
lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
lowercase__ = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = 1 / 0.18215 * latents
lowercase__ = self.vae.decode(lowerCamelCase ).sample
lowercase__ = (image / 2 + 0.5).clamp(0, 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowercase__ = image.cpu().permute(0, 2, 3, 1 ).float().numpy()
if output_type == "pil":
lowercase__ = self.numpy_to_pil(lowerCamelCase )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase )
| 671 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = StableDiffusionInstructPixaPixPipeline
lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""}
lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def lowercase__ ( self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, )
lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase )
torch.manual_seed(0 )
lowercase__ = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, )
torch.manual_seed(0 )
lowercase__ = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, )
lowercase__ = CLIPTextModel(lowerCamelCase )
lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
lowercase__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def lowercase__ ( self : Optional[Any], lowerCamelCase : List[Any], lowerCamelCase : str=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
lowercase__ = image.cpu().permute(0, 2, 3, 1 )[0]
lowercase__ = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' )
if str(lowerCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(lowerCamelCase )
else:
lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
lowercase__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''image_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ = self.get_dummy_components()
lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
lowercase__ = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = self.get_dummy_inputs(lowerCamelCase )
lowercase__ = sd_pipe(**lowerCamelCase ).images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowercase__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ = self.get_dummy_components()
lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
lowercase__ = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = self.get_dummy_inputs(lowerCamelCase )
lowercase__ = '''french fries'''
lowercase__ = sd_pipe(**lowerCamelCase, negative_prompt=lowerCamelCase )
lowercase__ = output.images
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowercase__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ = self.get_dummy_components()
lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
lowercase__ = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = self.get_dummy_inputs(lowerCamelCase )
lowercase__ = [inputs['''prompt''']] * 2
lowercase__ = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0
lowercase__ = torch.from_numpy(lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase )
lowercase__ = image / 2 + 0.5
lowercase__ = image.permute(0, 3, 1, 2 )
lowercase__ = image.repeat(2, 1, 1, 1 )
lowercase__ = sd_pipe(**lowerCamelCase ).images
lowercase__ = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
lowercase__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ = self.get_dummy_components()
lowercase__ = EulerAncestralDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''' )
lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
lowercase__ = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = self.get_dummy_inputs(lowerCamelCase )
lowercase__ = sd_pipe(**lowerCamelCase ).images
lowercase__ = image[0, -3:, -3:, -1]
lowercase__ = [round(lowerCamelCase, 4 ) for x in image_slice.flatten().tolist()]
print(''','''.join([str(lowerCamelCase ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
lowercase__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowercase__ ( self : List[str] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.get_dummy_components()
lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
lowercase__ = VaeImageProcessor(do_resize=lowerCamelCase, do_normalize=lowerCamelCase )
lowercase__ = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase, input_image_type='''pt''' ) )[0]
lowercase__ = components['''vae''']
lowercase__ = self.get_dummy_inputs_by_type(lowerCamelCase, input_image_type='''pt''' )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
lowercase__ = vae.encode(inputs[image_param] ).latent_dist.mode()
lowercase__ = pipe(**lowerCamelCase )[0]
lowercase__ = np.abs(out - out_latents_inputs ).max()
self.assertLess(lowerCamelCase, 1E-4, '''passing latents as image input generate different result from passing image''' )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self : str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any]=0 ):
'''simple docstring'''
lowercase__ = torch.manual_seed(lowerCamelCase )
lowercase__ = load_image(
'''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' )
lowercase__ = {
'''prompt''': '''turn him into a cyborg''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''image_guidance_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
lowercase__ = self.get_inputs()
lowercase__ = pipe(**lowerCamelCase ).images
lowercase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
lowercase__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase )
lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
lowercase__ = self.get_inputs()
lowercase__ = pipe(**lowerCamelCase ).images
lowercase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
lowercase__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase )
lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
lowercase__ = self.get_inputs()
lowercase__ = pipe(**lowerCamelCase ).images
lowercase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
lowercase__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = 0
def callback_fn(lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : torch.FloatTensor ) -> None:
lowercase__ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
lowercase__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
lowercase__ = latents[0, -3:, -3:, -1]
lowercase__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
lowercase__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
lowercase__ = latents[0, -3:, -3:, -1]
lowercase__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
lowercase__ = False
lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase, torch_dtype=torch.floataa )
lowercase__ = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
lowercase__ = self.get_inputs()
pipe(**lowerCamelCase, callback=lowerCamelCase, callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''', safety_checker=lowerCamelCase, torch_dtype=torch.floataa )
lowercase__ = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowercase__ = self.get_inputs()
lowercase__ = pipe(**lowerCamelCase )
lowercase__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
lowercase__ = inputs['''image'''].resize((504, 504) )
lowercase__ = '''timbrooks/instruct-pix2pix'''
lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
lowerCamelCase, safety_checker=lowerCamelCase, )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
lowercase__ = pipe(**lowerCamelCase )
lowercase__ = output.images[0]
lowercase__ = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
lowercase__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 | 707 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = 42
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : str, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = [[] for _ in range(lowerCamelCase )]
lowercase__ = size
def __getitem__( self : Optional[Any], lowerCamelCase : int ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def lowercase__ ( self : str ):
'''simple docstring'''
return self._size
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCamelCase, lowerCamelCase ) )
def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ):
'''simple docstring'''
lowercase__ = deque([start_vertex] )
lowercase__ = [None] * self.size
lowercase__ = 0
while queue:
lowercase__ = queue.popleft()
lowercase__ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowercase__ = current_distance + edge.weight
lowercase__ = distances[edge.destination_vertex]
if (
isinstance(lowerCamelCase, lowerCamelCase )
and new_distance >= dest_vertex_distance
):
continue
lowercase__ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
A__ : Union[str, Any] = pytest.mark.integration
@require_faiss
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def lowercase__ ( self : str ):
'''simple docstring'''
import faiss
lowercase__ = self._create_dummy_dataset()
lowercase__ = dset.map(
lambda lowerCamelCase, lowerCamelCase : {"vecs": i * np.ones(5, dtype=np.floataa )}, with_indices=lowerCamelCase, keep_in_memory=lowerCamelCase )
lowercase__ = dset.add_faiss_index('''vecs''', batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT )
lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs''', np.ones(5, dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def lowercase__ ( self : str ):
'''simple docstring'''
import faiss
lowercase__ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''', batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT, )
lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs''', np.ones(5, dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
import faiss
lowercase__ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''', metric_type=faiss.METRIC_INNER_PRODUCT, )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowerCamelCase ) as tmp_file:
dset.save_faiss_index('''vecs''', tmp_file.name )
dset.load_faiss_index('''vecs2''', tmp_file.name )
os.unlink(tmp_file.name )
lowercase__ , lowercase__ = dset.get_nearest_examples('''vecs2''', np.ones(5, dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' )
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(lowerCamelCase, partial(dset.get_nearest_examples, '''vecs2''', np.ones(5, dtype=np.floataa ) ) )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
from elasticsearch import Elasticsearch
lowercase__ = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
lowercase__ = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
lowercase__ = Elasticsearch()
dset.add_elasticsearch_index('''filename''', es_client=lowerCamelCase )
lowercase__ , lowercase__ = dset.get_nearest_examples('''filename''', '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0], '''my_name-train_29''' )
@require_faiss
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
import faiss
lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5, dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal, 5 )
index.add_vectors(np.zeros((5, 5), dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal, 10 )
# single query
lowercase__ = np.zeros(5, dtype=np.floataa )
lowercase__ = 1
lowercase__ , lowercase__ = index.search(lowerCamelCase )
self.assertRaises(lowerCamelCase, index.search, query.reshape(-1, 1 ) )
self.assertGreater(scores[0], 0 )
self.assertEqual(indices[0], 1 )
# batched queries
lowercase__ = np.eye(5, dtype=np.floataa )[::-1]
lowercase__ , lowercase__ = index.search_batch(lowerCamelCase )
self.assertRaises(lowerCamelCase, index.search_batch, queries[0] )
lowercase__ = [scores[0] for scores in total_scores]
lowercase__ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCamelCase ), 0 )
self.assertListEqual([4, 3, 2, 1, 0], lowerCamelCase )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
import faiss
lowercase__ = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index, faiss.IndexFlat )
lowercase__ = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index, faiss.IndexLSH )
with self.assertRaises(lowerCamelCase ):
lowercase__ = FaissIndex(string_factory='''Flat''', custom_index=faiss.IndexFlat(5 ) )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
import faiss
lowercase__ = faiss.IndexFlat(5 )
lowercase__ = FaissIndex(custom_index=lowerCamelCase )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index, faiss.IndexFlat )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
import faiss
lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
lowercase__ = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
lowercase__ = np.zeros(5, dtype=np.floataa )
lowercase__ = 1
lowercase__ , lowercase__ = index.search(lowerCamelCase )
self.assertGreater(scores[0], 0 )
self.assertEqual(indices[0], 1 )
@require_faiss
def a ( lowerCamelCase_ ):
'''simple docstring'''
import faiss
lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
lowercase__ = '''index.faiss'''
lowercase__ = F"""mock://{index_name}"""
index.save(lowerCamelCase_ , storage_options=mockfs.storage_options )
lowercase__ = FaissIndex.load(lowerCamelCase_ , storage_options=mockfs.storage_options )
lowercase__ = np.zeros(5 , dtype=np.floataa )
lowercase__ = 1
lowercase__ , lowercase__ = index.search(lowerCamelCase_ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
def lowercase__ ( self : Dict ):
'''simple docstring'''
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
lowercase__ = Elasticsearch()
lowercase__ = {'''acknowledged''': True}
lowercase__ = ElasticSearchIndex(es_client=lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
lowercase__ = '''foo'''
lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
lowercase__ , lowercase__ = index.search(lowerCamelCase )
self.assertEqual(scores[0], 1 )
self.assertEqual(indices[0], 0 )
# single query with timeout
lowercase__ = '''foo'''
lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
lowercase__ , lowercase__ = index.search(lowerCamelCase, request_timeout=30 )
self.assertEqual(scores[0], 1 )
self.assertEqual(indices[0], 0 )
# batched queries
lowercase__ = ['''foo''', '''bar''', '''foobar''']
lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
lowercase__ , lowercase__ = index.search_batch(lowerCamelCase )
lowercase__ = [scores[0] for scores in total_scores]
lowercase__ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCamelCase ), 0 )
self.assertListEqual([1, 1, 1], lowerCamelCase )
# batched queries with timeout
lowercase__ = ['''foo''', '''bar''', '''foobar''']
lowercase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
lowercase__ , lowercase__ = index.search_batch(lowerCamelCase, request_timeout=30 )
lowercase__ = [scores[0] for scores in total_scores]
lowercase__ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCamelCase ), 0 )
self.assertListEqual([1, 1, 1], lowerCamelCase ) | 708 |
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
# we need a list not a string, so do something to change the type
lowercase__ = arr.split(''',''' )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = [int(self.array[0] )] * len(self.array )
lowercase__ = [int(self.array[0] )] * len(self.array )
for i in range(1, len(self.array ) ):
lowercase__ = max(
int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) )
lowercase__ = max(sum_value[i], rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
A__ : Dict = input('please input some numbers:')
A__ : Union[str, Any] = SubArray(whole_array)
A__ : int = array.solve_sub_array()
print(('the results is:', re))
| 671 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = KandinskyVaaControlnetImgaImgPipeline
lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""]
lowercase__ = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""]
lowercase__ = [
"""generator""",
"""height""",
"""width""",
"""strength""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
lowercase__ = False
@property
def lowercase__ ( self : str ):
'''simple docstring'''
return 32
@property
def lowercase__ ( self : str ):
'''simple docstring'''
return 32
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowercase__ ( self : Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowercase__ ( self : Tuple ):
'''simple docstring'''
return 100
@property
def lowercase__ ( self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''in_channels''': 8,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image_hint''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
lowercase__ = UNetaDConditionModel(**lowerCamelCase )
return model
@property
def lowercase__ ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.dummy_unet
lowercase__ = self.dummy_movq
lowercase__ = {
'''num_train_timesteps''': 1_000,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.00085,
'''beta_end''': 0.012,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
lowercase__ = DDIMScheduler(**lowerCamelCase )
lowercase__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[Any]=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
lowercase__ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to(
lowerCamelCase )
# create init_image
lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
lowercase__ = image.cpu().permute(0, 2, 3, 1 )[0]
lowercase__ = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) )
# create hint
lowercase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
if str(lowerCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(lowerCamelCase )
else:
lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
lowercase__ = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''hint''': hint,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**lowerCamelCase )
lowercase__ = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs(lowerCamelCase ) )
lowercase__ = output.images
lowercase__ = pipe(
**self.get_dummy_inputs(lowerCamelCase ), return_dict=lowerCamelCase, )[0]
lowercase__ = image[0, -3:, -3:, -1]
lowercase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase__ = np.array(
[0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' )
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
lowercase__ = init_image.resize((512, 512) )
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/hint_image_cat.png''' )
lowercase__ = torch.from_numpy(np.array(lowerCamelCase ) ).float() / 255.0
lowercase__ = hint.permute(2, 0, 1 ).unsqueeze(0 )
lowercase__ = '''A robot, 4k photo'''
lowercase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa )
pipe_prior.to(lowerCamelCase )
lowercase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-controlnet-depth''', torch_dtype=torch.floataa )
lowercase__ = pipeline.to(lowerCamelCase )
pipeline.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ , lowercase__ = pipe_prior(
lowerCamelCase, image=lowerCamelCase, strength=0.85, generator=lowerCamelCase, negative_prompt='''''', ).to_tuple()
lowercase__ = pipeline(
image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, hint=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=100, height=512, width=512, strength=0.5, output_type='''np''', )
lowercase__ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase )
| 709 |
from itertools import count
def a ( lowerCamelCase_ = 50 ):
'''simple docstring'''
lowercase__ = [1] * min_block_length
for n in count(lowerCamelCase_ ):
fill_count_functions.append(1 )
for block_length in range(lowerCamelCase_ , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 100_0000:
break
return n
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
A__ : Optional[Any] = False
A__ : Optional[int] = logging.get_logger(__name__)
A__ : Tuple = 'ybelkada/fonts'
def a ( ):
'''simple docstring'''
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """
'''Pix2StructImageProcessor. Please upgrade torch.''' )
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
requires_backends(lowerCamelCase_ , ['''torch'''] )
_check_torch_version()
lowercase__ = image_tensor.unsqueeze(0 )
lowercase__ = torch.nn.functional.unfold(lowerCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
lowercase__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCamelCase_ , lowerCamelCase_ , -1 )
lowercase__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def a ( lowerCamelCase_ , lowerCamelCase_ = 36 , lowerCamelCase_ = "black" , lowerCamelCase_ = "white" , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = None , lowerCamelCase_ = None , ):
'''simple docstring'''
requires_backends(lowerCamelCase_ , '''vision''' )
# Add new lines so that each line is no more than 80 characters.
lowercase__ = textwrap.TextWrapper(width=80 )
lowercase__ = wrapper.wrap(text=lowerCamelCase_ )
lowercase__ = '''\n'''.join(lowerCamelCase_ )
if font_bytes is not None and font_path is None:
lowercase__ = io.BytesIO(lowerCamelCase_ )
elif font_path is not None:
lowercase__ = font_path
else:
lowercase__ = hf_hub_download(lowerCamelCase_ , '''Arial.TTF''' )
lowercase__ = ImageFont.truetype(lowerCamelCase_ , encoding='''UTF-8''' , size=lowerCamelCase_ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
lowercase__ = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , lowerCamelCase_ ) )
lowercase__ , lowercase__ , lowercase__ , lowercase__ = temp_draw.textbbox((0, 0) , lowerCamelCase_ , lowerCamelCase_ )
# Create the actual image with a bit of padding around the text.
lowercase__ = text_width + left_padding + right_padding
lowercase__ = text_height + top_padding + bottom_padding
lowercase__ = Image.new('''RGB''' , (image_width, image_height) , lowerCamelCase_ )
lowercase__ = ImageDraw.Draw(lowerCamelCase_ )
draw.text(xy=(left_padding, top_padding) , text=lowerCamelCase_ , fill=lowerCamelCase_ , font=lowerCamelCase_ )
return image
def a ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ):
'''simple docstring'''
requires_backends(lowerCamelCase_ , '''vision''' )
# Convert to PIL image if necessary
lowercase__ = to_pil_image(lowerCamelCase_ )
lowercase__ = render_text(lowerCamelCase_ , **lowerCamelCase_ )
lowercase__ = max(header_image.width , image.width )
lowercase__ = int(image.height * (new_width / image.width) )
lowercase__ = int(header_image.height * (new_width / header_image.width) )
lowercase__ = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
lowercase__ = to_numpy_array(lowerCamelCase_ )
if infer_channel_dimension_format(lowerCamelCase_ ) == ChannelDimension.LAST:
lowercase__ = to_channel_dimension_format(lowerCamelCase_ , ChannelDimension.LAST )
return new_image
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""flattened_patches"""]
def __init__( self : str, lowerCamelCase : bool = True, lowerCamelCase : bool = True, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : int = 2_048, lowerCamelCase : bool = False, **lowerCamelCase : Optional[Any], ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
lowercase__ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
lowercase__ = do_normalize
lowercase__ = do_convert_rgb
lowercase__ = max_patches
lowercase__ = is_vqa
def lowercase__ ( self : Optional[int], lowerCamelCase : np.ndarray, lowerCamelCase : int, lowerCamelCase : dict, **lowerCamelCase : Dict ):
'''simple docstring'''
requires_backends(self.extract_flattened_patches, '''torch''' )
_check_torch_version()
# convert to torch
lowercase__ = to_channel_dimension_format(lowerCamelCase, ChannelDimension.FIRST )
lowercase__ = torch.from_numpy(lowerCamelCase )
lowercase__ , lowercase__ = patch_size['''height'''], patch_size['''width''']
lowercase__ , lowercase__ = get_image_size(lowerCamelCase )
# maximize scale s.t.
lowercase__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
lowercase__ = max(min(math.floor(scale * image_height / patch_height ), lowerCamelCase ), 1 )
lowercase__ = max(min(math.floor(scale * image_width / patch_width ), lowerCamelCase ), 1 )
lowercase__ = max(num_feasible_rows * patch_height, 1 )
lowercase__ = max(num_feasible_cols * patch_width, 1 )
lowercase__ = torch.nn.functional.interpolate(
image.unsqueeze(0 ), size=(resized_height, resized_width), mode='''bilinear''', align_corners=lowerCamelCase, antialias=lowerCamelCase, ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
lowercase__ = torch_extract_patches(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = patches.shape
lowercase__ = patches_shape[1]
lowercase__ = patches_shape[2]
lowercase__ = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
lowercase__ = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
lowercase__ = torch.arange(lowerCamelCase ).reshape([rows, 1] ).repeat(1, lowerCamelCase ).reshape([rows * columns, 1] )
lowercase__ = torch.arange(lowerCamelCase ).reshape([1, columns] ).repeat(lowerCamelCase, 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
lowercase__ = row_ids.to(torch.floataa )
lowercase__ = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
lowercase__ = torch.cat([row_ids, col_ids, patches], -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
lowercase__ = torch.nn.functional.pad(lowerCamelCase, [0, 0, 0, max_patches - (rows * columns)] ).float()
lowercase__ = to_numpy_array(lowerCamelCase )
return result
def lowercase__ ( self : List[str], lowerCamelCase : np.ndarray, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : int ):
'''simple docstring'''
if image.dtype == np.uinta:
lowercase__ = image.astype(np.floataa )
# take mean across the whole `image`
lowercase__ = np.mean(lowerCamelCase )
lowercase__ = np.std(lowerCamelCase )
lowercase__ = max(lowerCamelCase, 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, **lowerCamelCase )
def lowercase__ ( self : Dict, lowerCamelCase : ImageInput, lowerCamelCase : Optional[str] = None, lowerCamelCase : bool = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Dict[str, int]] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : ChannelDimension = ChannelDimension.FIRST, **lowerCamelCase : Union[str, Any], ):
'''simple docstring'''
lowercase__ = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowercase__ = patch_size if patch_size is not None else self.patch_size
lowercase__ = max_patches if max_patches is not None else self.max_patches
lowercase__ = self.is_vqa
if kwargs.get('''data_format''', lowerCamelCase ) is not None:
raise ValueError('''data_format is not an accepted input as the outputs are ''' )
lowercase__ = make_list_of_images(lowerCamelCase )
if not valid_images(lowerCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowercase__ = [convert_to_rgb(lowerCamelCase ) for image in images]
# All transformations expect numpy arrays.
lowercase__ = [to_numpy_array(lowerCamelCase ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError('''A header text must be provided for VQA models.''' )
lowercase__ = kwargs.pop('''font_bytes''', lowerCamelCase )
lowercase__ = kwargs.pop('''font_path''', lowerCamelCase )
if isinstance(lowerCamelCase, lowerCamelCase ):
lowercase__ = [header_text] * len(lowerCamelCase )
lowercase__ = [
render_header(lowerCamelCase, header_text[i], font_bytes=lowerCamelCase, font_path=lowerCamelCase )
for i, image in enumerate(lowerCamelCase )
]
if do_normalize:
lowercase__ = [self.normalize(image=lowerCamelCase ) for image in images]
# convert to torch tensor and permute
lowercase__ = [
self.extract_flattened_patches(image=lowerCamelCase, max_patches=lowerCamelCase, patch_size=lowerCamelCase )
for image in images
]
# create attention mask in numpy
lowercase__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
lowercase__ = BatchFeature(
data={'''flattened_patches''': images, '''attention_mask''': attention_masks}, tensor_type=lowerCamelCase )
return encoded_outputs
| 710 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
A__ : Tuple = logging.get_logger(__name__)
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = ["""input_features""", """is_longer"""]
def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ):
'''simple docstring'''
super().__init__(
feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, )
lowercase__ = top_db
lowercase__ = truncation
lowercase__ = padding
lowercase__ = fft_window_size
lowercase__ = (fft_window_size >> 1) + 1
lowercase__ = hop_length
lowercase__ = max_length_s
lowercase__ = max_length_s * sampling_rate
lowercase__ = sampling_rate
lowercase__ = frequency_min
lowercase__ = frequency_max
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', )
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', )
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ):
'''simple docstring'''
lowercase__ = spectrogram(
lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', )
return log_mel_spectrogram.T
def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
# randomly choose index for each part
lowercase__ = np.random.choice(ranges[0] )
lowercase__ = np.random.choice(ranges[1] )
lowercase__ = np.random.choice(ranges[2] )
lowercase__ = mel[idx_front : idx_front + chunk_frames, :]
lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :]
lowercase__ = mel[idx_back : idx_back + chunk_frames, :]
lowercase__ = torch.tensor(mel[None, None, :] )
lowercase__ = torch.nn.functional.interpolate(
lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase )
lowercase__ = mel_shrink[0][0].numpy()
lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 )
return mel_fusion
def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowercase__ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowercase__ = len(lowerCamelCase ) - max_length
lowercase__ = np.random.randint(0, overflow + 1 )
lowercase__ = waveform[idx : idx + max_length]
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowercase__ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowercase__ = np.stack([mel, mel, mel, mel], axis=0 )
lowercase__ = False
else:
lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase )
lowercase__ = True
else:
raise NotImplementedError(F"""data_truncating {truncation} not implemented""" )
else:
lowercase__ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowercase__ = int(max_length / len(lowerCamelCase ) )
lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) )
lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 )
if truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters )
lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 )
else:
lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ):
'''simple docstring'''
lowercase__ = truncation if truncation is not None else self.truncation
lowercase__ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
lowercase__ = is_batched_numpy or (
isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ):
lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa )
elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray(lowerCamelCase )]
# convert to mel spectrogram, truncate and pad if needed.
lowercase__ = [
self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase )
for waveform in raw_speech
]
lowercase__ = []
lowercase__ = []
for mel, longer in padded_inputs:
input_mel.append(lowerCamelCase )
is_longer.append(lowerCamelCase )
if truncation == "fusion" and sum(lowerCamelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowercase__ = np.random.randint(0, len(lowerCamelCase ) )
lowercase__ = True
if isinstance(input_mel[0], lowerCamelCase ):
lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowercase__ = [[longer] for longer in is_longer]
lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer}
lowercase__ = BatchFeature(lowerCamelCase )
if return_tensors is not None:
lowercase__ = input_features.convert_to_tensors(lowerCamelCase )
return input_features
| 671 | 0 |
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : List[Any], lowerCamelCase : int, lowerCamelCase : Dict=13, lowerCamelCase : Optional[Any]=7, lowerCamelCase : Optional[int]=6, lowerCamelCase : List[Any]=17, lowerCamelCase : Optional[Any]=23, lowerCamelCase : Any=11, lowerCamelCase : List[Any]=True, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = act_dim
lowercase__ = state_dim
lowercase__ = hidden_size
lowercase__ = max_length
lowercase__ = is_training
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) )
lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) )
lowercase__ = ids_tensor((self.batch_size, self.seq_length), vocab_size=1_000 )
lowercase__ = random_attention_mask((self.batch_size, self.seq_length) )
lowercase__ = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def lowercase__ ( self : str ):
'''simple docstring'''
return DecisionTransformerConfig(
batch_size=self.batch_size, seq_length=self.seq_length, act_dim=self.act_dim, state_dim=self.state_dim, hidden_size=self.hidden_size, max_length=self.max_length, )
def lowercase__ ( self : int, lowerCamelCase : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : List[str], ):
'''simple docstring'''
lowercase__ = DecisionTransformerModel(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowercase__ = model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
self.parent.assertEqual(result.state_preds.shape, states.shape )
self.parent.assertEqual(result.action_preds.shape, actions.shape )
self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) = config_and_inputs
lowercase__ = {
'''states''': states,
'''actions''': actions,
'''rewards''': rewards,
'''returns_to_go''': returns_to_go,
'''timesteps''': timesteps,
'''attention_mask''': attention_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = (DecisionTransformerModel,) if is_torch_available() else ()
lowercase__ = ()
lowercase__ = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
lowercase__ = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def lowercase__ ( self : Tuple ):
'''simple docstring'''
lowercase__ = DecisionTransformerModelTester(self )
lowercase__ = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
@slow
def lowercase__ ( self : Tuple ):
'''simple docstring'''
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = DecisionTransformerModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(lowerCamelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = [
'''states''',
'''actions''',
'''rewards''',
'''returns_to_go''',
'''timesteps''',
'''attention_mask''',
]
self.assertListEqual(arg_names[: len(lowerCamelCase )], lowerCamelCase )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = 2 # number of steps of autoregressive prediction we will perform
lowercase__ = 10 # defined by the RL environment, may be normalized
lowercase__ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' )
lowercase__ = model.to(lowerCamelCase )
lowercase__ = model.config
torch.manual_seed(0 )
lowercase__ = torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase, dtype=torch.floataa ) # env.reset()
lowercase__ = torch.tensor(
[[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]], device=lowerCamelCase )
lowercase__ = torch.tensor(lowerCamelCase, device=lowerCamelCase, dtype=torch.floataa ).reshape(1, 1, 1 )
lowercase__ = state
lowercase__ = torch.zeros(1, 0, config.act_dim, device=lowerCamelCase, dtype=torch.floataa )
lowercase__ = torch.zeros(1, 0, device=lowerCamelCase, dtype=torch.floataa )
lowercase__ = torch.tensor(0, device=lowerCamelCase, dtype=torch.long ).reshape(1, 1 )
for step in range(lowerCamelCase ):
lowercase__ = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=lowerCamelCase )], dim=1 )
lowercase__ = torch.cat([rewards, torch.zeros(1, 1, device=lowerCamelCase )], dim=1 )
lowercase__ = torch.ones(1, states.shape[1] ).to(dtype=torch.long, device=states.device )
with torch.no_grad():
lowercase__ , lowercase__ , lowercase__ = model(
states=lowerCamelCase, actions=lowerCamelCase, rewards=lowerCamelCase, returns_to_go=lowerCamelCase, timesteps=lowerCamelCase, attention_mask=lowerCamelCase, return_dict=lowerCamelCase, )
self.assertEqual(action_pred.shape, actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1E-4 ) )
lowercase__ , lowercase__ , lowercase__ , lowercase__ = ( # env.step(action)
torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase, dtype=torch.floataa ),
1.0,
False,
{},
)
lowercase__ = action_pred[0, -1]
lowercase__ = torch.cat([states, state], dim=1 )
lowercase__ = returns_to_go[0, -1] - reward
lowercase__ = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1 )], dim=1 )
lowercase__ = torch.cat(
[timesteps, torch.ones((1, 1), device=lowerCamelCase, dtype=torch.long ) * (step + 1)], dim=1 )
| 711 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = 42
lowercase__ = None
lowercase__ = None
def a ( ):
'''simple docstring'''
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def a ( lowerCamelCase_ ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
def populate_output(lowerCamelCase_ , lowerCamelCase_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowerCamelCase_ , lowerCamelCase_ )
return output
def a ( lowerCamelCase_ ):
'''simple docstring'''
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(lowerCamelCase_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(lowerCamelCase_ , lowerCamelCase_ ) )
lowercase__ = 0
return output
def a ( ): # Main function for testing.
'''simple docstring'''
lowercase__ = make_tree()
print(F"""In-order Traversal: {inorder(lowerCamelCase_ )}""" )
print(F"""Pre-order Traversal: {preorder(lowerCamelCase_ )}""" )
print(F"""Post-order Traversal: {postorder(lowerCamelCase_ )}""" , '''\n''' )
print(F"""Height of Tree: {height(lowerCamelCase_ )}""" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(lowerCamelCase_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(lowerCamelCase_ ) + 1 ):
print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase_ , level=lowerCamelCase_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(lowerCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 671 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
A__ : Union[str, Any] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt')
A__ : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
A__ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def a ( lowerCamelCase_ ):
'''simple docstring'''
with open(lowerCamelCase_ , '''rb''' ) as f:
lowercase__ = Image.open(lowerCamelCase_ )
return im.convert('''RGB''' )
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = field(
default=A__ ,metadata={
"""help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."""
} ,)
lowercase__ = field(
default=A__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
lowercase__ = field(default=A__ ,metadata={"""help""": """A folder containing the training data."""} )
lowercase__ = field(default=A__ ,metadata={"""help""": """A folder containing the validation data."""} )
lowercase__ = field(
default=0.15 ,metadata={"""help""": """Percent to split off of train for validation."""} )
lowercase__ = field(
default=A__ ,metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} ,)
lowercase__ = field(
default=A__ ,metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} ,)
def lowercase__ ( self : Any ):
'''simple docstring'''
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
'''You must specify either a dataset name from the hub or a train and/or validation directory.''' )
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
lowercase__ = field(
default="""google/vit-base-patch16-224-in21k""" ,metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ,)
lowercase__ = field(
default=A__ ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(A__ )} ,)
lowercase__ = field(
default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
lowercase__ = field(
default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} )
lowercase__ = field(
default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,)
lowercase__ = field(default=A__ ,metadata={"""help""": """Name or path of preprocessor config."""} )
lowercase__ = field(
default=A__ ,metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} ,)
lowercase__ = field(
default=A__ ,metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} ,)
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = torch.stack([example['''pixel_values'''] for example in examples] )
lowercase__ = torch.tensor([example['''labels'''] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def a ( ):
'''simple docstring'''
lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_image_classification''' , lowerCamelCase_ , lowerCamelCase_ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowercase__ = training_args.get_process_log_level()
logger.setLevel(lowerCamelCase_ )
transformers.utils.logging.set_verbosity(lowerCamelCase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowercase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
lowercase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , )
else:
lowercase__ = {}
if data_args.train_dir is not None:
lowercase__ = os.path.join(data_args.train_dir , '''**''' )
if data_args.validation_dir is not None:
lowercase__ = os.path.join(data_args.validation_dir , '''**''' )
lowercase__ = load_dataset(
'''imagefolder''' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir , task='''image-classification''' , )
# If we don't have a validation split, split off a percentage of train as validation.
lowercase__ = None if '''validation''' in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , lowerCamelCase_ ) and data_args.train_val_split > 0.0:
lowercase__ = dataset['''train'''].train_test_split(data_args.train_val_split )
lowercase__ = split['''train''']
lowercase__ = split['''test''']
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
lowercase__ = dataset['''train'''].features['''labels'''].names
lowercase__ , lowercase__ = {}, {}
for i, label in enumerate(lowerCamelCase_ ):
lowercase__ = str(lowerCamelCase_ )
lowercase__ = label
# Load the accuracy metric from the datasets package
lowercase__ = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCamelCase_ ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
lowercase__ = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel=lowerCamelCase_ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
lowercase__ = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
lowercase__ = image_processor.size['''shortest_edge''']
else:
lowercase__ = (image_processor.size['''height'''], image_processor.size['''width'''])
lowercase__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
lowercase__ = Compose(
[
RandomResizedCrop(lowerCamelCase_ ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
lowercase__ = Compose(
[
Resize(lowerCamelCase_ ),
CenterCrop(lowerCamelCase_ ),
ToTensor(),
normalize,
] )
def train_transforms(lowerCamelCase_ ):
lowercase__ = [
_train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']
]
return example_batch
def val_transforms(lowerCamelCase_ ):
lowercase__ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError('''--do_train requires a train dataset''' )
if data_args.max_train_samples is not None:
lowercase__ = (
dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(lowerCamelCase_ )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError('''--do_eval requires a validation dataset''' )
if data_args.max_eval_samples is not None:
lowercase__ = (
dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(lowerCamelCase_ )
# Initalize our trainer
lowercase__ = Trainer(
model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , )
# Training
if training_args.do_train:
lowercase__ = None
if training_args.resume_from_checkpoint is not None:
lowercase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowercase__ = last_checkpoint
lowercase__ = trainer.train(resume_from_checkpoint=lowerCamelCase_ )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
lowercase__ = trainer.evaluate()
trainer.log_metrics('''eval''' , lowerCamelCase_ )
trainer.save_metrics('''eval''' , lowerCamelCase_ )
# Write model card and (optionally) push to hub
lowercase__ = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''image-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''image-classification''', '''vision'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCamelCase_ )
else:
trainer.create_model_card(**lowerCamelCase_ )
if __name__ == "__main__":
main()
| 712 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = DistilBertTokenizer
lowercase__ = DistilBertTokenizerFast
lowercase__ = True
@slow
def lowercase__ ( self : str ):
'''simple docstring'''
lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase )
lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 671 | 0 |
from datetime import datetime as dt
import os
from github import Github
A__ : Any = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def a ( ):
'''simple docstring'''
lowercase__ = Github(os.environ['''GITHUB_TOKEN'''] )
lowercase__ = g.get_repo('''huggingface/transformers''' )
lowercase__ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowercase__ = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ )
lowercase__ = comments[0] if len(lowerCamelCase_ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 713 |
from __future__ import annotations
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
if resistor <= 0:
lowercase__ = F"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(lowerCamelCase_ )
first_sum += 1 / float(lowerCamelCase_ )
index += 1
return 1 / first_sum
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 0.00
lowercase__ = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowercase__ = F"""Resistor at index {index} has a negative value!"""
raise ValueError(lowerCamelCase_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 671 | 0 |
import collections
import os
import re
from pathlib import Path
A__ : Optional[Any] = 'src/transformers'
# Matches is_xxx_available()
A__ : List[str] = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
A__ : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
A__ : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
A__ : Optional[int] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
A__ : Dict = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
A__ : Any = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
A__ : Dict = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
A__ : Tuple = re.compile(r'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
A__ : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
A__ : Any = re.compile(r'^\s*try:')
# Catches a line with else:
A__ : Optional[Any] = re.compile(r'^\s*else:')
def a ( lowerCamelCase_ ):
'''simple docstring'''
if _re_test_backend.search(lowerCamelCase_ ) is None:
return None
lowercase__ = [b[0] for b in _re_backend.findall(lowerCamelCase_ )]
backends.sort()
return "_and_".join(lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowercase__ = f.readlines()
lowercase__ = 0
while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowerCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
lowercase__ = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
lowercase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowerCamelCase_ ):
lowercase__ = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0]
lowercase__ = re.findall(r'''\[([^\]]+)\]''' , lowerCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
lowercase__ = _re_import_struct_key_value.search(lowerCamelCase_ )
if single_line_import_search is not None:
lowercase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
lowercase__ = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowercase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowercase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowercase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
lowercase__ = lines[line_index]
if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None:
lowercase__ = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(''', ''' )
lowercase__ = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_between_brackets.search(lowerCamelCase_ ) is not None:
lowercase__ = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(''', ''' )
lowercase__ = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_quote_object.search(lowerCamelCase_ ) is not None:
objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
lowercase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowercase__ = []
while (
line_index < len(lowerCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
lowercase__ = lines[line_index]
lowercase__ = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowercase__ = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(lowerCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowercase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowercase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowercase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
lowercase__ = lines[line_index]
lowercase__ = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowercase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
def find_duplicates(lowerCamelCase_ ):
return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowercase__ = []
for key in import_dict_objects.keys():
lowercase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
lowercase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowercase__ = '''base imports''' if key == '''none''' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def a ( ):
'''simple docstring'''
lowercase__ = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
lowercase__ = os.path.join(lowerCamelCase_ , '''__init__.py''' )
lowercase__ = parse_init(lowerCamelCase_ )
if objects is not None:
lowercase__ = analyze_results(*lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
lowercase__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(lowerCamelCase_ ) )
if len(lowerCamelCase_ ) > 0:
raise ValueError('''\n\n'''.join(lowerCamelCase_ ) )
def a ( ):
'''simple docstring'''
lowercase__ = []
for path, directories, files in os.walk(lowerCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(lowerCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowerCamelCase_ ) / folder).glob('''*.py''' ) ) ) == 0:
continue
lowercase__ = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) )
lowercase__ = short_path.replace(os.path.sep , '''.''' )
submodules.append(lowerCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
lowercase__ = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) )
lowercase__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(lowerCamelCase_ )
return submodules
A__ : List[str] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def a ( ):
'''simple docstring'''
from transformers.utils import direct_transformers_import
lowercase__ = direct_transformers_import(lowerCamelCase_ )
lowercase__ = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , '''r''' ) as f:
lowercase__ = f.read()
import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , lowerCamelCase_ ) ) )
lowercase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowerCamelCase_ ) > 0:
lowercase__ = '''\n'''.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registed in the main init of Transformers:\n'''
F"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 714 |
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' )
lowercase__ = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ),
] )
lowercase__ = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ )
return image
def a ( lowerCamelCase_ ):
'''simple docstring'''
if "visual_encoder" in key:
lowercase__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCamelCase_ )
if "blocks" in key:
lowercase__ = re.sub(r'''blocks''' , '''layers''' , lowerCamelCase_ )
if "attn" in key:
lowercase__ = re.sub(r'''attn''' , '''self_attn''' , lowerCamelCase_ )
if "norm1" in key:
lowercase__ = re.sub(r'''norm1''' , '''layer_norm1''' , lowerCamelCase_ )
if "norm2" in key:
lowercase__ = re.sub(r'''norm2''' , '''layer_norm2''' , lowerCamelCase_ )
if "encoder.norm" in key:
lowercase__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , lowerCamelCase_ )
if "encoder.patch_embed.proj" in key:
lowercase__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCamelCase_ )
if "encoder.pos_embed" in key:
lowercase__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCamelCase_ )
if "encoder.cls_token" in key:
lowercase__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCamelCase_ )
if "self_attn" in key:
lowercase__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , lowerCamelCase_ )
return key
@torch.no_grad()
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
if config_path is not None:
lowercase__ = BlipConfig.from_pretrained(lowerCamelCase_ )
else:
lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
lowercase__ = BlipForConditionalGeneration(lowerCamelCase_ ).eval()
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
lowercase__ = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit='''base''' )
lowercase__ = pt_model.eval()
lowercase__ = pt_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
hf_model.load_state_dict(lowerCamelCase_ )
lowercase__ = 384
lowercase__ = load_demo_image(image_size=lowerCamelCase_ , device='''cpu''' )
lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' )
lowercase__ = tokenizer(['''a picture of'''] ).input_ids
lowercase__ = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
lowercase__ = hf_model.generate(lowerCamelCase_ )
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowerCamelCase_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
lowercase__ = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
lowercase__ = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
vqa_model.eval()
lowercase__ = vqa_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForQuestionAnswering(lowerCamelCase_ )
hf_vqa_model.load_state_dict(lowerCamelCase_ )
lowercase__ = ['''How many dogs are in this image?''']
lowercase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids
lowercase__ = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
lowercase__ = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit='''base''' )
itm_model.eval()
lowercase__ = itm_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ = modified_state_dict.pop(lowerCamelCase_ )
lowercase__ = rename_key(lowerCamelCase_ )
lowercase__ = value
lowercase__ = BlipForImageTextRetrieval(lowerCamelCase_ )
lowercase__ = ['''A picture of a woman with a dog sitting in a beach''']
lowercase__ = tokenizer(
lowerCamelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(lowerCamelCase_ )
hf_itm_model.eval()
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
lowercase__ = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ )
assert out[0].item() == 0.21_10_68_74_94_27_79_54
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
A__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
A__ : List[Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 671 | 0 |
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = 1
lowercase__ = 2
while i * i <= n:
lowercase__ = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def a ( ):
'''simple docstring'''
lowercase__ = 1
lowercase__ = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase_ ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 715 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ):
'''simple docstring'''
lowercase__ = size if size is not None else {'''shortest_edge''': 20}
lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = min_resolution
lowercase__ = max_resolution
lowercase__ = do_resize
lowercase__ = size
lowercase__ = do_center_crop
lowercase__ = crop_size
def lowercase__ ( self : Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} )
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase__ ( self : Any ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, Image.Image )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, np.ndarray )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, torch.Tensor )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
| 671 | 0 |
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
if digit_amount > 0:
return round(number - int(lowerCamelCase_ ) , lowerCamelCase_ )
return number - int(lowerCamelCase_ )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 716 |
import argparse
import os
import re
A__ : Optional[int] = 'src/transformers'
# Pattern that looks at the indentation in a line.
A__ : Union[str, Any] = re.compile(r'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
A__ : List[str] = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
A__ : int = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A__ : Tuple = re.compile(r'\[([^\]]+)\]')
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = _re_indent.search(lowerCamelCase_ )
return "" if search is None else search.groups()[0]
def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(lowerCamelCase_ ):
index += 1
lowercase__ = ['''\n'''.join(lines[:index] )]
else:
lowercase__ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ = [lines[index]]
index += 1
while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(lowerCamelCase_ ) )
if index < len(lowerCamelCase_ ) - 1:
lowercase__ = [lines[index + 1]]
index += 1
else:
lowercase__ = []
else:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
lowercase__ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCamelCase_ ) > 0:
blocks.append('''\n'''.join(lowerCamelCase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCamelCase_ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def a ( lowerCamelCase_ ):
'''simple docstring'''
def _inner(lowerCamelCase_ ):
return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' )
return _inner
def a ( lowerCamelCase_ , lowerCamelCase_=None ):
'''simple docstring'''
# If no key is provided, we use a noop.
def noop(lowerCamelCase_ ):
return x
if key is None:
lowercase__ = noop
# Constants are all uppercase, they go first.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()]
lowercase__ = ignore_underscore(lowerCamelCase_ )
return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
# This inner function sort imports between [ ].
def _replace(lowerCamelCase_ ):
lowercase__ = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]"
lowercase__ = import_statement.split('''\n''' )
if len(lowerCamelCase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ = 2 if lines[1].strip() == '''[''' else 1
lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )
lowercase__ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCamelCase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase__ = _re_bracket_content.sub(_replace , lines[1] )
else:
lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ = keys[:-1]
lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] )
return "\n".join(lowerCamelCase_ )
else:
# Finally we have to deal with imports fitting on one line
lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ )
return import_statement
def a ( lowerCamelCase_ , lowerCamelCase_=True ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding='''utf-8''' ) as f:
lowercase__ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ = split_code_in_indented_blocks(
lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ = main_blocks[block_idx]
lowercase__ = block.split('''\n''' )
# Get to the start of the imports.
lowercase__ = 0
while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ = len(lowerCamelCase_ )
else:
line_idx += 1
if line_idx >= len(lowerCamelCase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ = '''\n'''.join(block_lines[line_idx:-1] )
lowercase__ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None]
lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ = 0
lowercase__ = []
for i in range(len(lowerCamelCase_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowerCamelCase_ )
count += 1
# And we put our main block back together with its first and last line.
lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCamelCase_ ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(lowerCamelCase_ ) )
def a ( lowerCamelCase_=True ):
'''simple docstring'''
lowercase__ = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ )
if result:
lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )]
if len(lowerCamelCase_ ) > 0:
raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
A__ : int = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 671 | 0 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A__ : int = 16
A__ : int = 32
def a ( lowerCamelCase_ , lowerCamelCase_ = 16 ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCamelCase_ ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCamelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
lowerCamelCase_ , padding='''longest''' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
lowercase__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A__ : Dict = mocked_dataloaders # noqa: F811
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCamelCase_ ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase_ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config['''lr''']
lowercase__ = int(config['''num_epochs'''] )
lowercase__ = int(config['''seed'''] )
lowercase__ = int(config['''batch_size'''] )
lowercase__ = evaluate.load('''glue''' , '''mrpc''' )
set_seed(lowerCamelCase_ )
lowercase__ , lowercase__ = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCamelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=lowerCamelCase_ )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Now we train the model
for epoch in range(lowerCamelCase_ ):
model.train()
for step, batch in enumerate(lowerCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(lowerCamelCase_ ):
lowercase__ = model(**lowerCamelCase_ )
lowercase__ = output.loss
accelerator.backward(lowerCamelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**lowerCamelCase_ )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=lowerCamelCase_ , references=lowerCamelCase_ , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , lowerCamelCase_ )
def a ( ):
'''simple docstring'''
lowercase__ = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
# New Code #
parser.add_argument(
'''--gradient_accumulation_steps''' , type=lowerCamelCase_ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ = parser.parse_args()
lowercase__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 717 |
from math import sqrt
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
lowercase__ = True
# 0 and 1 are none primes.
if number <= 1:
lowercase__ = False
for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowercase__ = False
break
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool"
return status
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowercase__ = list(range(2 , n + 1 ) )
lowercase__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase_ ) ):
for j in range(i + 1 , len(lowerCamelCase_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowercase__ = 0
# filters actual prime numbers.
lowercase__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2"
lowercase__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(lowerCamelCase_ ):
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0"
lowercase__ = [] # this list will be returns of the function.
# potential prime number factors.
lowercase__ = 2
lowercase__ = number
if number == 0 or number == 1:
ans.append(lowerCamelCase_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase_ ):
while quotient != 1:
if is_prime(lowerCamelCase_ ) and (quotient % factor == 0):
ans.append(lowerCamelCase_ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = max(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase__ = 0
# prime factorization of 'number'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = min(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 == 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool"
return number % 2 != 0
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ )
), "'number' must been an int, even and > 2"
lowercase__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowercase__ = get_prime_numbers(lowerCamelCase_ )
lowercase__ = len(lowerCamelCase_ )
# run variable for while-loops.
lowercase__ = 0
lowercase__ = None
# exit variable. for break up the loops
lowercase__ = True
while i < len_pn and loop:
lowercase__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowercase__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (len(lowerCamelCase_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 0
while numbera != 0:
lowercase__ = numbera % numbera
lowercase__ = numbera
lowercase__ = rest
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowercase__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowercase__ = prime_factorization(lowerCamelCase_ )
lowercase__ = prime_factorization(lowerCamelCase_ )
elif numbera == 1 or numbera == 1:
lowercase__ = []
lowercase__ = []
lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ )
lowercase__ = 0
lowercase__ = 0
lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ):
ans *= n
else:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowercase__ = prime_fac_a.count(lowerCamelCase_ )
for _ in range(lowerCamelCase_ ):
ans *= n
done.append(lowerCamelCase_ )
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int"
lowercase__ = 0
lowercase__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase_ ):
ans += 1
# precondition
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime(
lowerCamelCase_ ), "'ans' must been a prime number and from type int"
return ans
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowercase__ = p_number_a + 1 # jump to the next number
lowercase__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase_ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase_ ):
number += 1
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and ans[0] != p_number_a
and ans[len(lowerCamelCase_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1"
lowercase__ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(lowerCamelCase_ )
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (
number > 1
), "'number' must been an int and >= 1"
lowercase__ = get_divisors(lowerCamelCase_ )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) )
# precondition
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0"
lowercase__ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a ( lowerCamelCase_ ):
'''simple docstring'''
assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0"
lowercase__ = 0
lowercase__ = 1
lowercase__ = 1 # this will be return
for _ in range(n - 1 ):
lowercase__ = ans
ans += fiba
lowercase__ = tmp
return ans
| 671 | 0 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def a ( lowerCamelCase_ = 150_0000 ):
'''simple docstring'''
lowercase__ = defaultdict(lowerCamelCase_ )
lowercase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ):
if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1:
continue
lowercase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 718 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def a ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = args.log_outputs
lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
lowercase__ = load_metric('''wer''' )
lowercase__ = load_metric('''cer''' )
# compute metrics
lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}"""
print(lowerCamelCase_ )
with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowerCamelCase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
lowercase__ = F"""log_{dataset_id}_predictions.txt"""
lowercase__ = F"""log_{dataset_id}_targets.txt"""
with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowerCamelCase_ , lowerCamelCase_ ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ )
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) )
return text
def a ( lowerCamelCase_ ):
'''simple docstring'''
# load dataset
lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id )
lowercase__ = feature_extractor.sampling_rate
# resample audio
lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) )
# load eval pipeline
if args.device is None:
lowercase__ = 0 if torch.cuda.is_available() else -1
lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowerCamelCase_ ):
lowercase__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
lowercase__ = prediction['''text''']
lowercase__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
A__ : Union[str, Any] = parser.parse_args()
main(args)
| 671 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : Union[str, Any] = logging.get_logger(__name__)
A__ : Tuple = {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = """convbert"""
def __init__( self : int, lowerCamelCase : Any=30_522, lowerCamelCase : Optional[int]=768, lowerCamelCase : Optional[Any]=12, lowerCamelCase : List[str]=12, lowerCamelCase : Optional[Any]=3_072, lowerCamelCase : str="gelu", lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Optional[int]=512, lowerCamelCase : Dict=2, lowerCamelCase : str=0.02, lowerCamelCase : List[Any]=1E-12, lowerCamelCase : Union[str, Any]=1, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Optional[int]=2, lowerCamelCase : Optional[Any]=768, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : str=9, lowerCamelCase : List[Any]=1, lowerCamelCase : str=None, **lowerCamelCase : str, ):
'''simple docstring'''
super().__init__(
pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase, )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = embedding_size
lowercase__ = head_ratio
lowercase__ = conv_kernel_size
lowercase__ = num_groups
lowercase__ = classifier_dropout
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
@property
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase__ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 719 |
from functools import reduce
A__ : Union[str, Any] = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def a ( lowerCamelCase_ = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda lowerCamelCase_ , lowerCamelCase_ : str(int(lowerCamelCase_ ) * int(lowerCamelCase_ ) ) , n[i : i + 13] ) )
for i in range(len(lowerCamelCase_ ) - 12 ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 671 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.